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The oscillatory instability of convective rolls, for both free-slip and rigid boundary conditions, is shown to be related to the 
translational and Galilean invariances of the Oberbeck-Boussinesq equations, which implies that the phase dynamics of the 
basic roll pattern is second order in time. In the free-slip case the invariance is exact and the instability comes in at zero 
wavenumber. It is argued that, for low Prandfl number fluids, the effect of the rigid boundaries is to weakly break the Galilean 
invariance, thereby shifting the instability's critical wavenumber to a finite value. We derive the equations governing the 
nonlinear phase dynamics and show that, when supercritical, the instability always saturates into travelling waves (as observed 
in experiments and numerical simulations). In the rigid case, the description is made quantitative by numerically computing 
both the linear and nonlinear coefficients of the phase equation. It is found that, depending of the values of Prandtl number P 
and basic roll pattern wavenumber a, the oscillatory instability can be supercritical or subcritical. In the case of mercury 
(P = 0.025), our model predicts transition from supercritical onset to subcritical onset, for a slightly below the critical 
wavenumber for convection onset. 

1. Introduction 

In many  nonlinear dissipative systems driven 
far f rom equilibrium by an external homogeneous 
forcing, there is a transition from a uniform state 

to one varying periodically in space. A widely 
studied example is the Rayleigh-B~nard instabil- 
ity that occurs in a fluid layer heated from below; 
when the temperature difference across the layer 
exceeds a critical value, the buoyancy force over- 
comes the dissipative effects of viscous shear and 
thermal conduction, and the motionless state 
spontaneously breaks up into convective cells. 
With  Boussinesq fluids, and when the temperature 
is fixed at the top and bot tom boundaries, a 
parallel roll pat tern is selected at the convection 
onset in a laterally infinite fluid layer [1]. The 
stability of these rolls as a function of their wave- 
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number,  the Rayleigh number and the Prandtl 
number,  has been carefully studied by Galerkin 
techniques [2-5]. 

Another  possible approach is to investigate the 
stability and the dynamics of periodic patterns 
through their slowly varying phase [6]. A spatially 
uni form modification of the phase corresponds to 
a shift of the roll pattern, and thus is neutral 
because of translational invariance. Correspond- 
ingly, the growth-rate for the phase modes describ- 
ing long wavelength perturbations of the roll 
pat tern  is small. Therefore the basic idea is to 
eliminate adiabatically the fast modes and to ob- 
tain an evolution equation for the phase. This 
method has been used to describe pattern dy- 
namics in t ime periodic chemical reactions [7-9], 
and to study the stability of cellular flows which 
arise in Rayleigh-B6nard convection or Couet te-  
Taylor  flow. Most  of the long wavelength instabili- 
ties of convective rolls, found with a Galerkin 
t e c h n i q u e  [2, 3], have been recovered, at least 
qualitatively, with the concept of phase dynamics 
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[10-12], except for the oscillatory instability, which 
is the most dangerous one for low Prandtl number 
fluids (liquid metals, for instance). The oscillatory 
instability consists of a transverse oscillation of 
the roils which propagates along their axis. It is 
connected with the appearance of vertical vorticity 
[13, 14]. Its critical wavenumber vanishes in the 
case of stress-free top and bottom boundary con- 
ditions [13], and is finite for rigid boundary condi- 
tions [2, 15]. It was pointed out recently that a 
possible mechanism for propagative phase dy- 
namics is a mean flow effect due to Galilean 
invariance [16]. We show in this paper that there is 
a similar effect for the oscillatory instability, and 
that the method of phase dynamics gives quantita- 
tive results on the nonlinear oscillatory regime. 

This paper is organized in the following fashion. 
In section 2 we consider convective rolls with 
stress-free boundary conditions and give the phase 
equations which describe the dynamics of long 
wavelength torsion modes of the pattern. In sec- 
tion 3 we extend our analysis to the more experi- 
mentally accessible case of rigid boundary 
conditions; in that case the Galilean invariance is 
externally broken by the boundaries; however this 
only slightly modifies our analysis in the small 
Prandtl number limit. We give the nonlinear 
evolution equation describing the oscillatory insta- 
bility, and show that, if supercritical, it takes the 
form of propagative waves, as observed experi- 
mentally [17] and in direct numerical simulations 
[18-20, 27]. In section 4, we compare our model 
with a stability analysis using a Galerkin tech- 
nique, and compute numerically the coefficients of 
the phase equation. We show that the oscillatory 
instability can be supercritical or subcritical, de- 
pending on the Prandtl number and the basic 
pattern wavenumber. 

