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A short review is given of recent papers on the relaxation to (incompressible) absolute equilib-
rium. A new algorithm to construct absolute equilibrium of spectrally truncated compressible
flows is described. The algorithm uses stochastic processes based on the Clebsch representation
of the velocity field to generate density and velocity fields that follow by construction the abso-
lute equilibrium stationary probability. The new method is shown to reproduce the well-known
Gaussian results in the incompressible limit. The irrotational compressible absolute equilibrium
case is characterized and the distribution is shown to be non-Gaussian. The high-temperature
compressible spectra are found not to obey k2 scaling. Finally, oscillating behavior in constant-
pressure variable-temperature relaxation is obtained, suggesting the presence of second sound.
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1. Introduction

It is well-known [Lee, 1952; Kraichnan, 1973;
Orszag, 1977] that the (inviscid and conservative)
incompressible Euler equation (Galerkin) truncated
by keeping only a finite number of spatial Fourier
harmonics admits absolute equilibrium solutions
with Gaussian statistics, equipartition of kinetic
energy among all Fourier modes and thus an energy
spectrum E(k) ∼ k2.

A recent series of papers [Cichowlas et al., 2005;
Bos & Bertoglio, 2006; Krstulovic & Brachet, 2008;
Krstulovic et al., 2009; Frisch et al., 2008], focusing
on the dynamics of convergence toward absolute
equilibrium, revived the interest in these matters by
producing new and unexpected results. It was found

in particular that in this time-reversible system
(long-lasting) transients are obtained that mimic
(irreversible) viscous flows.

The purpose of this paper is to extend these
recent results to compressible flows. The absolute
equilibrium is Gaussian in the case of incompress-
ible flows, because the conserved quantities (energy
and helicity) are quadratic. In the case of compress-
ible flows the conserved quantities are not quadratic
and the corresponding stationary probability is thus
non-Gaussian. It is therefore a nontrivial problem to
generate such a compressible absolute equilibrium
flow.

The main result of this paper is a new algorithm
to generate compressible absolute equilibrium.
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We use the Hamiltonian Clebsch representation of
the velocity field to generate density and velocity
fields that follow by construction the absolute equi-
librium stationary probability.

The paper is organized as follows: in Sec. 2 we
give a short review of the recent series of papers on
the dynamics of convergence toward absolute equi-
librium in the incompressible case. In this section,
we also review several early papers related to the
compressible dynamics. Although these papers do
not explicitly refer to absolute equilibrium, they
implicitly do so by introducing wave turbulence
theory with ultraviolet cutoff. An explicit exam-
ple of relaxation toward equilibrium in the com-
pressible case is then given in Sec. 3. Our new
algorithm is detailed in Sec. 4. In Sec. 5, numer-
ical simulations are presented, first the algorithm
is verified in the incompressible case and then the
compressible absolute equilibria are studied. Pre-
liminary results relating to the presence of second
sound in constant pressure variable temperature
relaxation are given in Sec. 6. Finally Sec. 7 is our
conclusion.

2. A Short Review on Truncated
Euler

This section contains a short review of the recent
papers on the dynamics of convergence toward abso-
lute equilibrium in the incompressible case. We will
also review several early papers related to the com-
pressible dynamics. These papers do not explicitly
refer to absolute equilibrium, however, they implic-
itly do so by introducing wave turbulence theory
with an explicit ultraviolet cutoff that is mandatory
to make the theory finite.

2.1. Basic definitions

The truncated incompressible Euler equation is a
finite system of ordinary differential equations for
the complex variables û(k) (k is a 3D vector of rela-
tive integers (k1, k2, k3) satisfying supα|kα| ≤ kmax)

∂tûα(k, t) = − i

2
Pαβγ(k)

∑

p

ûβ(p, t)ûγ(k− p, t)

(1)

where Pαβγ = kβPαγ + kγPαβ with Pαβ = δαβ −
kαkβ/k2 and the convolution in (1) is truncated to
supα|kα| ≤ kmax, supα|pα| ≤ kmax and supα|kα −
pα| ≤ kmax.

This system is classically obtained [Orszag,
1977] from the (unit density) three-dimensional
incompressible Euler equation

∂tu + (u ·∇)u = −∇p (2)

∇ · u = 0 (3)

by performing a Galerkin truncation (û(k) = 0
for supα|kα| > kmax) on the Fourier transform
u(x, t) =

∑
û(k, t)eik·x of the spatially periodic

velocity field u.
This time-reversible system exactly conserves

the energy E =
∑

k E(k, t) and helicity H =∑
k H(k, t), where the energy and helicity spectra

E(k, t) and H(k, t) are defined by

E(k, t) =
1
2

∑

k−∆k/2<|k′|<k+∆k/2

|v̂(k′, t)|2 (4)

H(k, t) =
∑

k−∆k/2<|k′|<k+∆k/2

û(k′, t) · ω̂(−k′, t)

(5)

with spherical shells of width ∆k = 1.

