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Abstract. The incompressible Navier-Stokes equations are numerically integrated on a fray-2 machine with the 

periodic Taylor-Green initial data. Using a spectral method taking advantage of the symmetries of the flow, a 

resolution of X64j and corresponding high Reynolds numbers (R, = 140) are obtained Visualisations of the 

resulting turbulent flow show that the turbulent activity is strongly correlated with low-pressure zones. We 

demonstrate that this behavior of the pressure field is linked to the fact that the square vorticity is spatially more 

concentrated than the energy dissipation. 

Turbulence is said to be developed when the scales transporting energy and those in which 
dissipation occurs are widely separated. This necessitates integral-scale Reynolds numbers that 
are at least on the order of several thousand (or Taylor microscale based Reynolds number R, 

of at least a hundred). Much higher Reynolds numbers are obtained experimentally. Neverthe- 
less, the current experimental methods measure only the velocity, and thus knowledge of the 
small-scale structures characterized by large velocity gradients remains fragmentary 111. To 
study developed turbulence numerically, a large range of spatial scales, and hence high 
resolution, is essential. One is quickly limited by the computer’s size. An idea that comes to 
mind is to simplify the geometry of the flow, for example by using periodic boundary 
conditions [2]. 

The Taylor-Green vortex [3] is the three-dimensional flow that develops, following the 
constant density incompressible Navier-Stokes equations, 

a,u+(u*v)v= -l,‘pvp+vAu, 

with periodic boundary conditions, from the initial data: 

u, = sin( .x) cos( ,v) cos( z), u,.= -cos(x) sin(y) cos(z), v_=O. 

This is perhaps the simplest system in which to study the generation of excitation at small 
scales and the resulting turbulence. Since the initial conditions are products of trigonometric 
functions, we can use spectral methods, which are both simple to implement and accurate [4]. 

Compared to flows which are simply periodic, the Taylor-Green vortex displays additional 
symmetries. By taking advantage of these additional symmetries in the spectral integration 
algorithm for the Navier-Stokes equations, it is possible to gain factors of 64 in memory, of 32 
in number of operations, and thus a factor of 4 in the separation of scales for a given 
computational power. In practice it is possible to run incore on a 256 Mbyte, 4-processor 
Cray-2 machine with a resolution of 864’ (at the cost of tens of CPU hours per turnover time). 

The evolution at large Reynolds numbers of the Taylor-Green vortex follows essentially two 
phases [S]. During the first phase, the viscous effects can be neglected, and small-scale 
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Fig. 1. Energy dissipation per unit mass c(t) = u[drfI,,(a,v, + 3,~~)’ versus time. The maximum is reached, after a few 
eddy turnover times, around t = 9. 

structures are generated which are well-organized and laminar. During the second phase, 
viscous diffusion plays an important role in the dynamics and distordered dissipative structures 
are created. The energy dissipation attains its maximum at a late stage of the viscous phase. In 
the simulation which we present here, with a resolution of 8643 and with a Reynolds number 
(defined as the inverse of the kinematic viscosity) of 5000, this maximum takes place at t = 9 
(see fig. 1). Figure 2 shows the energy spectrum, defined here as the kinetic energy per unit 
volume and per wavenumber (averaged over angle) at the moment of the maximum of the 
energy dissipation. Note that, over more than a decade, an inertial range is present over which 
the spectrum follows a power law with exponent close to the value of -5/3 predicted by 
Kolmogorov [6], followed by a dissipative zone. At this instant in time, the Reynolds number 
R, defined using the Taylor microscale is about 140. 

The chaotic and highly intermittent appearance of the small-scale excitations is shown in fig. 
3 which represents, in a planar section at y = IT/~. the square of vorticity 

w~=(VX& or ,‘=:~(a,++J. 
V 

Figure 4 represents in the same fashion the local energy dissipation pea’ where 

Note that the energy dissipation appears to look somewhat less spatially concentrated than the 
square of vorticity. 
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Fig. 2. Energy spectrum E(k) at t = 9. Note that the slope is close to Kolmogorov’s value - 5/3 beteween k = 6 and 

k = 60. 

There is a simple equation that relates the pressure field to the square vorticity and the 
energy dissipation fields. Indeed, by taking the divergence of the Navier-Stokes equations, in a 
constant density incompressible fluid, we find 

2Ap/p + Cl2 - l&J2 = 0. 