from below; the fluid's kinematic viscosity is p 
and its thermal diffusivity is x. Using d, d2/K and 
the temperature difference AT across the layer, 
divided by the Rayleigh number R, as scales for 
length, time and temperature, the conservation 
equations for mass, momentum and heat, read in 
the Oberbeck-Boussinesq approximation, 

V "  v = 0, (la) 

O tv+ v .  V v =  - P v p +  P v 2 v +  POz, (lb) 

a,O + v ,  x7 0 = R v .  z + V 20. (lc) 

where v = (u, v, w) is the velocity vector, O is the 
temperature deviation from the linear profile, and 
p represents the pressure disturbances; z is the 
vertical unit vector opposite to gravity. Two di- 
mensionless numbers characterize the problem: 
the Rayleigh number R, and the Prandtl number 
P, 

R = g ~ d  3 A T / w ,  P = v / x ,  

where g is the acceleration of gravity and y is the 
isobaric thermal expansion coefficient. 

Two different kinds of boundary conditions are 
usually considered for the above set of equations. 
In the case of stress-free boundary conditions, one 
requires 

w=Ozu=O~v~0  at z = 0 , 1 ,  (2a) 

whereas for rigid boundaries one has 

v = 0  at z = 0 , 1 .  (2b) 

If the heat conductivity of the boundaries is large 
compared to the one of the fluid, one has 

2. Phase equations for stress-free 
boundary conditions 

We consider a horizontal fluid layer of depth d, 
of infinite extension in the horizontal plane, heated 

O = 0  at z = 0 , 1 .  (2c) 

At the convective onset, the only possible stable 
steady solution of eqs. (1) with the boundary 
conditions (2) consists of two-dimensional rolls 
[1], taken without loss of generality to have the 



form Z 

Uo(x,z) 

= [u0(x, z) ,0,  w0(x, z), p0(x, z), 00(x, z)]. 
(3) 

Translational symmetry in the horizontal plane 
implies that Uo(x + cb, z) is also a solution, and 
consequently OxU 0 is a neutral mode of the roll 
pattern described by (3). 

With stress-free boundary conditions another 
neutral mode exists, which consists of a uniform 
horizontal velocity q, along the x-axis. In order to 
investigate the linear structure of this instability, 
let us consider a perturbation of the basic pattern 
of the form 

v(x,z,t)=Vo[X++(t),z]-,;(t)t, (4) 

where 1 = (1, 0, 0, 0, 0). We obtain from (1) and (4) 

,t,, ~xVo - ,p , t  = ,p o~vo 

o r  

:)(:) (5) 

The linear phase dynamics is thus second order in 
time. The existence of two phase modes q~ and ~k 
is related to translational and Galilean invari- 
ances; their linear coupling can be understood as 
follows: the advection of the pattern at a constant 
speed ~k along the x-axis leads to a spatial phase q~ 
that increases linearly in time. This makes the 
phase dynamics second order in time, which can 
give rise to propagative behavior for long wave- 
length disturbances of the periodic pattern. It is 
indeed known that for low Prandtl number fluids 
(P  << 1), a propagative torsion mode of the roll 
pattern is amplified close to the convection onset, 
and gives rise to the oscillatory instability [13]; the 
roll pattern is shifted perpendicular to its axis, 
periodically along the axis and in time (see fig. 1) 
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Fig. 1. Qualitative sketch of the oscillatory instability of con- 
vective rolls. 

In order to explain this behavior, let us consider 
a perturbation of the basic pattern in the form 

U(x, y, z, t) = Uo[x + , ( Y , T ) ,  z] - ~ ( Y , T ) I  

+u(x, z, Y, T),  (6) 

where q~(Y, T) represents a long wavelength mod- 
ulation of the spatial phase along the roll axis, and 
~p(Y, T) is a slowly varying horizontal velocity; 
the corresponding vertical vorticity mode was first 
considered by Busse in his stability analysis of 
two-dimensional convective rolls in a low Prandtl 
number fluid [13]. It was shown by Siggia and 
Zippelius [14] that this mode also modifies at 
leading order the evolution equation which governs 
the roll amplitude in the vicinity of the convection 
onset [21, 22]. 