2.2. Incompressible flows

Cichowlas et al. [2005], Cichowlas [2005] observed
that the incompressible Euler equation, (Galerkin)
truncated as in (1) using a large spectral truncation
wavenumber kmax, displays long-lasting transients
behaving just like high-Reynolds number viscous
flow. In particular, they found an approximately
k−5/3 inertial range followed by a dissipative range.
Such a behavior is possible because the highest-
k modes thermalize at first, through a mechanism
discovered by Lee [1952], leading to a k2 spec-
trum. Progressively the thermalized region extends
to lower and lower wavenumbers, eventually cover-
ing the whole range of available modes. At inter-
mediate times, when the thermalized regime only
extends over the highest wavenumbers, it acts as a
thermostat that pumps out the energy of larger-
scale modes. The energy spectrum for different
values of kmax and its temporal evolution taken
from [Cichowlas, 2005] are shown in Fig. 1. In this
context, the spectrally truncated Euler equations
appeared as a minimal model of turbulence.

Bos and Bertoglio [2006] studied the evolution
of the turbulent energy spectrum for the inviscid
spectrally truncated Euler equations using Eddy-
Damped Quasi-Normal Markovian (EDQNM) clo-
sure calculations. They observed that the EDQNM
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Fig. 1. Energy spectra, left: resolution 16003 at t = (6.5, 8, 10, 14) (", +, ◦, ∗); right: resolutions 2563 (circle ◦), 5123 (triangle
%), 10243 (cross ×) and 16003 (cross +) at t = 8. The dashed lines indicate k2 scaling. Figure taken from [Cichowlas, 2005].

closure reproduced the behavior found in the direct
numerical simulations of reference [Cichowlas et al.,
2005]. They showed that the dissipation range was
created by nonlinear interactions with the modes
in equipartition. They defined a nonlocal effec-
tive eddy viscosity, based on the most energetic
modes in the equipartition zone and the cutoff wave
number.

Krstulovic and Brachet [2008] proposed a
phenomenological two-fluid model of the (time-
reversible) spectrally-truncated 3D Euler equation.
They showed that the thermalized small scales
follow a quasi-normal distribution. They deter-
mined the effective viscosity and thermal diffusion,
using EDQNM closure and Monte-Carlo numer-
ical computations, yielding compatible values.
(Hypo)diffusion of heat was obtained using Monte
Carlo and the corresponding effective Prandtl num-
ber was found to vanish in the small k/kmax limit.
Overall, the phenomenological two-fluid model was
found to be in good quantitative agreement with
the original truncated Euler equations.

Krstulovic et al. [2008] studied for the first
time the relaxation toward a Kraichnan [1973]
helical absolute equilibrium. They found transient
mixed energy and helicity cascades and used the
concept of eddy viscosity, as previously devel-
oped in [Cichowlas et al., 2005] and [Krstulovic &
Brachet, 2008], to qualitatively explain the differ-
ences observed between truncated Euler and high-
Reynolds number (fixed viscosity) Navier–Stokes.
They finally showed that the truncated Euler
large scale modes quantitatively follow an effec-
tive Navier–Stokes dynamics based on a (time and
wavenumber dependent) eddy viscosity that did

not depend explicitly on the helicity content in
the flow.

Frisch et al. [2008] showed that the use of a
high power α of the Laplacian in the dissipative
term of hydrodynamical equations leads asymptot-
ically to truncated inviscid conservative dynamics
with a finite range of spatial Fourier modes. They
found that, just as in reference [Cichowlas et al.,
2005], the modes at large wavenumbers thermalize,
whereas modes at small wavenumbers obey ordi-
nary viscous dynamics. They interpreted the energy
bottleneck observed for finite α as incomplete
thermalization.

2.3. Compressible flows

Putterman and Roberts [1982, 1983] investigated
the solution to nonlocal dispersive classical hydro-
dynamics at the fourth order of nonlinearity. An
extra degree of freedom appeared as a result of the
additive conservation of wave number in the interac-
tion of beams of sound waves, representing a broken
symmetry. Imposing an ultraviolet cutoff to obtain
finite results, they found that the resulting nonlin-
ear high-order equations of motion for the back-
ground plus a distribution of sound waves were iden-
tical to the Landau two-fluid hydrodynamics used
to describe superfluid Helium.

Larraza and Putterman [1986] showed that if
a nonlinear medium is pumped with energy, in
the form of mechanical waves, sufficiently far from
equilibrium the wave turbulence can support a tran-
sition from diffusive to propagative energy trans-
port that bears deep similarities to second sound in
Helium.
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Connaughton et al. [2005] studied the forma-
tion of a large-scale coherent structure (a conden-
sate) in classical wave equations by considering
the defocusing nonlinear Schrodinger equation as
a representative model. They formulated a thermo-
dynamic description of the classical condensation
process by using a wave turbulence theory with
ultraviolet cutoff. They found a subcritical con-
densation process in 3D, and no transition in 2D.
Numerical simulations of the NLS equation with
stochastic initial conditions were found to be in
quantitative agreement with the equilibrium distri-
bution of the kinetic equation derived from the NLS
equation.

