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Abstract. Approximation procedures for cubic stochastic processes are tested, in particular 
for their realisability properties. This is done on the algebraic cubic equation p u ( t ) +  
Av3(r)  = f ( t )  with zero-mean stationary gaussian drivingf(t). This equation is a limiting case 
for slowly varying driving of the Van der Pol, the Duffing and the cubic nonlinear Langevin 
equations. Exact solutions are compared with various field-theoretic approximation pro- 
cedures generated by a variant of the Martin-Siggia-Rose formalism adapted to algebraic 
equations. The direct interaction approximation (DIA) loses realisability above a critical 
Reynolds number; for p > 0, A > 0, it has a branch of spurious realisable self-excited 
solutions which subsist at zero driving. The renormalised vertex equations have no 
self-excited solution and a larger (but still finite) domain of realisability. In the quadratic 
DIA, obtained from an equivalent quadratic system for U and x = U*, both pathologies 
disappear. 

1. Introduction 

It has often been suggested that incorporating vertex corrections or renormalisations 
may crucially improve the predictions of statistical theories in situations very far from 
gaussianity like intermittent turbulent flows (Martin et a1 1973, henceforth referred to 
as MSR) or dynamical systems near bifurcations (King et a1 1979). For a stochastic field 
with nonlinear dynamics, such theories then lead to a closed system of equations 
involving the complete two-point and vertex functions; in the absence of any particular 
simplification like a fluctuation-dissipation theorem, proliferation of indices and 
unknown functions make these equations difficult to handle. Even existence, unique- 
ness and realisability properties of the solutions have not been proved. Such properties 
are not ensured by the field-theoretical framework where such closures can be derived 
systematically (MsR, Phythian 1977, etc). The aim of this paper is to obtain definite 
answers to such questions on a simple model problem. We have tested two variants 
of Kraichnan’s direct interaction approximation (DIA) and the first renormalised vertex 
approximation and made comparisons with exact results. 

The simplest model appears to be an algebraic equation with low nonlinearity and 
stochasticity introduced by an inhomogeneous term. Requiring existence and unique- 
ness of a real solution leads us to exclude quadratic nonlinearity and to choose 

p u ( f ) f A u 3 ( t ) = f ( t ) ,  (1.1) 
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with positive damping p and coupling constant A .  The force f ( t )  is a stationary gaussian 
function with zero mean. This ensures that the statistics of U is invariant under reversal. 
White noise would be meaningless for a nonlinear algebraic equation. As in Frisch and 
Morf (1981), we assume here a band-limited force. Note that the algebraic model (1.1) 
can be derived from the Van der Pol oscillator, the Duffing equation and the cubic 
nonlinear Langevin equation in the limit of very slowly varying force. These equations 
have been used as model problem by different authors to test several approximations 
(Ziegler and Horner 1980, Phythian and Curtis 1980). Special attention was paid to the 
deviation from gaussianity and vertex renormalisation (Morton and Corrsin 1970, 
Bixon and Zwanzig 1971, Budgor et a1 1976, King et a1 1979), and to intermittency 
(Frisch and Morf 1981). 

The outline of the paper is as follows. Section 2 formulates the problem. In 5 3 we 
introduce a functional variant of the MSR formalism applicable to algebraic equations 
and we derive the Dyson equations of the cubic problem (1.1). In 08 4 and 6 ,  the DIA 

and the first-order renormalised vertex approximation are considered. In § 5 ,  the DIA is 
applied to a quadratic system equivalent to the cubic problem. In § 7, these different 
closures are compared with the exact solution. 