In the limit of zero wavenumber, eq. (6) reduces 
to (4), and the evolution of q~(T) and ~k(T) is 
governed by eq. (5), which represents a codimen- 
sion-two singularity [23, 24]; the structure of the 
Galilee group implies that the eigenmode OxU0 has 
a double zero eigenvalue. The first part of expres- 
sion (6) consists of a perturbation of the basic 
state U0(x, z) along the generalized eigenspace 
(0xU 0, 1 }, whereas u(x, z, Y, T) stands for correc- 
tions perpendicular to this eigenspace. In the long 
wavelength limit, the eigenmodes are almost neu- 
tral; therefore we assume that all other modes 
behave on time scales much faster than the ones 
of q~ and ~p, and thus can be eliminated to give 
evolution equations for ~ and ~k, which can be set 
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under the form 

q~r----- tp + f(~b, tp, 3 ~,), 

+T= g(,/,,,l', Or). 
(7a) 

(7b) 

At this point let us remark that, as shown by 
Siggia and Zippelius [14], and Cross [11], the 
dependence of the amplitude equations on the 
slowly varying horizontal velocity ~p is singular 
when ff depends on X and Y. In order to avoid 
this problem, we must consider only Y-dependent 

and ~b with decoupled dynamics at zero wave- 
number. 

- T h e  first condition amounts to consider only 
the oscillatory instability: our model thus ignores 
the skew-varicose and oscillatory skew-varicose 
instabilities which involve X- and Y-dependent 
perturbations. Its validity is thus restricted to 
situations where the first instability of the convec- 
tion rolls is the oscillatory instability. 

- T h e  second condition reads 

~,T= aI(2L)O~f]Lq,(Y, T) dY= tp, 

G.= 1/(2L)OJ_~(r,  T)dY= 0. 

(8a) 

(8b) 

It amounts to decouple Y-dependent perturba- 
tions from the singular X-dependent modes in the 
zero wavenumber limit (k x = ky = 0 ) .  Let us re- 
mark that (8b) traces back to the conservation of 
the horizontal momentum, which forbids a change 
in the global advection of patterns along the x-axis. 

Let us next assume that f ,  g and u can be 
expanded in multiple Taylor series of q~, ~p, and 
their gradients. The compatibility between (1), (6) 
and (7) gives evolution equations for q, and ~k at 
each order in the gradient expansion. Their form 
is determined by symmetry constraints: 

-Translational and Galilean invariances imply 
the invariance of the equations under the transfor- 
mations 

q, ~ ~ + c (where c is constant), 

4, ~ 4, + ct ,  ~p --, ~p + c, 

thus f and g depend on q, and tp only through 
their Y-derivatives. 

-Space  reflection symmetry implies the invari- 
ance of the phase equations under the transforma- 
tions 

x - o - x ,  4, ---" - ep, ~ ---" - ~ 

and 

y---~ - y ,  

It follows from the first constraint that f and g 
involve no quadratic nonlinearities. The second 
one implies that the number of Y-derivatives is 
even for each term of f and g. These symmetry 
constraints, together with conditions (8) for peri- 
odic boundary conditions along the Y-axis, imply 
that eqs. (7), up to third order in ~ and ~k and 
fourth order in 0 y, are of the form 

Cr = ~k + Or[aCv+ B ~ r  + vq'vvv + 8q'vrv 
"4-'~1~P? q- V2dpy2t~ Y "4" "Y3dPYI~ Y 2 + ~[4~ / ] , 

(9a) 

~ r  = Ov[a'~v + f l ' ~ r +  y ' ~ r r r  + 8 '~rvv 

+v/~/+ v ~ ? ~  + v ; ~ ?  + v~/ ] .  
(9b) 

We next observe that the differentiated terms of 
(9a) and the last terms of (9b) are non-resonant 
and can be eliminated at this order by the follow- 
ing change of variables: 

= 4> + + 

+ + ( <s; / , L  ) ,., 

<4 , . , . -  r i G , . +  ( , , n -  

+ G. , . , . , . -  y 

+(Y3'/2) (7Y2~r) r + Yd(Tr~2)  v - 3'4( ~r~)y 

Finally we write 0 = ~y, and X = ~y, the phase 
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gradients, and obtain slight rotation of the roll pattern. We consider 

OT= X, 

Xr = 3rr[aO + b x -  c O r v -  d x r r  

q_ glO 3 + g20 2 X ], 

(lOa) 

(lOb) 

where 

b = a +  fl', 

c = a f t '  - a ' f l  - % 

d = - y  - 8", 

gt = 7[, 

g2 = 3Vl + Y2" 

