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h i g h l i g h t s

• The continuous limit of quantum walks on the line is investigated systematically through a new method.
• In all cases but one, the continuous limit coincides with the propagation of a Dirac fermion.
• Inhomogeneities in the walk transcribe as artificial electric and gravitational fields.
• New, state of the art simulations of a quantum walk propagating in an artificial electric field.
• New, state of the art simulations of a quantum walk propagating in and around an artificial black hole.
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a b s t r a c t

The continuous limit of quantum walks (QWs) on the line is revisited through a new, re-
cently developed method. In all cases but one, the limit coincides with the dynamics of
a Dirac fermion coupled to an artificial electric and/or relativistic gravitational field. All
results are carefully discussed and illustrated by numerical simulations. Possible experi-
mental realizations are also addressed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

QWs are simple formal analogues of classical random walks. They were first considered by Feynman [1] as possible
discretizations of the freeDirac dynamics in flat space–time. Theyhave been introduced in the physics literature byRefs. [2,3]
and the continuous-time version first appeared in Ref. [4]. They have been realized experimentally in Refs. [5–12] and are
important in many fields, ranging from fundamental quantum physics [12,13] to quantum algorithmics [14,15], solid state
physics [16–19] and biophysics [20,21]. Following Feynman’s idea, several authors have studied the continuous limit of
various QWs. The first publications [22–24,1,25–28] only addressed QWs with constant coefficients and recent work has
extended the discussion to QWswith time- and space-dependent coefficients [29–32], in both (1+1) and (1+2) space–time
dimensions. In particular, a new method was developed in Refs. [29–32] to investigate the continuous limit of QWs with
nonconstant coefficients. This method delivers interesting results, not only for standard QWs, but also for ‘derived’ QWs
obtained from original QWs by keeping only one time-step out of two [32]. So far, this newmethod has only been applied to
particular families of walks. This article presents the systematic application of this method to all QWs in (1+ 1) space–time
dimensions. The main conclusions are: (i) all families of walks do not admit a continuous limit (ii) when the limit exists, it
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coincides, in all cases but one, with the dynamics of a Dirac fermion coupled to an artificial electric field and/or relativistic
gravitational field. These theoretical conclusions are illustrated by numerical simulations. Connectionswith previous results
as well as other topics like transport in graphene are discussed and possible experimental realizations are also mentioned.

2. Fundamentals

We consider quantumwalks defined over discrete time and discrete one-dimensional space, driven by time- and space-
dependent quantum coins acting on a two-dimensional Hilbert space H . The walks are defined by the following finite
difference equations, valid for all (j,m) ∈ N × Z:

ψ L
j+1,m

ψR
j+1,m


= B


θj,m, ξj,m, ζj,m, αj,m

 ψ L
j,m+1

ψR
j,m−1


, (1)

where

B(θ, ξ , ζ , α) = eiα


eiξ cos θ eiζ sin θ
−e−iζ sin θ e−iξ cos θ


. (2)

This operator is in U(2), and is in SU(2) only for α = pπ, p ∈ Z, and θ, ξ and ζ are then called the three Euler angles
of B. The index j labels instants and the index m labels spatial points. The two functions ψ L and ψR can be interpreted
as the components of a wave function Ψ on a certain orthonormal basis (bL, bR) independent of j and m. These two
components code for the probability amplitudes of the particle jumping towards the left or towards the right. The total
probability πj =


m


|ψ L

j,m|
2
+ |ψR

j,m|
2

is independent of j, that is, it is conserved by the walk. The set of angles


θj,m, ξj,m,

ζj,m, αj,m, (j,m) ∈ N × Z

defines the walks and is at this stage arbitrary.