2. Formulation and exact solution 

The algebraic stochastic model (1.1) can be used to investigate at least two different 
kinds of questions. First, there are the problems concerning the intermittent high- 
frequency behaviour (Frisch and Morf 198 1). In the field-theoretic formulation this 
requires the use of four-point functions with all time arguments distinct, resulting in a 
rather untractable set of equations. Second, and this will be our aim, one can investigate 
questions of realisability and uniqueness on single-time (static) quantities. The fact that 
the single-time quantities decouple from the multiple-time quantities is clearly due to 
the absence of time derivative. Another consequence is that the response function 
G(t, t’) is of the form 

G(t, t ’ ) = g S ( t - t ’ ) .  (2.1) 

Our main goal will be to evaluate the mean square velocity (U’) using various 
approximations. It is of interest to observe that there is only one dimensionless 
parameter in the problem, a Reynolds number 

R = AF/p3,  (2.2) 

where F = (f‘). The exact mean square velocity is given by 

(U’) = (27r)-*” dfv’(f) exp(-f2/2). I (2.3) 

Here u ( f )  is the real root of (1.1), which has an explicit algebraic expression. Note that 
while such an explicit expression is restricted to equations with degree less than five, it is 
always possible to write an explicit integral representation of the generating function 
(eitu). This is done as follows. Write that U satisfies an equation h ( v )  +f = 0. Replace 
this condition by a S function (with a Jacobian dhldv) .  Then exponentiate the S 
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function. For gaussian f this yields 

(e'"') = ( 2 ~ ) - '  I dv dp(dh/du)  exp(iph-;p*+ilu). (2.4) 

Moments are then obtained by differentiating with respect to I. This construction is 
parallel to field theory techniques (see next section); it implicitly assumes uniqueness of 
the solution of the 'equation of motion'. Even so, uniqueness is not guaranteed in 
subsequent statistical approximations, a problem which we shall be faced with in 0 4. 

The exact mean square velocity (2.3) has been calculated numerically (the cubic 
equation is solved by Newton's iteration; the integral is evaluated by Simpson's 
method). For positive Reynolds number and F = 1, this yields the curve I of figure 1, 
with the asymptotic value 0 .753 . .  . at large Reynolds number. 
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Figure 1. The velocity correlation (a2) plotted as a function of the Reynolds number R. --- 
exact result, curve I. ----- cubic DIA, curve 11. -.-.- quadratic DIA, curve 111. - 
renormalised vertex approximation, curve IV. 

3. Functional formalism and Dyson equations 

As adapted to classical random systems by MSR (1973), Phythian (1977) and others, the 
field theory provides a natural framework to derive perturbative or renormalised 
expansions of the kind we want to test on our model, i.e. Kraichnan's DIA and 
renormalised vertex closures. However, application of these techniques to an algebraic 
equation needs some care. The naive idea is to construct the generating functional for 
the process U ( t )  using an infinite product of the generating functions (2.4) of the variable 
U ( t )  for fixed t. This leads to difficulties because the absence of time derivative makes 
the usual exponentiation of the Jacobian inapplicable. A possibility is to introduce 
ghost fermionic fields (see e.g. Berezin 1966, Faddeev 1976, Lee 1976). Another 
possibility is to reintroduce a time derivative m (dvldt) in the equation and take the limit 
mi0 on the final expressions. It is actually possible to deal directly with the algebraic 
equation using a judicious choice of the underlying discretisation of the functional 
formalism, namely ( j  denotes the discretisation index): 

(3.1) 3 vi + R~i-1 
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For smooth solutions, equation (3.1) is equivalent to equation (1.1) and the compati- 
bility with the first procedure ( m J 0 )  is ensured. The Jacobian is then equal to 

(3.2) 

and locality and causality are consistently and naturally incorporated in the theory via a 
‘retarded bare vertex’. After gaussian average over the forces, the generating 
functional thus reads 

the two test fields [ and 3” are used to generate the correlation and response functions. 
E / Z  is reminiscent of the discretisation (3.1) (see Feynman and Hibbs (1965) for an 
introduction to functional integrals, and Jouvet and Phythian (1979) and Langouche et 
a1 (1979a, b) for their connection with MSR and the role of the discretisation). If one 
separates the interaction and the gaussian parts, (3.3) can be rewritten as 