3. Relaxation in Compressible
Spectrally Truncated Euler Flows

In this section, we study the relaxation to equilib-
rium of irrotational compressible spectrally trun-
cated Euler flows. The dynamics is described by a
density field ρ and the velocity u that is represented
by the velocity potential φ. The dynamics is given
by the continuity and Bernoulli equations:

∂ρ

∂t
= −∇ · (ρ∇φ) (6)

∂φ

∂t
= −1

2
u2 − ∂ε

∂ρ
(ρ) (7)

u = ∇φ (8)

ε(ρ) =
1

2c2
(ρ− 1)2 (9)

where ε(ρ) is the internal energy of the fluid and c
the speed of sound, when ρ = 1.

This time-reversible system (t → −t,φ → −φ)
conserves the total mass, the momentum and the
total energy:

Q =
∫

ddxρ(x, t) (10)

P =
∫

ddxρ(x, t)∇φ(x, t) (11)

H =
∫

ddx

[
1
2
ρ(x, t)∇φ(x, t)2 + ε(ρ)

]
. (12)

As done in the incompressible case in [Cichowlas
et al., 2005; Krstulovic et al., 2009] we now study
the Galerkin truncated version of Eqs. (6)–(8) for
the Fourier transforms ρ̂(k, t) ≡ ρ̂k(t) and φ̂(k, t) ≡
φ̂k(t) of the dynamical variables. This spectrally

truncated system reads

∂ρ̂k

∂t
(t) =

∑

p

ρ̂k−p(t)φ̂p(t)k · p (13)

∂ρ̂k

∂t
(t) =

1
2

∑

p

φ̂k−p(t)φ̂p(t)(k − p) · p

+
1
c2

̂(1 − ρ)k(t) (14)

where the convolution in Eqs. (13) and (14) are
truncated to supα|kα| ≤ kmax, supα|pα| ≤ kmax and
supα|kα−pα| ≤ kmax. This system also exactly con-
serves Q, P and H.

Let us now define, as in the incompressible case
(4), the internal, kinetic and total energy spectra by,

Ekin(k, t) =
1
2

∑

k−∆k
2 <|k′|<k+∆k

2

ρ̂u−k′(t) · ûk′(t)

(15)

Eint(k, t) =
c2

2

∑

k−∆k
2 <|k′|<k+∆k

2

| ̂(ρ− 1)k′ |2(t)

(16)

E(k, t) = Ekin(k, t) + Eint(k, t) (17)

By construction we have H =
∑

k E(k, t). Note that
the systems (13) and (14) (as well as (6)–(8)) pos-
sesses a Hamiltonian structure. Equations (13) and
(14) can thus be rewritten using the Hamiltonian

H =
∑

k

1
2
ρ̂ukû

∗
k +

1
2c2

| ̂(ρ− 1)k|
2 (18)

as the canonical equations

∂ρ̂k

∂t
(t) =

∂H

∂φ̂∗
k

,
∂φ̂∗

k

∂t
(t) = − ∂H

∂ρ̂k
, (19)

where ρ̂k, φ̂∗
k are thus conjugate variables.

As in incompressible truncated Euler, this
system admits a stationary statistical solution
with a probability distribution function given by
P{ρ̂k, φ̂k} ∼ e−βH . As H is not quadratic, the
p.d.f. will not be Gaussian and no equipartition can
be expected in the energy spectrum (17) because
of the correlation between ρ̂k and φ̂k for different
wavenumbers. However, rewriting ρ̂k = 1 + ρ̂′k, the
Hamiltonian can be written as H = HG + HNG
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with

HG =
∑

k

1
2
k2|φ̂k|2 +

1
2c2

|ρ̂′k|2 (20)

HNG =
∑

k

1
2
ρ̂′ukû

∗
k. (21)

Note that for large values of β, HNG can be
safely neglected and statistics becomes Gaussian
and equipartition, yielding in this limit E(k) ∼ k2

(in three dimensions).
It is well known that a conservative non-

linear systems with a high number of freedom
degrees may, in general, not relax to an equilib-
rium state and time periodic localized structures
can appear, as in the classical Fermi–Pasta–Ulam–
Tsingou problem [Fermi et al., 1955]. In order to
study the relaxation to the equilibrium of truncated
irrotational compressible flows and avoid long tran-
sient we will use an initial condition, close to the
equilibrium state, given by a Gaussian field per-
turbed by a large-scale modulation of the velocity
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Fig. 2. Temporal evolution of compressible energy spectra (15)–(17). t = 0, 0.94, 6.19, 18.69, 31.19, 37.44, 43.69. Solid line
represents a k2 spectrum. (a) Total energy spectrum. (b) Kinetic energy spectrum. (c) Internal energy spectrum. (d) Total
kinetic and internal energy spectra for t = 43.69.

potential. This initial condition reads

ρ0(x, y, z) = 1 + ρ′G(x, y, z) (22)

φ(x, y, z) =
1

8
√

3
(sin 4x + sin 4y + sin 4z)

+φG(x, y, z) (23)

where ρ̂′Gk, φ̂Gk are distributed with a probability
proportional to e−βHG .