Consider now, for all (n, j) ∈ N2, the collectionW n
j = (Ψk,m)k=nj, m∈Z. This collection represents the state of the quantum

walk at ‘time’ k = nj. For any given n, the collection Sn = (W n
j )j∈Z thus represents the entire history quantumwalk observed

through a stroboscope of ‘period’ n. The evolution equations for Sn are those linkingW n
j+1 toW

n
j for all j. These can be deduced

from the original evolution Eqs. (1) and (2) of the walk, which also coincide with the evolution equations of S1. For example,
the evolution equations of S2 read

ψ L
j+2,m = AL

j,mψ
L
j,m+2 + BL

j,mψ
L
j,m + C L

j,mψ
R
j,m + DL

j,mψ
R
j,m−2

ψR
j+2,m = AR

j,mψ
L
j,m+2 + BR

j,mψ
L
j,m + CR

j,mψ
R
j,m + DR

j,mψ
R
j,m−2, (3)

where

AL
j,m = cj+1,m cj,m+1 ei(αj+1,m+ξj+1,m+αj,m+1+ξj,m+1)

BL
j,m = −sj+1,m sj,m−1 ei(αj+1,m+ζj+1,m+αj,m−1−ζj,m−1)

C L
j,m = cj+1,m sj,m+1 ei(αj+1,m+ξj+1,m+αj,m+1+ζj,m+1)

DL
j,m = sj+1,m cj,m−1 ei(αj+1,m+ζj+1,m+αj,m−1−ξj,m−1),

(4)

AR
j,m = −sj+1,m cj,m+1 ei(αj+1,m−ζj+1,m+αj,m+1+ξj,m+1)

BR
j,m = −sj,m−1 cj+1,m ei(αj+1,m−ξj+1,m+αj,m−1−ζj,m−1)

CR
j,m = −sj+1,m sj,m+1 ei(αj+1,m−ζj+1,m+αj,m+1+ζj,m+1)

DR
j,m = cj,m−1 cj+1,m ei(αj+1,m−ξj+1,m+αj,m−1−ξj,m−1),

(5)

with cjm = cos(θj,m) and sjm = sin(θj,m).
The QWs defined by (1) admit a remarkable exact U(1) gauge invariance. Consider indeed an arbitrary set of numbers

{φjm, (j,m) ∈ N × Z}, and write Ψjm = Ψ ′
jm exp(iφjm). A straightforward computation shows that Ψ ′ obeys

ψ ′L
j+1,m

ψ ′R
j+1,m


= B


θ ′

j,m, ξ
′

j,m, ζ
′

j,m, α
′
j,m
 ψ ′L

j,m+1

ψ ′R
j,m−1


, (6)

with

α′
j,m = αj,m +

σj,m

2
ξ ′

j,m = ξj,m + δj,m

ζ ′

j,m = ζj,m − δj,m (7)

θ ′
j,m = θj,m
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and
σj,m = φj,m+1 + φj,m−1 − 2φj+1,m (8)

δj,m =
φj,m+1 − φj,m−1

2
. (9)

It can also be shown that the S2-type QWs admit the same discrete invariance. As detailed in Sections 4 and 5, this
discrete gauge invariance transcribes in the continuous limit into the standard continuousU(1) gauge invariance ofMaxwell
electromagnetism.

To investigate the continuous limit of a collection Sn, we first introduce a time step 1t and a space step 1x. We then
consider that Ψjm, θjm, ξjm, ζjm and αjm are the values taken by a two-component wave function Ψ and by four functions θ ,
ξ , ζ and α at the space–time point (tj = j1t, xm = m1x). Thus, Eq. (1) transcribes into

ψ L(tj +1t, xm)
ψR(tj +1t, xm)


= B


θ(tj, xm), ξ(tj, xm), ζ (tj, xm), α(tj, xm)

 ψ L(tj, xm +1x)
ψR(tj, xm −1x)


. (10)

We finally suppose that Ψ and θ are at least twice differentiable with respect to both space and time variables for all
sufficiently small values of 1t and 1x. The formal continuous limit of Sn is defined as the couple of partial differential
equations (PDEs) obtained from the discrete-time evolution equations defining Sn by letting both1t and1x tend to zero.