ZU, PI = exp( i~ d7P(T)V3(T- .I) I zO[l, PI, 
p=iS/Gc* 
u=-iS/Sc 

13.4) 
Z&’, i * ] = e x p ( - i j  dT[(T)i*(T)) exp( -;I dTd7’l(T)F(~-r’)[(T’) ) . 
This last form is well suited to define the usual Feynman rules, for the perturbation 
expansion; the retarded vertex implies that graphs with closed circuits of p u  contrac- 

vanish; one can make contact tions like 0 or with tadpoles like 

order by order with the case where the equation contains a time derivative ( m  > 0) 
(Langouche et a1 1 9 7 9 ~ ) :  in the mJ0  limit, the influence of initial data disappears. 

Using the definition of Z [ l ,  5*], or its expression (3.3) together with a functional 
integration-by-parts lemma, one can derive two Schwinger equations. These two 
equations are rewritten as one ‘spinorial’ equation, and standard manipulations (MSR, 

Jona-Lasinio 1964, de Dominicis and Martin 1964) lead to the (matrix) Dyson 
equation: 

Q 

- cl- (3.5) - - - - _ _  +-- -  - 

where ------ stands for the free matrix propagator and - the renormalised one. The 
self-energy matrix @ is related to the full IPI tensorial four-points function or vertex 
function rc1v2v3‘T4(tlt2?3t4) = 

where -C(- represents the bare tensorial vertex yvlv2u3u4 (tltZt3t4); the index CT takes the 
value + or - for respectively the field U or its conjugate p and is represented by arrows 
on the ‘semi-dressed’ diagrams of the next sections. For convenience y has been 
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normalised according to 

~ u ~ u p ~ u ~ ( t l t z t 3 t 4 )  = -3AS(t1- t2- ~ ) S ( t l -  t3 - ~ ) S ( t l -  t4 - E )  (3.7) 

if UI = -, uz = u 3  = u4 = + (or circular permutations); the other components vanish. 
Causality properties of the renormalised function r are explicitly given in 0 6.  

4. Cubic direct interaction approximation (DIA) 

Retaining only ‘direct interactions’ (Kraichnan 1959), one replaces the full vertex by 
the bare one in the self-energy (3.6). This yields a set of closed equations for the 
classical equivalent to two-point Green functions, namely the response and correlation 
functions. In graphical form the DIA equations read: 

( 4 . 1 ~ )  

( 4 . l b )  

where we have used the following notation: - is the response function g = (av/af);  - is the correlation function ( u ( t ) v ( t ‘ ) )  = U(t  - t’) .  Free quantities are represented 
by broken lines; full lines represent renormalised quantities; -0- stands for the 

for the cubic vertex. When correlation of forces F( t  - t‘) = ( f ( t ) f ( t ’ ) )  and 
made explicit the DIA equations are rewritten 

( 4 . 2 ~ )  pg+3AU(O)g = 18A2U2(0)g2+1,  

U( t )  = g2(F( t )+6A2U3( t ) ) .  (4.2b) 

+ 
We recall that the DIA equations are an exact consequence of the stochastic model 

(4.3) 

in the limit N + CO (Kraichnan 1961). The @orpys (a ,  p, y,  S = 1, . . . , N )  are a set of zero 
mean and unit variance gaussian random variables completely symmetric in a, p, y, S 
but otherwise independent. The fu are N independent versions of the force. It is 
generally believed that the existence of a stochastic model automatically ensures 
realisability of the DIA equations. By realisability we mean positivity of the Fourier 
transform of U ( t )  and, in particular, positivity of the mean energy $U(O). Realisability 
of the DIA equations is actually ensured only if existence and uniqueness hold both for 
the DIA equations and the underlying statistical model (Frisch and Morf 1981). As we 
shall see, these properties does not necessarily hold for the DIA equations (we have not 
studied the corresponding question on the stochastic model). 