Numerical solutions of Eqs. (13) and (14)
are efficiently produced using a standard pseudo-
spectral general-periodic code with 1283 Fourier
modes that is dealiased using the 2/3 rule [Got-
tlieb & Orszag, 1977] by a Galerkin truncation at
kmax = 42. The numerical method used is nondis-
persive and conserves mass, momentum and energy
with high accuracy. The value of β is chosen large
enough to ensure that there are no points with neg-
ative ρ. The total initial energy (18) of this run is
H = 2.136.

Figure 2 shows the temporal evolution of the
energy spectrum. Note that the system effectively
relaxes but at the final time t = 43.69 in Fig. 2(d),
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there is no clear k2 law in the spectrum. This fact
can be understood by noting that the k2 law is
a consequence of equipartition of energy which, in
turn, requires that the total energy can be written
as a sum of independent contributions from each
mode, as in the incompressible case (4). In the com-
pressible case, equipartition will not be obtained
because of the non-Gaussian term (21).

An algorithm to generate such a general
non-Gaussian absolute equilibria thus appears of
practical interest for many applications such as
the determination of eddy-viscosities or a two-fluid
description. We now turn to this general problem.

4. New Algorithm to Generate
Absolute Equilibrium

4.1. Stochastic processes and
stationary probability of
Hamiltonian systems

We want to construct a stochastic process with a
probability distribution that converges to the sta-
tionary probability given by the Boltzmann weight.
This can be done in a canonical way for any Hamil-
tonian system. Let H(pµ, qµ) be a Hamiltonian with
the corresponding canonicals equations

q̇µ =
∂H

∂pµ
, ṗµ = − ∂H

∂qµ
(24)

In what follows, we suppose the existence of a stable
equilibrium point.

Let us first modify the equations by adding a
dissipative term to the equation for ṗµ

q̇µ =
∂H

∂pµ
(25)

ṗµ = − ∂H

∂qµ
− ν

∂H

∂pµ
(26)

with ν > 0. The dissipation introduced here is the
most natural in a physical sense, as we will show
later in the basic example of an oscillator. The
dynamic has an evident Lyapunov functional given
by the Hamiltonian H:

dH

dt
=

∂H

∂qµ
q̇µ +

∂H

∂pµ
ṗµ = −ν

∂H

∂pµ

∂H

∂pµ
≤ 0, (27)

therefore the system will converge to the stable
equilibrium point.

Finally, let us introduce a white Gaussian forc-
ing term. The Langevin equation, which completely

defines the stochastic process, reads

q̇µ =
∂H

∂pµ
(28)

ṗµ = − ∂H

∂qµ
− ν

∂H

∂pµ
+

√
2ηνξµ(t) (29)

〈ξµ(t)ξν(t′)〉 = δµνδ(t − t′). (30)

Note that when η and ν are small, the system (28)–
(30) is a perturbation of the original Hamiltonian
dynamics. In what follows, this system will be called
the damped Hamiltonian method.

The Fokker–Planck equation for the evolution
of the transition probability P (pµ, qµ) of this pro-
cess is [Langouche et al., 1982; van Kampen, 2001]

∂

∂t
P = − ∂

∂qµ

[
∂H

∂pµ
P

]

+
∂

∂pµ

[
∂H

∂qµ
P + ν

∂H

∂pµ
P + ην

∂P

∂pµ

]
(31)

= {H,P} + ν
∂

∂pµ

[
∂H

∂pµ
P + η

∂P

∂pµ

]
(32)

where {f, g} = (∂f/∂qµ)(∂g/∂pµ) − (∂f/∂pµ)(∂g/
∂qµ) is the Poisson bracket. As H is a conserved
quantity of the original Eqs. (24), any function
of a conserved quantity will vanish in the Poisson
bracket and hence a stationary probability reads

Pst(pµ, qµ) =
1
Z

e−
1
η H(pµ,qµ). (33)

Let us now remark that there exists another simple
stochastic process which shares the same station-
ary probability. Its dynamics is given by gradient
equations:

q̇µ = −ν
∂H

∂qµ
+

√
2ηνξ1

µ(t) (34)

ṗµ = −ν
∂H

∂pµ
+

√
2ηνξ2

µ(t) (35)

〈ξs
µ(t)ξs′

ν (t′)〉 = δµνδss′δ(t − t′) (36)

however, we believe that the process (28)–(30) is of
more physical and theoretical interest.