3. How to determine the continuous limit

Let us introduce a time scale T , a length-scale L, an infinitesimal ϵ and write
1t = ϵT

1x = ϵδL, (11)
where δ > 0 allows 1t and 1x to tend to zero differently. We also allow the angles defining the walk to depend on ϵ and
characterize the ϵ-dependence of these angles near ϵ = 0 by the following scaling laws:

θϵ(t, x) = θ0(t, x)+ θ̄ (t, x)ϵω

ξϵ(t, x) = ξ0(t, x)+ ξ̄ (t, x)ϵβ

ζϵ(t, x) = ζ0(t, x)+ ζ̄ (t, x)ϵγ (12)
αϵ(t, x) = α0(t, x)+ ᾱ(t, x)ϵη,

where the four exponentsω, β, γ and η are all positive.We also suppose that all functions are at least C2 in t and x. The above
relations define 1-jets of quantum walks. We finally denote by Bϵ(t, x) the matrix B(θϵ(t, x), ξϵ(t, x), ζϵ(t, x), αϵ(t, x)).

Expand now the original discrete equations obeyed by a jet Snϵ around ϵ = 0. A necessary and sufficient condition for
the expansion to be self-consistent at order 0 in ϵ is that Bn

0(t, x) = 1 for all t and x (note from Eq. (1) that this condition is
self-evident for n = 1). This transcribes into a constraint for the zeroth-order angles θ0, ξ0, ζ0, α0.

Suppose this constraint is satisfied. The differential equations defining the continuous limit are obtained from the
expansion by stating that the next lowest order contribution in ϵ identically vanishes. If one excepts zeroth-order terms, the
terms of lowest order in the expansion scale as ϵ, ϵδ, ϵω, ϵβ , ϵγ , ϵη (see for example the similar expansions performed
on particular simple quantum walks and presented in Refs. [30,31]). The richest and most interesting scaling is thus
δ = ω = β = γ = η = 1, because this makes all the above terms of the same order and, thus, delivers a differential
equation with a maximum number of contributions. This scaling will be retained in the remainder of this article.

Note that Eqs. (11) and (12) have actually very different meanings. Indeed, (11) states that the relative variations of Ψ
between j+ 1,m and j,m± 1 should be small, while (12) states that the angles defining the walk do not deviate much from
their zeroth-order values.

We will now present in detail the continuous limit of the jets Snϵ for both n = 1 and n = 2.

4. Limit of S1
ϵ

4.1. Zeroth-order values of the angles

The constraint on the zeroth-order angles reads
sin θ0 = 0
ei(α0+ξ0) cos θ0 = 1

ei(α0−ξ0) cos θ0 = 1. (13)
The above relations imply θ0 = kπ, α0 = (k + k+ + k−)π, ξ0 = (k+ − k−)π, (k, k+, k−) ∈ Z3. The angle ζ0 does not enter
this constraint and is therefore an arbitrary function of t and x. For a given value of ϵ, there is thus nomeaningful distinction
between ζ0 and ζ . We will therefore from here on denote ζ0 by ζ in all equations, if only to simplify the notation.
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4.2. Equations of motion

Let now T = t/T , X = x/L, x±
= (T ± X)/2 and ∂± = ∂x± = ∂T ± ∂X . The variables x± are null coordinates in the flat

2D space–time. With these notations, the equations of motion for the continuous limit of S1ϵ read

∂−ψ
L
− i(ᾱ + ξ̄ )ψ L

= +θ̄ei(θ0+α0+ζ )ψR

∂+ψ
R
− i(ᾱ − ξ̄ )ψR

= −θ̄ei(θ0+α0−ζ )ψ L, (14)

where θ0 and α0 are arbitrary multiples of π (see the constraint above) and ζ is an arbitrary real function of T and X .
Taken together, these two coupled first-order PDEs form a Dirac equation in (1+ 1) dimensions. Let us recall that, in flat

two-dimensional space–times, the Clifford algebra can be represented by 2× 2 matrices acting on two-component spinors.
This algebra admits two independent generators γ 0 and γ 1, which can be represented by 2 × 2 matrices obeying the usual
anti-commutation relation

{γ a, γ b
} = 2ηabI, (15)

whereη is theMinkowskimetric andI is the identity (unit)matrix. Consider the representation γ 0
= σ1 and γ 1

= −σ1σ3 =

iσ2, where σ1, σ2 and σ3 are the three Pauli matrices:

σ1 =


0 1
1 0


, σ2 =


0 −i
i 0


, σ3 =


1 0
0 −1


. (16)

Eq. (14) can be recast in the following compact form:

(iγ 0D0 + iγ 1D1 − M)Ψ = 0, (17)

where Dµ = ∂µ − iAµ, ∂0 = ∂T , ∂1 = ∂X , A0 = ᾱ, A1 = −ξ̄ , M = diag (m−,m+) and m∓
= ±i θ̄ exp {i(θ0 + α0 ± ζ )}.