We now concentrate on the uniqueness and realisability of the solution of the 
one-time closure obtained by specialising t = 0 in equations (4.2). Introducing an 
auxiliary variable y = hgU(O), the system reduces to the equivalent polynomial equa- 
tion 

Fl(Y) = (1 /R)F2(Y) ,  F l ( y ) = ( 1 8 y 2 - 3 y  +1)3,  Fz(y 1 = Y - 6 y 3 ,  (4.4) 
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where R is the Reynolds number defined by equation (2.2). The two curves FI(Y) and 
(1/R)F2(y) (figure 2) intersect only if R ~ R ~ 3 0 . 1 5 3 .  Above R, there is no real 
solution and the DIA is not realisable; below R, they are two intersections and we are 
faced with the problem of non-uniqueness. The two roots of equation (4.4) have been 
computed numerically; the two values of U(0) are presented as functions of R in figure 
1 (curve 11). Note that the DIA introduces spurious solutions with non-zero kinetic 
energy when the forcing-or the Reynolds number-vanishes; the system (4.3) has 
indeed a solution 

U(0)  = cup. g = P I P  with a ,  p > 0 (4.5) 

for p > 0, A = +1 and F ( 0 )  = 0 (or R = 0). The above phenomena are due to the fact 
that DIA does not distinguish between positive ( + A )  or negative ( -A)  coupling constants 
(Rose 1979): the term 3A U(0)g can indeed be absorbed in a redefinition of the damping 
,U. With the negative sign self-excited solutions are possible for the primitive problem, 
but they are incorporated in the DIA equations, whatever the sign of the coupling. 

Figure 2. Geometrical representation of the loss of realisability and uniqueness of the 
one-time DIA. The quantity y = AgU(0) satisfies F l ( y )  = R- 'Fz(y)  where R is the Rey- 
nolds number and F l ( y )  = (18y2-3y + lI3, F*(y) = y - 6 y 3 .  

5. Quadratic DIA 

Spurious self-excited and non-realisable solutions are introduced by the DIA when 
applied to the cubic problem (1 .I). It has been suggested in a somewhat similar context 
(the nonlinear Schrodinger equation) that self-excited solutions can be avoided by 
applying the UIA not directly to the cubic problem but to an equivalent quadratic 
problem (Rose 1979). Equation (1.1) becomes 

( 5 . l a )  

(5.lb) 

The random source term h ( t ) ,  which will eventually be set equal to zero, enables us to 
use the formalism of § 2. 

The field x ( t )  does not have zero mean. It is convienient to split it into mean and 
fluctuation, 

x ( t )  = Z(t)+x'( t ) .  (5 .2)  
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The system (5.1) becomes 

( p  +Af( t ) )v ( t )+hu( t )x"( t )  = f ( t ) ,  

2 ( t ) = v 2 ( t ) - f ( t ) +  h ( t ) .  

( 5 . 3 ~ )  

(5 .3b)  

The mean value 2 renormalises the damping p. So, when the bare damping vanishes, 
the theory still has a non-zero damping. 

The last system can be rewritten as 

$ = G'O'f+ G'O'( 1 ($'Ti$)et -2e2) (5.4) 
i=1,2 

where we have used the following notation. 

G'O) is the free propagator. 
Assuming that the statistics o f f  is invariant under reflection ( f  -+ -f), we notice that 

the solution of equations (5.3) is statistically invariant under u ( t )  + - v ( t ) ,  x"(t) + 2 ( t )  
and 2 ( t )  -+ f ( t ) .  As a consequence, 

( u ( t ) x " ( t ) )  = 0, (a2laf) = (au/ah) = 0 ;  ( 5 . 5 )  

therefore the DIA equations will contain only four independent quantities. In a 
graphical form these equations read: 

u1 = - = c e o - o t  4 ( 5 . 6 ~ )  

(5.66) 

where we have used the following notation: 

U* = (v ( t ) v  (0) )  = -, U* = ( f ( t ) f ( O ) )  = - , 
In explicit form the quadratic DIA equations are 