In the case of a Hamiltonian depending on
fields, the generalization of Eqs. (28)–(30) are triv-
ial replacing partial derivatives by functional deriva-
tives and the δµν Kronecker delta in Eq. (30) by a
Dirac delta. It is important to remark that abso-
lute equilibria will formally lead, in this case, to
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infinity energy solutions, therefore a UV cut-off
must be understood leading to truncated equations
in Fourier space.

4.1.1. A simple example: Anharmonic
oscillator

Let us first consider the example of an anhar-
monic oscillator, the Hamiltonian for this system
is H(p, q) = (p2/2m) + (mw2q2/2) + (αq4/4). The
Langevin equation (28)–(30) reads

q̇ =
1
m

p (37)

ṗ = −mω2q − αq3 − ν

m
p +

√
2ηνξ(t) (38)

〈ξ(t)ξ(t′)〉 = δ(t − t′). (39)

These equations can be rewritten as

mq̈ = −mω2q − αq3 − ν q̇ + ξ(t) (40)

〈ξ(t)ξ(t′)〉 = δ(t − t′) (41)

and they are just the equations of a classical forced-
damped anharmonic oscillator. In this sense, the
dissipation introduced in (26) is very natural and
with a simple physical interpretation.

4.2. Hamiltonian formulation for
general compressible fluids

We have shown in Sec. 3 that irrotational compress-
ible flows admit a Hamiltonian formulation. This
can be easily extended to general compressible flu-
ids. The equations that describe the dynamics of
general inviscid fluids are the Euler and continuity
equation for the velocity field u

∂tρ = −∇ · (ρu) (42)

Dtu = −∇w, (43)

where Dt is the convective derivative defined as

Dt = ∂t + u ·∇,

ρ is the density and w is the enthalpy for unit of
mass. For isoentropic fluids the enthalpy is related
to the pressure field p by

∇w =
∇p

ρ
.

For the purposes of this work we assume a
barotropic dynamics, hence the pressure field has
functional dependence only in ρ. We also suppose

that the density field is approximately uniform
throughout the fluid and therefore the dependence
in ρ of w can be written as

w(ρ) = c2(ρ− 1)

where c is the speed of sound for a unit density fluid.
It is well known that it is possible to find a

variational principle for Eqs. (42) and (43) with the
help of the Weber–Clebsch Transformation [Mobbs,
1982]

u =
3∑

i=1

λi∇µi + ∇φ , (44)

here, we write the velocity field as a function of the
scalar fields λi(x, t), µi(x, t) and φ(x, t).

In order to show explicitly the Hamiltonian
structure of Eqs. (42) and (43) we redefine

λ̃i = ρλi (45)

and with this representation of u we define the
Lagrangian

L =
∫

dx3dt

(
ρ∂tφ +

3∑

i=1

λ̃i∂tµ
i + H

)
,

where H is the Hamiltonian density

H = ρ
u2

2
+ ε(ρ)

and ε(ρ) is the internal energy (9) which is related
to w [Landau & Lifchitz, 1971] by the relation

ρ
∂ε

∂ρ
= ε + p = ρw. (46)

With this choice of variables, λ̃i, µ̃i and ρ̂k, φ̂k

are now conjugate variables. The corresponding
canonical equations are then

∂tρ =
δH
δφ

= −∇ · (ρu) (47)

∂tφ = −δH
δρ

= −u ·∇φ +
u2

2
− ∂ε

∂ρ
(48)

∂tλ̃
i =

δH
δµi

= −∇ · (uλ̃i) (49)

∂tµ
i = − δH

δλ̃i
= −u ·∇µi. (50)

Let us remark that Eq. (47) is the continuity
equation (42) and that Eq. (48) is the Bernoulli
equation, with an extra advective term.
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In order to recover the Euler equation (43)
from Eqs. (47)–(50) note that reintroducing the
definition (45) of λ̃i in Eq. (49) and using Eq. (47)
we obtain ∂tλi = −u · ∇λi. Computing then Dtu
using the definition (44), the identity [∇,Dt] ≡
(∇u) ·∇ and thermodynamic relation (46), Eq. (42)
is obtained after some simple algebra.

The general system (47)–(50) admits two sim-
ple limits. First, when ρ is constant, the flow is
incompressible and the dynamics reduces to equa-
tions of motion for λi and µi. In this case, there
is no need to independently solve for φ, because
this field is determined by the incompressibility con-
dition ∇ · u = 0. A second simple case is when
the flow is compressible and irrotational. As the
velocity is a purely potential flow, the Clebsch vari-
ables λi, µi vanish and the dynamics reduces to
equations of motion for the fields ρ and φ only, as
in Sec. 3.