This equation describes the propagation in flat space–time of a Dirac spinor coupled to the Maxwell potential A (the
corresponding electric field is EX = ∂T ξ̄−∂X ᾱ). The discrete gauge invariance presented in Section 2 degenerates accordingly
into the standard local U(1) invariance associated with electromagnetism. Indeed, suppose that the numbers φjm (see
Section 2) are the values taken by a function φ at space–time points (tj = j1t, xm = m1x). Expanding Eqs. (7) and (9)
at first order in ϵ delivers

α′
= α − ϵ

∂φ

∂T

ξ ′
= ξ + ϵ

∂φ

∂X

ζ ′
= ζ − ϵ

∂φ

∂X
(18)

θ ′
= θ.

The first two equations imply

A′

0 =
1
ϵ


α′

− α0


=
1
ϵ


α − ϵ

∂φ

∂T
− α0


= A0 −

∂φ

∂T

A′

1 =
1
ϵ


ξ0 − ξ ′


=

1
ϵ


ξ0 − ϵ

∂φ

∂X
− ξ


= AX −

∂φ

∂X
, (19)

which are simply the standard gauge transformation for the potential A. The fourth relation implies that the mass tensor
M is gauge invariant. Since the continuous limit equation of motion (14) depends only on ζ0 (as opposed to ζ ), the third
equation is not relevant to the continuous limit investigated in this section.

The angles θ0 and α0 are both multiples of π . Both masses are therefore complex conjugates of each other. They are
real, and therefore identical, if ζ0 is an uneven multiple of π/2. They are both real and positive, equal to |θ̄ |, if ζ0 =

θ0 + α0 + σ̄ + (2p + 1)π/2, where exp(iσ̄ ) = sgn θ̄ is the sign of θ̄ and p is an arbitrary integer. Note that, even in
this case, the mass may depend on both T and X .

5. Limit of S2
ϵ

5.1. Zeroth-order values of the angles

The constraint on the zeroth-order angles now reads

cos ξ0 sin(2θ0) = 0
e2iα0


e2iξ0 cos2 θ0 − sin2 θ0


= 1

e2iα0

e−2iξ0 cos2 θ0 − sin2 θ0


= 1. (20)
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As for n = 1, ζ0 does enter this constraint; it is therefore an arbitrary function of t and x, which we denote simply by ζ (see
the discussion at the end of Section 4.1).

The first relation implies that cos ξ0 = 0 (case 1) or sin 2θ0 = 0 (case 2). The first case corresponds to ξ0 = (2k+ 1)π/2,
k ∈ Z. The second and third relations then transcribe into the single constraint α0 = (2k′

+ 1)π/2, with k′
∈ Z. Note that

θ0 can then be an arbitrary function of t and x, as ζ0. This function will be simply denoted by θ , just as ζ denotes ζ0.
In contrast, the second case corresponds to θ0 = kπ/2, k ∈ Z. If k = 2p + 1, p ∈ Z (case 2.1), the last two constraint

relations deliver α0 = (2k′
+ 1)π/2, with k′

∈ Z. The angle ξ0 is then arbitrary and will be denoted simply by ξ . If k = 2p
(case 2.2), the last two constraint relations deliver α0 = k′π/2, ξ0 = α0 + k′′π, (k′, k′′) ∈ Z2.

Cases 1, 2.1 and 2.2 partly overlap. Indeed, jets obeying θ0 = kπ, ξ0 = (2k + 1)π/2 and α0 = (2k′
+ 1)π/2 can be field

under both case 1 and case 2. These are the only jets which can be field under both cases.
Let us now give the equations of motion of the continuous limit in cases 1, 2.1 and 2.2.