Eqs. (10) describe the stability of the roll pat- 
tern with respect to long wavelength perturba- 
tions, i.e. 0 and X varying like exp (~T+_ ikY )  
with k ~ 0. In this limit the dispersion relation is 

0 = p  + e e x p ( , i T + i k Y )  

and linearize eqs. (10) in e. We obtain 

rl2 + [ b ( a )  + g 2 p 2 l k 2 r l  

+ [ a ( a )  + 3gap2lk2=e)(k2). (12) 

The wavenumber of the slightly rotated pattern 
described by 0 = p, is 

a'--- a(1 + p2/2) .  (13) 

We can also write the dispersion relation which 
gives the growth-rate of the slightly rotated pat- 
tern, in the form 

712 + b ( a  + ap2/2)k2~l 

+ a(  a + a p 2 / 2 ) k  2 = O(k2). (14) 

77 2 + bk2rj + ak 2 = d)(k2), (11) 

where the coefficients depend on the Rayleigh 
number R, the Prandtl number P, and the wave- 
number a of the basic roll pattern. The oscillatory 
instability occurs when b(R ,  P, a) vanishes i.e. on 
the critical surface R = Ro(P,  a) of the R - P - a  
space. Its frequency at onset is 

~o = kCa( Ro,  P,  a).  

We obtain from (12) and (13) 

ga = ( a / 6 )  3 a / 3 a ,  (15a) 

g2 = ( a / 2 )  3b /3a .  (15b) 

Thus the nonlinear effects can be understood as 
follows: the wavy disturbances slightly modify the 
local wavenumber (see eq. (13)), and in turn, this 
changes locally the propagation speed and the 
damping rate of the disturbances. 

In the vicinity of the instability onset, we have 

~1 = +_ikCa- bk2 /2  + .. • . 

3. Phenomenological extension to rigid 
boundary conditions 

The coefficients a and b have been computed by 
Busse (see ref. [13], eq. (3.11) for % = ida, and eq. 
(3.17) for % = - b / 2 ) .  

The nonlinear terms of eq. (10b) simply renor- 
malize the damping and the frequency of the 
instability, which is a supercritical Hopf bifurca- 
tion if g2 > 0. We can compute the coefficients of 
the nonlinear terms by noting that O = p  is a 
particular solution of (10), which corresponds to a 

3.1. The oscillatory instability growth-rate 

In most experimental realizations of thermal 
convection, the top and bottom boundaries are 
rigid. This externally breaks the Galilean invari- 
ance and a large scale z-invariant horizontal veloc- 
ity is not allowed by the boundary conditions. 
However, for low Prandtl number fluids, the oscil- 
latory instability occurs only slightly above the 
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convection onset, and we thus hope to be able to 
model the dominant effect of rigid boundaries by 
extending phenomenologically eqs. (9): to wit, we 
incorporate a damping term - vLk in the right-hand 
side of eq. (9b); note that the large scale horizon- 
tal velocity field is now of the form Q(z)~(Y ,  T), 
where Q(z)  satisfies the boundary conditions. In 
other words, the vertical vorticity modes are 
damped. We assume that the ensemble of these 
modes acts like one mode on the average. We can 
estimate the overall damping by the one of the 
least damped mode (the first Fourier mode in z 
with a vanishing horizontal wavenumber) which 
gives v ~ PTr z. We do not consider the nonlinear 
renormalization of this damping by a term of the 
form ~bq, 2 because we expect its coefficient to 
vanish since v does not depend on a (see below). 
We thus obtain for the phase gradients 0 and X 

OT= X,  

X.T = --V X + Oyy[aO + b x - cOvr 

- d X v y +  g103 + g202X], 

(16a) 

(16b) 

where gl and g2 obey the same equations as in the 
stress-free case (15a, b). 

The growth-rate ~ of the oscillatory instability 
obeys the dispersion relation 

r12 + (v.-I-bk2 + dk4)Ii +ak2 +ck4=~)(k4) .  
(17) 

Stability at short wavelengths requires d > 0. The 
oscillatory instability occurs for 

The real and imaginary parts of the growth-rate at 
the oscillatory instability onset, as a function of 
the disturbance wavenumber are given in figs. 2 
and 3 of the next section. We observe that the 
oscillatory instability comes from the interaction 
between the neutral translation mode 01(0)= 0), 
and the damped Galilean mode 0l(0) = -v ) .  The 
oscillatory instability occurs at a finite wavenum- 
ber k o because of the external damping due to 
rigid boundary conditions. 