F ( t ) G :  + A 'Ui( t )  Uz(t)GI - U i ( t )  = 0 ,  

(5 .6d)  

( 5 . 7 ~ )  
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2Ul(t)G;- Uz(t)=O, (5.76 

(5.7c 

2hU1(0)GiG~-l+Gz=O. (5 .7d  

( p  + A U(0))  GI - A Uz(0) G: + 2A Ui(0) GI GZ - 1 = 0, 

We recall that p is the damping coefficient, A the vertex strength and F ( t )  the force 
correlation. As in the cubic DIA, the two-point quadratic DIA can be reduced to a 
subsystem of one-point equations by putting t = 0 in (5.7). Let us first investigate the 
question of possible self-excited solutions. For this, we set F ( 0 )  = 0 and look for a 
realisable solution. With the auxiliary variable y = AU1G1G2, we solve system (5.7) 
exactly and obtain the trivial solution UI = UZ = 0, G1 = p- ’ ,  G2 = 1, together with a 
solution with negative energy. The absence of self-excited realisable solutions is not 
surprising because the quadratic DIA distinguishes between + A  and - A coupling 
constants. 

As for the cubic DIA, it is possible to reduce system (5.7) to a polynomial in a single 
variable y = AUIGIGZ. Straightforward algebra leads to 

(5.8) (-4y3+6y2-5y + 1)3 = ( l / R ) y ( l  -2y2)(1 -2y)’; 

U1, UZ, GI and Gz are given in terms of y by 

We have solved equation (5.8) numerically. The results for Ul(0) = (U’) given in figure 
1, curve 111, are in good agreement with the exact solution. The quadratic DIA has a 
single branch; it is also realisable at any Reynolds number. We can therefore investi- 
gate the infinite Reynolds number limit. On the primitive equation, the solution has a 
power law spectrum (Frisch and Morf 1981). In contrast, the spectrum of the quadratic 
DIA is exponential at any Reynolds number, even infinite. This discrepancy is probably 
due to an excessive renormalisation of the damping by the mean field 2. 

Let us now make a remark about the quadratic DIA. When replacing the complete 
four-point vertex function by the bare one, we made an error of order A’ which 
produces an error of order A on the DIA propagator; the cubic DIA is thus exact up to 
order A ’, The transformation to a quadratic problem introduces a new vertex which 
does not carry the coupling constant A. So the quadratic DIA is exact only to first order in 
A ; the following diagram, for example, is of order A but is not incorporated in the 
quadratic DIA: 

(5.10) 

Consider the transformation 

(5.11) 
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which corresponds in particle physics to suppression of the internal propagation 
associated with a heavy particle. Through this transformation the diagram (5.10) 
becomes 

(5.12) 

which is incorporated in the cubic DIA. The suppression of internal lines cannot create a 
vertex correction, and thus the diagram, incorporated in quadratic DIA are also 
contained in the cubic DIA. It follows that the cubic DIA is consistent with a primitive 
perturbation expansion up to a higher order than the quadratic DIA. 

6. Renormalised vertex approximation 

In this section we check existence and realisability properties of the first renormalised 
vertex approximation, together with, for one-point quantities, the quantitative 
agreement with exact results. The set of equations consists of the Dyson equations (3.5) 
and (3.6) supplemented by an equation for the four-point vertex function. The latter is 
obtained with the fourth derivative with respect to the spinorial field of the generating 
functional of the vertex functions. In a graphical form this equation reads: 

where the square brackets indicate that the expressions are symmetrized. -0. 

denotes the tensorial bare vertex. The symbol stands for the functional derivative 

of the renormalised vertex E with respect to the (matrix) propagator. The 

causality properties of the vertex functions are given by the following relations: 

$- 

X 1  is a real number, X ;  and X," are functions of one variable, X 3  and X4 are functions 
of two and three variables respectively. 