5.2. Equations of motion: case 1

2

∂T − (cos2 θ)∂X


ψ L

− 2i

ᾱ + (cos2 θ)ξ̄


ψ L

− e+i(ζ−ξ0)(sin 2θ)∂XψR

=

−(sin 2θ)(∂Xθ)+ i(sin2 θ)(∂+ζ )


ψ L

+ e+i(ξ0+ζ )

i(∂−ζ )

sin 2θ
2

− iξ̄ (sin 2θ)+ (∂T θ)− (∂Xθ)(cos 2θ)

ψR (21)

and

2

∂T + (cos2 θ)∂X


ψR

− 2i

ᾱ − (cos2 θ)ξ̄


ψR

− e−i(ζ−ξ0)(sin 2θ)∂Xψ L

=

+(sin 2θ)(∂Xθ)− i(sin2 θ)(∂−ζ )


ψR

+ e−i(ξ0+ζ )

i(∂+ζ )

sin 2θ
2

− iξ̄ (sin 2θ)− (∂T θ)− (∂Xθ)(cos 2θ)

ψ L. (22)

These equations can be put into the more compact form

∂TΨ + (cos θ)P∂XΨ = QΨ , (23)

where Ψ = ψ LbL + ψRbR,

P =


− cos θ −e+i(ζ−ξ0) sin θ

−e−i(ζ−ξ0) sin θ cos θ


(24)

and

Q =


Q L
L Q L

R

Q R
L Q R

R


(25)

with

Q L
L = i


ᾱ + (cos2 θ)ξ̄


−

sin 2θ
2

(∂Xθ)+
i
2
(sin2 θ)(∂+ζ )

Q R
R = i


ᾱ − (cos2 θ)ξ̄


+

sin 2θ
2

(∂Xθ)−
i
2
(sin2 θ)(∂−ζ ) (26)

Q L
R =

e+i(ξ0+ζ )

2


i(∂−ζ )

sin 2θ
2

− iξ̄ (sin 2θ)+ (∂T θ)− (∂Xθ)(cos 2θ)


Q R
L =

e−i(ξ0+ζ )

2


i(∂+ζ )

sin 2θ
2

− iξ̄ (sin 2θ)− (∂T θ)− (∂Xθ)(cos 2θ)

.

The operator P is self-adjoint and its eigenvalues are −1 and +1. Two eigenvectors associated with these eigenvalues
are

b− =


cos

θ

2


bL + ei(−ζ+ξ0)


sin

θ

2


bR, (27)

b+ =


sin

θ

2


ei(ζ+ξ0)bL +


cos

θ

2


bR. (28)
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The family (b−, b+) forms an orthonormal basis of the two-dimensional spin Hilbert space, alternate to the original basis
(bL, bR). Let Ψ = ψ−b− + ψ+b+. Eq. (23) transcribes into

∂Tψ
−

− (cos θ)∂Xψ−
− iᾱψ−

− i cos θ ξ̄ψ−
+

i
2
((cos θ − 1)∂+ζ )ψ−

+
∂Xθ

2
(sin θ) ψ−

= 0

∂Tψ
+

+ (cos θ)∂Xψ+
− iᾱψ+

+ i cos θ ξ̄ψ+
−

i
2
((cos θ − 1)∂−ζ )ψ+

−
∂Xθ

2
(sin θ) ψ+

= 0. (29)

Suppose now, to make the discussion definite, that cos θ is strictly positive and introduce in space–time {(T , X)} the
Lorentzian, possibly curved metric G defined by its covariant components

(Gµν) =


1 0

0 −
1

cos2 θ


, (30)

where (µ, ν) ∈ {T , X}
2. This metric defines the canonical, scalar ‘volume’ elementDGX =

√
−G dX = dX/ cos θ in physical

1D X-space, where G is the determinant of the metric components Gµν . Dirac spinors are normalized to unity with respect
to DGX , whereas Ψ is normalized to unity with respect to dX . We thus introduceΦ = Ψ

√
cos θ and rewrite the equations

of motion (29) in terms ofΦ . We obtain

γ a

eµa DµΦ +

1
2

1
√

−G
∂µ

√
−Geµa


Φ


= 0, (31)

where µ ∈ {T , X} , a ∈ {0, 1} and Dµ = ∂µ − iAµ with

AT = ᾱ +
1 − cos θ

2
∂Xζ (32)

and

AX = −ξ̄ −
1 − cos θ
2 cos θ

∂T ζ . (33)