4.3. Langevin equation converging
to absolute equilibrium

Our new algorithms are obtained by inserting
within the Langevin equations (28)–(30) the Hamil-
tonian corresponding to the two particular cases of
the preceding subsection.

4.3.1. Incompressible flows

When ρ is constant, the Hamiltonian (46) reduces to

H =
∫

d3x
1
2
(λi∇µi −∇φ)2 (51)

with the corresponding Langevin equation:

∂λi

∂t
= −u ·∇λi (52)

∂µi

∂t
= −u ·∇µi + ν u ·∇λi

+
√

2ην ξi(x, t) (53)

∇ · u = 0 (54)

〈ξi(x, t)ξj(x′, t′)〉 = δijδ
3(x − x′)δ(t − t′) (55)

Note that the stationary probability is in some
way similar to that of λ − φ4 theory in the Cleb-
sch variables. Although the velocity v must have
an equipartition k2 spectrum (in 3D), the statisti-
cal properties of the Clebsch pairs are not at all
trivial.

4.3.2. Irrotational flows

In the compressible irrotational case where only the
fields ρ and φ are not zero, we recover the Hamilto-
nian (12) and the corresponding Langevin equation
reads:

∂ρ

∂t
= −∇ · (ρ∇φ) (56)

∂φ

∂t
= −1

2
(∇φ)2 − ∂ε

∂ρ
(ρ) + ν∇ · (ρ∇φ)

+
√

2ην ξ(x, t) (57)

〈ξ(x, t)ξ(x′, t′)〉 = δ3(x − x′)δ(t − t′). (58)

Note that when ρ is a small fluctuation around
a homogeneous value ρ0 given by the minimum of
ε(ρ), the dissipation looks like a diffusion term and
taking the gradient in Eq. (57), we obtain a Navier–
Stokes like equation.

Another important property of this Langevin
Eqs. (56)–(58) is that the mean value of ρ (average
over space and realization of the process) is con-
served as in the original Hamiltonian dynamics (6)
and (7). This property is not preserved in the gradi-
ent dynamics (35) and (36). In this case, it follows
directly from Eq. (35), and the Hamiltonian (12),
that the dynamics of 〈ρ〉 is given by

∂

∂t
〈ρ〉 = −1

2
〈∇φ2〉 −

〈
∂ε

∂ρ

〉

and hence, using the internal energy (9) the station-
ary value of 〈ρ〉 is

〈ρ〉st = 1 − 1
2c2

〈∇φ2〉st. (59)

Remark that this usual equation of state (9) can
lead to high values of η [see Eq. (33)] to negative val-
ues of ρ. This non-physical situation can be avoided
by changing the equation of state to one physically
more compatible with the dynamics of high ampli-
tude waves, considering for instance, terms of order
O((ρ− 1)4) in (9).

5. Numerical Validation

5.1. Incompressible rotational flows

We now proceed to validate our new algorithm in
the well-known test case of incompressible fluids.
Although the Hamiltonian (51) is not quadratic,
the velocity u must be Gaussian and therefore the
energy spectrum of the velocity must follow a k2

law.
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In the case of absolute equilibria of incom-
pressible fluids, there are only two independent
components of velocity due to the divergence free
condition (54). It can be shown [Orszag, 1970;
Cichowlas, 2005] that the second order moment of
a Fourier mode is

〈ûµ(k, t)ûν(−k, t)〉 = η

(
δµν − kµkν

k2

)

= ηPµν(k), (60)

and therefore the kinetic energy H is obtained from
Eq. (60)

H =
∑

|kα|≤kmax

1
2
〈ûα(k, t)ûα(−k, t)〉

=
η

2

∑

|kα|≤kmax

Pαα(k). (61)

As Pαα = 2 then H = ηN where N is the number
of degrees of freedom.

We perform the numerical integration of (52)–
(55) using a standard pseudo-spectral method with
a Galerkin truncation at the mode kmax with the
2/3 rule.

In Fig. 3 we plot temporal evolution of the total
energy of the velocity field for the gradient and
damped Hamiltonian method. We set ν = 1 for all
present simulations. We can see a faster convergence
to the stationary value of the energy in the gradient
method.

0 2 4 6 8 10
t

0

0.5

1

1.5

E

Fig. 3. Temporal evolution of the total energy (51) of
the velocity field for the gradient and damped Hamiltonian
method (◦ and !) for simulations made with a resolution of
483 and ν = 1.

1 2 4 8 16
k

0.0001

0.001

0.01

0.1

E(
k)

Fig. 4. Energy spectrum for the velocity, λ and µ fields (◦, !
and ") of the gradient case for a simulation with a resolution
483. The continuous line represents an ideal k2 spectrum.