3.2. Nonlinear evolution of the oscillatory instability 

The main questions about the nonlinear evolu- 
tion of the oscillatory instability are: 

- I s  the bifurcation supercritical or subcritical? 
- W h y  are standing waves not observed, experi- 

mentally or in direct numerical simulations, at the 
oscillatory instability onset? 

In the vicinity of the instability onset, the en- 
velope equation technique can be used to describe 
the post bifurcation stage; thus we write 

o(Y,r)= A(L 7) expi(o~0T + koY) 

+B(~, ~-)expi(o~0T- koY ) + c.c. 

+ c ( t , ~ ) +  . . .  . (19) 

The fields A and B describe the slowly varying 
amplitudes (in Y and T) of the waves that propa- 
gate to the right and to the left. The field C takes 
into account the existence of marginal modes for 
k ~ 0. Using standard asymptotic methods [25], 
we obtain at leading order the evolution equations 
for A, B, C: 

b 0 = - 2(vd )1/2, 

with a finite wavenumber 

ko = (/5//d )1/4 

and a frequency at onset 

too= [ a ( v / d )  1/2 + c (v /d )]  1/2. 

(18a) 

(18b) 

(18c) 

At = (k0VZ)(bo - b)A - ~IA~ + (~o ~ - i~2) A ~  

- ( 1 3 - i - r ) [ 3 l A I  2+ 6[B[ 2+ 3C 2]A + . . . ,  

(20a) 

B~ - ( k ~ / 2 ) ( b  o - b )B + 6olB: + ( f  2 - itoz)B~¢ 

- ( f l -  i v ) [ r lA[2+  31B[2 + 3C 2 ] B +  . - . ,  
(20b) 

c ,  = ( a / ~ )  c:~ + . . . ,  (20c) 
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with 

~ol = ( ko/o~o)( a + 2eke),  

~ 2 = ( 1 / 2 W o ) [ ( a + 6 c k  2) 

+ 2ck0 )2], 

~ = 2(ud)  1/2, 

13= - (k~g2) /2 ,  

= (ko291)/2 0. 

C is coupled with A and B only through higher 
order nonlinear terms (CIA 2 2 I~r, CIBIr~,...), and 
thus is damped in the vicinity of the oscillatory 
instability onset. The bifurcation is supercritical if 

g2 = ( a / 2 )  3b/Oa > O. 

The sign of g2 depends on the wavenumber of the 
basic pattern and on the fluid Prandtl number (see 
section 4). Thus the oscillatory instability is a 
supercritical or subcritical bifurcation depending 
on a and P. 

In the supercritical case, eqs. (19) have spatially 
homogeneous solutions 

Ao(¢) = Pexp ii2¢, 

Bo(~- ) = Q expiI2~', 

that describe either propagating waves: 

pz=k (b o _ b ) / 6 a ,  Q2=O, 

= k (b o - b) /3 /2a;  

p 2 = o ,  Q Z = k 2 ( b o _ b ) / 6 a ,  

= k o(bo - 

or standing waves: 

p 2 =  Q2= k 2 ( b o _  b ) / l S a ,  

12 = k~( b o - b ) f l /2a .  

Only the former are stable because the coefficients 
of the self-interaction nonlinear terms, IA IZA and 

[B[ZB, are smaller than those of the cross terms, 
[AJ2B and IBlZA. Therefore propagating waves 
are selected at the oscillatory instability onset, in 
agreement with experimental observations [17] and 
direct numerical simulations [18-20, 27]. Note 
that this result depends only on the form of the 
phase equations (16), and not on the numerical 
values of the coefficients. 

4. Numerical evaluation of the phase equation 
coefficients for rigid boundary conditions 

In this section we compute the numerical values 
of the coefficients that control both linear and 
nonlinear phase dynamics in the case of convec- 
tion with rigid boundary conditions (see eqs. (16)). 
This quantitative study provides information re- 
garding whether the oscillatory instability is a 
supercritical or subcritical bifurcation, as well as 
various scaling laws for the Prandtl number de- 
pendence of the frequency and wavenumber at 
onset. We have used the code of Clever and Busse 
for steady nonlinear thermal convection with rigid 
boundary conditions, as well as their code for the 
linear stability analysis of the nonlinear steady 
state. For a summary of their derivation and for- 
malism we refer the reader to their paper [2]. To 
insure accuracy of the steady solution and the 
stability analysis, a truncation of N = 10 (which 
involves 75 modes) has been used for all the 
calculations reported here. This truncation enables 
one to determine R 0, the Rayleigh number for the 
onset of the oscillatory instability, to within 0.1% 
for the ranges of R, P and a considered (as long 
as parabolic interpolation is used with Ak < 0.2, 
A R  ~ 100, Aa < 0.15). 