The usual 2D gamma matrices are

γ 0
=


0 1
1 0


, γ 1

=


0 1

−1 0


, (34)

and the eµa are the components of the dyad (orthonormal basis) e0 = eT and e1 = cos θ eX on the original coordinate basis
(eT , eX ). Eq. (31) is the standard [33] equation of motion for a massless Dirac spinor propagating in (1 + 1)-dimensional
space–time under the combined influence of the gravitational field G and the electric field E deriving from A. Since the
Dirac field is massless, its components are not coupled and evolve independently of each other. Each component follows
a null geodesic of the gravitational field, and the electric field only modifies the energy along a given geodesic. Numerical
simulations of a QWpropagating radially in the gravitational field of a Schwarzschild black hole are presented in Section 6.3.

Let us conclude this section by commenting briefly on how the discrete gauge invariance presented in Section 2
transcribes in the present context. The continuous limit equation (18) is of course valid. Combining these with (32), (33) and
keeping only the lowest order terms in ϵ leads to the standard gauge transformation A′

0 = A0−∂φ/∂T and A′

1 = A1−∂φ/∂X .
Just as it was the case in Section 4, the transformation law for ζ does not contribute to the continuous gauge transformation,
but it is not for the same reason. In Section 4, the potential A itself does not depend on ζ . Here, the potential A does depend
on ζ , but the gauge transformation for ζ generates terms of order ϵ in the gauge transformation for A, and these terms vanish
as ϵ tends to zero. In the present context, the final, fourth equation in (18) reflects the fact that the gravitational field does
not depend on the choice of gauge for the phase of the spinor Ψ .

5.3. Equations of motion: case 2.1

The equations of motion of the continuous limit read

2∂Tψ L
− 2iᾱψ L

= +i(∂+ζ )ψ L
+ 2θ̄e+iζ (cos ξ) ψR

2∂TψR
− 2iᾱψR

= −i(∂−ζ )ψR
− 2θ̄e−iζ (cos ξ) ψ L, (35)

where ξ and ζ are arbitrary functions of T and X . These equations are not PDEs, but ordinary differential equations (ODEs) in
ψ±. Thus, there is for example no propagation in this case. Technically, this comes from the fact that θ0 is here constrained
to be an uneven multiple of π/2.
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5.4. Equations of motion: case 2.2

The equations of motion read

2∂−ψ L
− 2i


ᾱ + ξ̄


ψ L

= +2θ̄ei(2α0+ζ )(cos ξ0)ψR

2∂+ψR
− 2i


ᾱ − ξ̄


ψR

= −2θ̄ei(2α0−ζ )(cos ξ0)ψ L, (36)

where α0 is a multiple of π/2, ξ0 − α0 is multiple of π and ζ is an arbitrary function of T and X . Eq. (36) can be recast in the
following compact form:

(iγ 0D0 + iγ 1D1 − M)Ψ = 0 (37)

where Dµ = ∂µ − iAµ, ∂0 = ∂T , ∂1 = ∂X , A0 = ᾱ, A1 = −ξ̄ , M = diag (m−,m+) and m∓
= ±i θ̄ exp {i(2α0 ± ζ )} (cos ξ0).

This equation describes the propagation in flat space–time of a Dirac spinor Ψ coupled to the potential A and with a mass
tensor M.

6. Numerical simulations

6.1. Basics

In order to ascertain the validity of the continuous limits that were derived above, we wish to compare numerical
solutions of the QW defined by the finite difference Eqs. (1) and (2) with the corresponding Dirac-type PDEs defined by
Eqs. (31) and (17).

While the numerical integration of the QW finite difference equations poses no particular problem, controlling the error
onnumerical solutions of PDEs is amore involvedmatter. This hurdle canbe avoided in the special casewhere themass terms
cancels, because one can then compare the numerical solutions of the QW finite difference equations with the numerical
solutions of the ODEs defining the characteristics of the massless Dirac PDE (see Section 6.3).