As usual, we define the energy spectrum of λ
and µ by averaging on spherical shells

Eλ(k, t) =
1
2

∑

k−∆k/2<|k′|<k+∆k/2

|λ̂k′ |2(t) (62)

Eµ(k, t) =
1
2

∑

k−∆k/2<|k′|<k+∆k/2

|µ̂k′ |2(t), (63)

and the averaged spectra over a set of a hundred
realizations of the process is shown in Fig. 4. We
can see a good agreement of the velocity spectrum
with the equipartition scaling ∼ k2. We remark that
scaling of λ and µ fields appears to obey scaling laws
that seem different from k2.

-6 -4 -2 0 2 4 6

0.001

0.01

0.1

Fig. 5. Histogram for the x component of the velocity, λ and
µ fields (◦, ! and ") for the damped Hamiltonian case from
a simulation made with a resolution of 483. The continuous
line represents an ideal Gaussian distribution for the velocity.
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Finally, a normalized histogram of λ, µ and one
component of u are plotted in Fig. 5. It is man-
ifest in the figure that the statistics of the veloc-
ity field are approximatively Gaussian (compare the
tails with those of the λ and µ fields). We, therefore,
conclude that our new algorithm is validated in the
sense that it reproduces the Gaussian statistics in
the incompressible limit.

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

t

H

Dumped Ham. method
Gradient method
c2T

(a)

0 0.2 0.4 0.6 0.8 1
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

t

〈ρ
〉

Dumped Ham. method
Gradient method
1–T/2

(b)

Fig. 6. (a) Convergence of compressible energy (12).
(b) Plot of 〈ρ〉. Straight line: Gaussian value, T = 0.01.

5.2. Compressible irrotational flows

In order to validate our new algorithm in the com-
pressible case (see Sec. 4.3.2) we will check that it
generates data that is a statistical stationary solu-
tion of the original equation of motion and that it
reproduces the spectrum obtained by direct relax-
ation in Sec. 3.

At low values of η, the distribution of ρ,φ is
almost Gaussian and the predicted value of rele-
vant quantities using the Hamiltonian (12) and the
stationary probability density (33) read

〈(ρ− 1)2〉 =
Nη

c2
, 〈(∇φ)2〉 = Nη, 〈H〉 = Nη
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100 101
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E(
k)

Fig. 7. Total compressible energy spectra for T = 0.0001,
0.05, 0.1.
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Fig. 8. Histograms of ρ and ux obtained from Eqs. (56)–(58).

where N is the number of degrees of freedom. We
redefine

1
η
≡ β =

N
c2T

.

In what follows, we vary T in the numerics from
T = 0.00001 to T = 0.1 using 643 Fourier modes
and we set c = 2 and ν = 1, using the usual equation
of state (9). We start from the homogenous and
minimum energy solution ρ(x, t = 0) = 1,φ(x, t =
0) = 0 and the integration of Eqs. (56)–(58) is per-
formed until convergence is achieved.

Figure 6 shows the convergence of the energy
using both methods (56)–(58) and (35)–(36) at
T = 0.01. We checked that the final data is a
statistical stationary solution of the continuity and
Bernouilli equations (6)–(8) (data not shown). Note
that the convergence of the gradient method is not
much faster than that of the damped Hamiltonian
method. In this gradient case, the spatial average of
the density fluctuates around the stationary value
given by Eq. (59) 〈ρ〉st = 1 − (1/2)T .

Figure 7 displays the energy spectra (17) com-
puted on the time-converged solution of Eqs. (56)–
(58), at different values of the temperature. Note
that at high temperature the k2 law is not mani-
fest in the spectrum. This spectrum should be com-
pared with those of Fig. 2(d) that were obtained by
the relaxation of the original dynamics. The simi-
larity of the spectra confirms that equipartition is
not obtained in the compressible case because of the
non-Gaussian term (21).

In Fig. 8, we show an histogram of ux = ∂xφ
and ρ together with the Gaussian predictions, we
see that they seem to remain Gaussian even for the
highest values of T = 0.1. There are some low prob-
ability events with ρ < 0 and higher values of T will
lead to more negatives values of ρ.

Note, however, that the total distribution is
non-Gaussian. Indeed, if it remained Gaussian at
higher values of T , the correlation between ∇φ2

and ρ − 1 will vanish and this it is not observed
in Fig. 9 where the histograms of z = (ρ − 1)∇φ2
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Fig. 9. Histograms of z = (ρ − 1)∇φ2 and −z for T =
0.0001, 0.05, 0.1. In the insert the standard deviation σ and
skewness γ1.

and −z are shown. Note that for the lowest temper-
ature Fig. 9(a), the standard deviation is extremely
small, the pdf is symmetric and all points are heav-
ily concentrated around z = 0, the correlation
between ∇φ2 and ρ − 1 is thus completely negli-
gible. However, for higher temperatures Figs. 9(b)
and 9(c), the pdf becomes asymmetrical and the
skewness γ1 = µ3/σ3, where µ3 is the third moment
about the mean and σ is the standard deviation, are
of order one.