It is therefore natural to establish an anaIogV to electrostatics, with the pressure corresponding to 

the potential resulting from negative and positive charges distributed according to the square 

vorticity and the energy dissipation, respectively. The vorticity concentrations thus act like 
sources of low pressure and their greatest relative concentration relatively to the energy 
dissipation concentrations acting as source of high-pressure will be the cause of spatial 
correlation between turbulent activity and low-pressure regions. This is confirmed by looking at 
fig. 5, which represents the pressure field p. Figure 5 shows that the zones of turbulent activity 
are correlated with the low-pressure regions. These regions appear to be point-like on the 2D 
cut. By looking at other cuts (data not shown) one can see the low-pressure regions to be 
extended in the third dimension, i.e. they are in fact filaments. 

The simple picture that now emerges is thus that the regions of high square vorticity are 
distributed on structures that are rather tube-like while the regions of high energy dissipation 
are distributed on structures that are rather sheet-like. As a consequence strong depressions are 
observed on the tubes, while milder high-pressures are seen on the sheets. The flow seems to be 
organized around the low-pressure high-vorticity filaments, e.g., see fig. 6 which displays the 
magnitude of the velocity field and shows that sheet-like high velocity regions are wrapped 
around the filaments. 
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sualisation of square vorticity u2 = L ,E,,(Cl,u,-a,~,)~ in the plane y=n/4 at t=9 

the aera 0 < x < n, 0 < z < 71 is shown. The colormap we chose displays the high-x 

dark. 

Fig. 4. Rast .er vi sualisation, at t = 9 and in the same aera as in fig. 3, of the normalized energy 

(T’ = fE,,(a,ts + a,u,)’ in the plane y = n/4. The colormap is the same as in fig. 3. 
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Fig. 5. Raster visualisation of the pressure field in the plane y = ?r/4 at I = 9, shown as in figs. 3 and 4. Note the 

pressure minimum indicating the crossing of the figure’s plane by a vortex filament. 
sharp 

Fig. 6. Raster visu ali! 

the 1 ligh- vel 

r- -- .__--. --. ..__.~ _ 

sation of the magnitude of velocity, shown as in figs. 3, 4 and 5. Because of the co101 

ocity regions appear in yellow. Note that these regions wrap around the vortex filan 
*map 

lents. 
we chose. 



M.E. Brachet / Turbulence in the Taylor -Green vortex 

t I 

1 IIIII I , I / I / 1 

100 10' 169 1 03 
K 

Fig. 7. Spectrum of vorticity fluctuations. The continuous line is a least-squares fit between k = 6 and k = 60 of the 

form k-l+’ yielding p = 0.86. 

We have tried to be more quantive about the relative concentration difference between the 
square of vorticity and the energy dissipation by measuring their intermittency via the spectra 
of their local fluctuations. Figures 7 and 8 show that these spectra follow power laws in kp ’ tP 

with p = 0.38 for the energy dissipation and TV. = 0.86 for the square vorticity. The exponent p 
which was first introduced by Kolmogorov in 1962 [7] can also be interpreted as the Fourier 
fractal dimension of the dissipation in the limit of infinite Reynolds number [8]. Note that 
although some non-uniqueness of the exponent p is taken into account in the multifractal 
theories of intermittency [9], these theories do not take into account the difference of exponent 
that we observe here beteween energy dissipation and square vorticity. 

Another quantitative consequence of the stronger concentration of vorticity can be seen on 
fig. 9 which plots the probability distribution function of the pressure field at t = 9, for 
Reynolds numbers 1600, 3000 and 5000. The pdf is seen to be highly non-symmetric, with an 
exponential tail for negative pressures. 

In summary our new results, obtained through direct numerical simulations, point to the 
existence of very strong depressions located on vortex filaments in fully developed turbulence. 
They also point to the fact that naive phenomenological theories that do not take into account 
the difference in scaling beteween ti2 and u2 must be quite off the mark. Note that the 
experimental detections of the high-vorticity, low-pressure filaments has recently been possible 
in a fully developed turbulent flow by using cavitation in a liquid seeded with bubbles as a new 
visualization technique [lo]. 
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Fig. 8. Spectrum of energy dissipation fluctuations. The same fit as in fig. 7 yields p = 0.38. 
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Fig. 9. Plot of the probabi~ty dist~bution function of the pressure field at f = 9, for Reynolds numbers 1600, 3000 and 
5000. Note the long exponential tail for negative pressures corresponding to the vortex filaments. 



The computations were done on the CCVR Cray-2 at Palaiseau, using the Fast Fourier 
Transforms of C. Temperton. The raster visualisations were performed with the help of DRET 

contract 87/1483. 
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