R 0 was calculated as follows: at each of several 
Rayleigh numbers near R0, the growth-rate ~(k) 
was computed from the linear stability code for 
several values of k near k 0. A parabola was fit to 
Re[~(k)]  to find Re[~]m~x for each R. Fitting a 
parabola to Re[~]max(R ) then yields R o as a root. 
In this procedure, a and P were fixed. 
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Fig. 2. A plot of the complex growth-rates (lower-half of the 
figure: real part  of the growth-rate, upper-half: imaginary part 
divided by 10) versus the disturbance wavenumber k. The 
boxes are the growth-rates for the oscillatory instability, ob- 
tained numerically from the Oberbeck-Boussinesq equations 
(R = 1888, P = 0.025, a = 3.117). The solid lines correspond to 
polynomial fits, up to fourth order in k, to the sum and 
product of the roots of eq. (17), yielding the values, v = 0.226, 
a = 0.482, b = -0.0816, c = -0.0146, d =  7.42 X 10 -3. The 
mean quadratic error is 1.62 X 10 -4 for the sum, and 1.64 x 
10 -3  for the product. 

4.1. Calculation of  phase equations coefficients f rom 

n(k) 

Fig. 3. Same as fig. 2, except that the fit is now up to 6th 
order, which yields: ~=0.233, a=0.550,  b = - 0 . 1 0 7 ,  c =  
-0.0330,  d =  0.0138, e =  -3 .64  X 10 4, f =  1.07 × 10 -3. The 
mean quadratic error is 2.81 x 10 -7 for the sum, and 1.91 x 
10 -5  for the product. 

not cope with the small-k bifurcation. This gives 
strong support to the linear part of our model. 
Note that, although the fit appears to be rather 
good, systematic errors are nevertheless present, 
suggesting that higher orders in k have to be 
retained. 

The result of a 6th order fit, using 

In order to extract from the computed values of 
Re (71) and Im (~/) information on such quantities 
as p, a, b, c, d (see eq. (16)) we have analyzed the 
data in terms of an assumed functional form for 
Re(*/) and Im(~/). More precisely, as a conse- 
quence of our model (see eq. (17)) one has 

v + bk 2 + dk  4 = - S ( k ) ,  (21a) 

a k  2 q- c k  4 =- P (  k ),  ( 2 1 b )  

where S ( k )  and P ( k )  stand for the sum and the 
product  of the complex growth-rates. It is tempting 
to use this relation to determine ~,, a, b, c, d by 
polynomial least squares fits to S and P. The 
result of such a fit is shown in fig. 2. Let us remark 
that our model captures both the small-k bifurca- 
tion of the growth-rates and their high-k behavior, 
with a minimum number of parameters. A direct 
polynomial fit of the growth-rates themselves can- 

I, + bk 2 + dk  4 q-- ek  6 = - S ( k  ), (22a) 

a k  2 + ck  4 + f k  6 = P ( k ) ,  (22b) 

instead of (21) is shown in fig. 3. Note that the 
quantitative agreement is much better with 6th 
order fit than with 4th order as witnessed for 
instance by a two order of magnitude decrease for 
the mean quadratic errors (see captions of figs. 2 
and 3). 

The " l inear"  coefficients (p, a, b, c, d)  and the 
"nonl inear"  coefficients ( g l ,  g2 )  of eq. (16) are 
functions of the parameters R, P and a. Even 
though a full exploration of the three-dimensional 
parameter space is prohibitively expensive, the 
general dependence of the coefficients can be un- 
derstood by their behavior when two parameters 
are fixed and the third is allowed to vary. We also 
have examined the linear coefficient dependence 
along R o ( P  ) for fixed a. The study of the R and 
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P dependences of the nonlinear coefficients was 
even more limited, as eq. (15) implies the need of 

i l(k) profiles for several a values. We commence 

the discussion of the numerical results by looking 

at the Prandtl number dependence followed by 

dependence upon R and a. 