6. Relaxation of Initial Data with
Temperature Oscillation

Let us now consider a practical application of
our algorithm. We want to study how truncated

irrotational compressible flows relax to the equi-
librium. A big difference with the incompressible
case studied in [Cichowlas et al., 2005; Krstulovic
& Brachet, 2008] is that waves can appear as the
principal mechanism of homogenization as in the
Landau two-fluid model for superfluids [Landau &
Lifchitz, 1971] where the temperature waves prop-
agate at a second sound speed slower than pres-
sure waves. Indeed, Larraza and Putterman [1986]
argued that, in a nonlinear medium pumped with
energy sufficiently far from equilibrium the wave
turbulence can support a transition from diffusive
to propagative energy transport that bears deep
similarities to second sound in Helium.

In this section we give preliminary results
that seem to suggest that such a behavior is
present. However, these results need to be confirmed
and further studies will be presented in a future
publication.

In order to check for the presence of this mecha-
nism, we need to reduce the emission of (first) sound
that would trivially generate propagative dynamics.
To wit, we prepare an initial condition with con-
stant pressure. In compressible flows, the pressure
appears in the δij contribution of the momentum
flux density tensor

Πij = ρuiuj + δijp (64)

where for the internal energy (9), the pressure sim-
ply reads p = (c2/2)ρ2.

Consider now fluctuating fields replacing ρ →
ρ + ρ′ and ui → ui + u′

i, where the quantities with
primes are of zero mean and with the obvious corre-
spondence ûjk = ikj φ̂k and ûjk = ikj φ̂′

k. The mean
value of Πij over the different realization then reads

〈Πij〉 = ρuiuj + 〈ρu′
i〉uj + 〈ρu′

j〉ui + ρ〈u′
iu

′
j〉

+ 〈ρ′u′
iu

′
j〉 + δij

c2

2
(ρ2 + 〈ρ′2〉). (65)

If we assume isotropy we obtain

〈u′
iu

′
j〉 =

δij

d
〈u′2〉 〈ρ′u′

iu
′
j〉 =

δij

d
〈ρ′u′2〉,

where d is the dimension of the space. The δij con-
tribution part of 〈Πij〉 is then

p̃ =
c2

2
ρ2 +

c2

2
〈ρ′2〉 +

ρ

d
〈u′2〉 +

1
d
〈ρ′u′2〉. (66)

Consider that the small fluctuations of the fields
are approximatively given by the stationary Gaus-
sian pdf P{ρ̂k, φ̂k} ∼ e−βH̃ where β = N/(c2T ) and
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Fig. 10. Temporal evolution of the spatially averaged temperatures over z, y [(a1)–(a3)] and z [(b1)–(b3)] corresponding to
initial data (72) at t = 0, 1.4, 2.8.
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H̃ = HG−µQ is defined in Eqs. (10), (11) and (20).
After a straightforward calculation, it is possible to
show that

〈ρ〉 = 1 +
µ

c2
(67)

〈u′2〉 =
c2

1 + µ/c2
〈ρ′2〉 =

c2

1 + µ/c2
T (68)

〈H〉 =
c2

2
2 + µ/c2

1 + µ/c2
T. (69)

Then p̃ reads at leading order

p̃ =
c2

2

(
1 +

µ

c2

)2
+

d + 2
2d

c2T. (70)

Thus setting
µ

c2
= −1 +

√
1 − T (d + 2)/d (71)

yields a constant pressure p̃ = c2/2.
Consider now T and µ(T ) given by Eq. (71)

that are slow space variable functions where T has
a sinus modulation

T (x, y, z) = T0(1 + ε(sin (2x)

+ sin (2y) + sin (2z))). (72)

We set in the present numeric simulation T0 = 0.03
and ε = 0.3. The temporal evolution of the spatially
averaged temperatures over z, y and z is shown in
Fig. 10. Note that there is a fast decay of the ampli-
tude of the modulation as predicted in [Larraza &
Putterman, 1986] for compressible flows. Remark
that at t = 1.4 the phase of the wave changed
in a factor π, that gives a rough estimate of the
oscillation frequency ωT = π/1.4 = 2.244. This
value is smaller than the frequency of first sound
ω = ck = 4.

The presence of an oscillating behavior in this
constant pressure variable temperature relaxation
strongly suggests the existence of second sound.
However, this interesting behavior needs to be con-
firmed and studied in more detail. In the future,
we will investigate the relaxation of full, first and
second sound perturbations.

7. Conclusion

Our new method to generate absolute equilib-
rium of spectrally truncated compressible flows has
been shown to reproduce the well-known Gaus-
sian results in the incompressible limit. The irro-
tational compressible absolute equilibrium case was
characterized and the distribution was shown to

be non-Gaussian. The spectrum were found not to
obey a k2 scaling, just as those obtained directly by
relaxation of the original dynamics. Finally, oscil-
lating behavior in constant pressure variable tem-
perature relaxation was obtained, suggesting the
presence of second sound.
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