We have chosen to use Fourier pseudo-spectral methods [34], for their precision and ease of implementation. We
therefore restrict ourselves to 2π-periodic boundary conditions. A generic field ψ(x) is thus evaluated on the n collocation
points xj = 2π j/n, with j = 0, n − 1 as ψj = ψ(xj). The discrete Fourier transforms are standardly defined as

ψ(xj) =

n/2−1
k=−n/2

exp(ikxj)ψ̂k

ψ̂k =
1
n

n−1
j=0

ψ(xj) exp(−ikxj). (38)

These sums can be evaluated in only n log(n) operations by using Fast Fourier Transforms (FFTs). Spatial derivatives of fields
are evaluated in spectral space by multiplying by i k and products are evaluated in physical space.

The original QW Eqs. (1) and (2) can also be simply cast in this setting, as the translation operator ψj → ψj±1 is
represented in Fourier space by ψ̂k → ψ̂k exp(±i k2π/n). In this setting, the continuous limit is automatically taken when
n is increased.

6.2. QWs in constant a uniform electric field

As explained in Section 2, the QWs and the Dirac equation exhibit a U(1) gauge invariance. All choices of gauge thus
correspond to the same physics. Within a pseudo-spectral code, the right gauge to work with a 1D constant uniform electric
field E is A0 = 0, A1 = −E T ; in particular, the other ‘natural choice’ A0 = −E X, A1 breaks the spatial periodicity condition.
In all QW simulations, the retained choice of gauge has been implemented by choosing the following numerical values:

α(T , X) = 0
ξ(T , X) = 1.1 T

ζ (T , X) =
π

2
θ(T , X) = 0.24.

We used initial data consisting of Gaussian wave packets of positive energy solutions to the free Dirac equation. The
Gaussian widths σX are such that they are well resolved within the used resolutions so that spectral convergence is ensured.

As discussed above (see end of Section 6.1) the QW and its Dirac continuous limit can be jointly simulated within the
same pseudo-spectral algorithm. This allows for a very simple, direct evaluation of the discrepancy between the QW and
the corresponding solution of the Dirac equation. This discrepancy can bemeasured by the relative difference δNrel between
the density of the QW and the density of the solution of the Dirac equation.
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Fig. 1. Relative difference between the density of the QW and the density of the solution of the Dirac equation δNrel =

< (NQW − ND)2 >/ < (ND) >

plotted at T = 100 versus ϵ = 1X in Log–Log representation. We have plotted the relative difference in the same conditions as in Fig. 2(a) but for five
different resolutions (i.e. value of ϵ): from the left n = 28 , 29 , 210 , 211 , 212 , 213 . The solid black line represents the expected ϵ1 scaling.

Fig. 2. Quantum simulation of Eqs. (1) and (2) representing a Dirac particle in a constant and static electric background (see Section 4.2 and Eq. (39)). The
initial condition is a Gaussian wave packet of positive energy solutions with width σX = 0.005 in (a), 0.01 in (b), 0.03 in (c), 0.08 in (d) and resolution
n = 29 .

Fig. 1 shows that such a typical relative difference scales as ϵ, as expected. Indeed, for a single time-step, the discrepancy
is theoretically of order ϵ2. Thus, after a fixed time T = O(ϵ−1), the discrepancy is of order ϵ−1ϵ2 = ϵ.

This result confirms that QWs can be used to simulate Dirac dynamics in constant electric field, as was done for example
in Refs. [35,36]. Both QW and Dirac dynamics are very rich, as exemplified by Fig. 2, which compare with Fig. 2 of Ref. [35]
and Fig. 3 of Ref. [36].
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Note that, as σX increases, the spatial dispersion of the wave packet also increases which makes the time evolution of
the density more complex. The solution which is initially a positive energy planar wave starts to oscillate between positive
and negativemodes under the action of the constant electric field displaying high-frequency Zitterbewegung in Fig. 2(c)–(d).
Offering new results of theDirac dynamics in the presence of an electric field is not the purpose of this article. Let us conclude
this section by offering instead a brief historical overview of the very large literature already existing on the topic.