4.2. Prandtl  number dependence at R = 1800 

Although we shall see that the P-dependence of 

the coefficients is more remarkable when evaluated 

at R 0, we describe here the dependence at R = 

1800, a = 3.117 (the critical wavenumber for con- 

vective onset). In the range of Prandtl numbers 

examined (0.01 to 0.2), the coefficient v is the only 
one to clearly follow a power-law form ( v -  P). 

The other linear coefficients have extrema. Al- 

though the 4th and 6th order fits yield different 

values, we can say that area x occurs for P > 0.2, 

I bl max  is near P = 0.05, I Clmax is near P = 0.1 and 
dma x is around 0.1 < P < 0.2. For Prandtl num- 
bers above those of these "maxima", the coeffi- 

cients eventually change sign. These sign changes 

all occur when R = 1800 is well below that of the 

onset value of R 0. From the tendencies exhibited 

as P decreases toward P = 0.01 from above, we 

speculate that the low Prandtl number limit would 
showb ,  d - P  and a, c - p 2 .  

4.3. Prandtl  number dependence at R o 

The Rayleigh number for the onset of the oscil- 

latory instability, R 0, is itself a complicated func- 
tion of P and a. However, if one evaluates the 

linear coefficients at R o ( P  ) for fixed a, one finds 

a remarkable power-law dependence [28] (see fig. 
4, for which a = 3.117). 

v = o~P, a -~ Oa P2,  b = ObP, C = ocP 2, 

d = % P ,  e = OeP, f =  oyP z. 

Evaluating the coefficients to two significant 
figures, at P = 0.025 and R = 1886.4 yields 
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Fig. 4. Prandtl number dependence of the coefficients of the 
linearized phase equation along Ro(P  ) for a=3.117 (6th 
order fit). 

4th order f i t  6th order f i t  

o, = 9.0 9.3 

% = 760 870 

o b = - 3.2 - 4.2 

o c = - 2 6  - 52 

o a = 0.29 0.55 

o 2 = - -  - 0.015 

o ~ =  - -  1 . 7  

Several important relations may be deduced from 
the power-law behavior. From eqs. (18) we can 

expect (for fixed a) that the critical wavenumber 
k o at the oscillatory instability onset (i.e. the 

disturbance wavenumber where the hump in Re ~1 
just becomes zero) is independent of P. In ad- 
dition, the oscillatory frequency at onset is di- 
rectly proportional to P. 
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4th order 6th order Stability code 

k o =  2.35 2.18 2.16 
to o = 58P 55.9P 55.6P 

1.0 

t I I I 1 I I ~  
. 1 1  . . . .  " q/lO .... - - ' - . . -  

We also note that kb, the value of the dis- 
turbance wavenumber for the merging of the two 
real eigenvalues to form the complex conjugate 
pair, is obtained form A = (1, + bk 2 + dk4) 2 - 

4(ak 2 + c k  4 ) = 0 .  Factoring out p2 from the 

power law dependencies reveals that k b is also 
independent of P along Ro(P  ). 

Some comments on accuracy are in order. It is 
clear from figs. 2 and 3 that the model nicely fits 
the instability growth-rate curves ~/(k). The 6th 
order fit is of course much better quantitatively. 
Although there are rather large discrepancies be- 
tween the coefficients from the two fitting orders, 
the signs and power law relations are well pre- 
served in each case. Given the method by which 
R o was calculated directly from */(k) near k0, it is 
more accurate than what one could find using the 
relation b = - 2 V ( 1 , d ) .  Although different grid 
choices for k can influence the coefficient values 
obtained, for a given fit order, these coefficients 
are reproducible to within 10% for any reasonable 
k-grid choice. 
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Fig. 5. Dependence of the phase equation coefficients with 
respect to the roll pattern wavenumber a, for P= 0.1 and 
R = 2400 (6th order fit). 

4.4. Rayleigh number dependence 

We have investigated the Rayleigh number de- 
pendence of the linear coefficients for P = 0.01, 
0.025, 0.05, 0.1 and 0.2 and a = 3.117. The coeffi- 
cient ~, is essentially independent of R, except for 
a very slight decrease of i, with increasing R for 
P = 0.01. 

Supposing that a -  [ ( R -  Rc)/Rc]n% and simi- 
larly for b, c and d, we find that 1 < na, no<  2, 
and 0.3 < n b, rid'( 1.0 with rid< nb. Each of these 
n 's  generally decreases with increasing P. 