The equations (3 .3 ,  (3.6) and (6.1) are not solvable exactly. The renormalised 
vertex approximation consists of expanding the bare vertex in powers of four-point 
vertex functions; we go to the second order. 
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where CY is a functional coefficient which depends on the propagator 9; it is obtained by 
identification in equation (6.1). The system then reads 

(P  - Z-+(O))g = 1, (6.4a) 

U ( t )  = g2(R(t)+X--(t));  (6.4b) 

- - # -  1 ( 6 . 4 ~ )  

The system (6.4) splits up into four systems: one-, two-, three- and four-point 
subsystems. In this section we study the one-point subsystem which governs the 
realisability properties and existence of self -excited solutions: 

U = g2[1 - U2hX1 - 6gU2AX2 - 9 A g 2  UX3 - g3AX4], 

1 = g [ P  + 3 UA + 3gA U2X1 + 6 A g 2  UX2 + 3Ag3X3], 

XI = - 6 A  + 3gU2X: + 6g2X1X2, 

x, =x; +x;, (6.5)  
x 2 -1. - 2 u2x1 + SgUX1X2 + 4g2x22 + 4g2x1x3, 

X3 = U2X1X2 + 4gUX; + 3gUXIX3 + 8g2X2X3 + ig2X1X4, 

X4 = 6 U 2 X ;  + 36gUX1X3 + 24g2X: + 6g2X2X4. 

This system has been solved numerically on a computer HP 9845B. The solution is 
calculated analytically for small Reynolds number R. For increasing R the physical 
solution is followed by continuity using an iterative procedure (Newton’s method) 
initialised by the solution at a slightly smaller Reynolds number. In this way we have 
found a realisable branch of solutions; figure 1,  curve IV, shows the correlation U 
versus R. No other realisable branch was found exploring the system (6 .5)  with random 
initialisation. The curves IV and I1 (cubic DIA) are qualitatively similar; however, the 
reality of the vertex function X2 limits the realisability range of the solution to Reynolds 
numbers less than 0.5271. Consequently, this branch does not contain the analogue of 
the realisable self-excited solutions of curve 11; this is related to the fact that the 
renormalised vertex approximation (system (6 .5))  distinguishes between a coupling 
constant and its negative. Let us close this section by a remark about the validity of the 
renormalised vertex approximation. This approximation is exact up to the third order 
in the perturbative expansion in powers of the coupling constant. Indeed, the first graph 
(in an expansion in powers of A )  which is not taken into account by the renormalised 
vertex approximation is the non-planar graph 

which is of order A 4 .  This shows that the renormalised vertex approximation is exact up 
to third order in A. 
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7. Concluding remarks 

To compare the different approximations studied in this paper, we summarise their 
qualitative properties in table 1. Quantitative comparison with exact results is presen- 
ted in figure 1. 

Table 1. 

Cubic Quadratic Vertex 
DIA DIA renormalised 

Primitive expansion A 2  A A 3  
Realisability R <0.153 Any R R <0.527 
Self-excited solutions at 
positive Reynolds number Yes No Not found 

Let us emphasise that resummation procedures should not be ranked according to the 
order up to which they agree with the primitive expansion. Indeed, the quadratic DIA, 
which is exact only up to first order in A, is in very good quantitative agreement (S5%) 
with the exact solution, both for small Reynolds number and in the limit R +Co.  

Structural properties preventing, for example, the existence of self-excited solutions 
appear to be more relevant. 

In addition, arguments for the realisability of the closure’s solutions based on the 
existence of an associated stochastic model should be handled with care. This argument 
is valid only if existence and uniqueness of the solution of both model and closure are 
ensured (Frisch and Morf 1981). This is clearly not the case for the cubic DIA, which has 
two real solutions for R < R, and only complex solutions for R > R,; similarly the 
realisability of the iterative solution of DIA equations (Morton and Corrsin 1970) 
requires convergence of the iteration procedure; this question is easily examined on our 
algebraic model, and the procedure is found to be non-convergent for R > R,. 
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