4.5. Dependence upon the basic state 
waoenumber ct 

The dependence of various coefficients upon the 
basic state roll wavenumber a is shown for P = 0.1 

and P = 0.025 in figs. 5 and 6, respectively. The 
coefficient u is relatively insensitive to change in 
a. Of special significance is the minimum in b(a)  
for P- -0 .025 ,  which implies that g2 will change 
sign near ot = 2.94 (6th order fit). We present the 
stability diagram for mercury (P  = 0.025) in fig. 7. 
Above the curve, oscillating convection should 
occur. To the right of the nearly vertical dashed 
line (et = 2.94, 6th order fit), we have g2 > 0 (su- 
percritical onset) while on the left g2 < 0 (subcriti- 
cal onset). The dotted line represents the result of 
the fourth order fit. For P = 0.025, the critical 
wavenumber for onset of the instability along 
the linear onset curve follows the form, k o =  
0.0986a + 1.86, and the frequency too = 0.242a2 - 
0.362a + 0.166, (between a = 2.8 and a = 3.1). For 
the critical wavenumber for convection onset (a  c 
= 3.117), the transition to oscillatory convection is 
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Fig. 6. Same as fig. 5 for P = 0.025; the curves labelled (1), (2) and (3) correspond to different values of the Rayleigh number 
R = 1888, 1898 and 1908 (6th order fit). 

1910 

1900 

R 

1890 

1880 
2.7 

i I i i 

I 

l 

I i l i I i 
2.8 29 3.0 31 

c,( 

Fig. 7. Onset curve Ro(a ) for the oscillatory instability for 
P = 0.025; above Ro(a ) the oscillatory instability is linearly 
unstable; the onset is subcritical to the left of the dashed curve 
(6th order fit), respectively to the left of the dotted curve (4th 
order fit), whereas it is supercritical to the right. 

supercritical;  the oscillation ampli tude increases 
like ( R -  Ro) ~/2, in agreement with experimental 
observat ions  [26]. When  the basic pat tern wave- 

n u m b e r  is constra ined at a < aT, we find that our  
model  predicts subcritical onset for the oscillatory 

instabili ty in mercury  ( a  T = 2.99 for the 4th order 

fit and a T = 2.94 for the 6th order fit). Higher 
order  terms may  change the precise value of a T . 

In  the case of  subcritical onset our model does not  

describe the nonlinear  oscillatory regime, and we 

canno t  compare  the evolution of its frequency 

with calculat ions of Clever and Busse ( P  = 0.025, 
a = 2.9) [27], as higher order coefficients are needed 

for damp ing  in the case of  subcritical onset. 

5. Conclusion 

We have shown in this paper  that the method of  

phase  dynamics  is a powerful tool to describe the 
nonl inear  evolution of a secondary instability in a 
cellular flow. However,  this formalism requires 

that  the modeled  instability has a zero growth rate 
for vanishing disturbance wavenumber.  This is 
usually the case when the secondary instability 
traces back to a continuous broken symmetry  at 
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the primary instability onset, but we cannot make 
predictions for the oscillatory "thermal blob" type 
instabilities [5], since these instabilities typically 
have finite growth rates at zero disturbance wave- 
number. Moreover they have intricate vertical 
structure, which is beyond the reach of the verti- 
cally averaged phase equation approach. 

The effect of the fluid container lateral 
boundaries also appears as a severe limitation of 
the validity of phase dynamics, since they exter- 
nally break both translational and Galilean invari- 
ances. However, the predictions of numerical 
stability analysis in infinite geometry [2-5] are in 
good agreement with experimental observations 
[17, 29] when the fluid container aspect ratio is 
large enough; the onset value for the oscillatory 
instability in mercury, with a parallelepipedic con- 
tainer of dimensions 5.00 cm by 3.50 cm by 0.48 
cm high, is less than 20% larger than the theoret- 
ical value [26]. We thus expect the phase dynamics 
approach to be correct in the large aspect ratio 
limit. 

Finally, some comments on the low Prandtl 
number limit are in order; as P-~  0, the oscilla- 
tory instability critical wavenumber remains finite, 
and thus, we cannot ensure asymptotically the 
validity of our model for rigid boundary condi- 
tions. However, its qualitative predictions, super- 
critical oscillatory instability onset and finite 
amplitude travelling waves (for a roll wavenumber 
equal to the critical wavenumber for the onset of 
convection), are in agreement with experimental 
observations. Moreover, the model is in quantita- 
tive agreement with the numerical computation of 
the oscillatory instability growth-rate, and the 
effect of higher order terms (in the instability 
wavenumber) is small, which shows numerically 
that the phase dynamics approach is correct. 
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