In 1929, Klein studied a relativistic scalar particle moving in an external step function potential. He found a paradox that,
in the case of a strong potential, the reflected flux is larger than the incident flux although the total flux is conserved [37].
Sauter studied this problem for a Dirac spin 1/2 particle by considering a potential corresponding to a electric field with
constant value E0 on a given interval. He found an expression for the transmission coefficient of the wave through the
electric potential barrier from the negative energy state to positive energy states [38]. This remarkable phenomenon was
related, in 1936, to positron–electron pair creations by Heisenberg and his student Hans Euler [39].

Of course, in order to deal with anti-particles a massive reinterpretation of the Dirac equation theory is necessary [40],
leading to modern field theory and quantum electrodynamics. The modern formula for pair creation in a constant external
electric field was delivered, in 1951, by Schwinger [41]. It involves the same dominant exponential term exp(−π m2

ec
3

h̄eE ) that
was derived, 20 years before, by Sauter. A detailed review of these historical developments is given in the first sections of
Ref. [42].

6.3. QWs in Schwarzschild black hole

A Schwarzschild black hole is a spherically symmetric solution of the Einstein equation in vacuo. The corresponding 4D
metric reads, in dimensionless Lemaître coordinates (τ , ρ, θ, φ) [43]:

ds2 = dτ 2 −
rg
r

dρ2
− r2dΩ, (39)

where r(τ , ρ) = r1/3g
 3
2 (ρ − τ)

2/3
, dΩ = dθ2+(sin2 θ)dφ2. The event horizon is located at r = rg , that is,ρ = τ+(2/3)rg ,

and the singularity is located at r = 0 i.e. ρ = τ . The exterior of the black hole is the domain r > rg . The range of variations
for the Lemaître coordinates is τ ≥ 0, ρ ≥ τ , that is, r(τ , ρ) ≥ 0), 0 ≤ θ ≤ π, 0 ≤ φ < 2π .

Because of the spherical symmetry, a point mass which starts its motion radially will go on moving radially. Radial
motion can be studied by introducing the 2D metric g , also singular at r = 0, with covariant components gττ = 1, gρρ =

−rg/r, gτρ = gρτ = 0. The null geodesics of g are defined by dτ = ±

rg/r(τ , ρ)

1/2 dρ. Note that the 2D projection of the
horizon on the (τ , ρ)-plane coincides with a null geodesics of g .

We now identify the dimensionless time T with the time coordinate τ and the dimensionless space variable X with λρ,
where λ is an arbitrary strictly positive real number (see Fig. 3). The ‘radius’ r can then be expressed as a function of T and X:

r(T , X) =


3
2


X
λ

− T
2/3

r1/3g , (40)

and the components of g in the coordinate basis associated to T and X are gTT = 1, gXX = −rg/(λ2r), gTX = gXT = 0. Note
that the condition ρ ≥ τ transcribes into X ≥ λT .

Let D be the domain where −gXX ≥ 1. This domain is characterized, in (T , X) coordinates, by the condition

X ≤ λT +
2

3λ2
rg . (41)

In D the metric g can be identified with the metric G (see Eq. (30)). This identification defines an angle θ which depends on
T and X by

(cos θ)(T , X) = λ


r(T , X)

rg
. (42)

A QW in D can be defined by complementing this choice of theta by a choice of the other three angles. All simulations were
done with

α(T , X) = 0
ξ(T , X) = π

ζ(T , X) =
π

2
.

(43)

This QW has already been considered in Ref. [32].
The condition defining D can be rewritten as r ≤ rg/λ2, The domain D thus includes, for all λ, the singularity located at

r = 0. For λ > 1, rg/λ2 < rg and D is then entirely located inside the horizon. For λ = 1,D coincides with the interior of
the horizon, and D extends outside the horizon for λ < 1.
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Fig. 3. (Color online) Time evolution density of the QW vs. null geodesics (solid curves) of the 2D Schwarzschild metric with λ = 1. The initial condition
is Ψ (0, X) =

√
N0(X)(bL + IbR) with an initial Gaussian density N0 of σX = 0.5 centered on X0 = 50.5. The singularity is represented by the dotted and

dashed line on the left and the horizon (which is a null geodesic) is represented by the dashed line. The two branches of the QW which starts inside the
horizon end up on the singularity. The (red) solid line represents the limit of the definition domain D of the QW. In (a1) note that the right branch of the
QW lags slightly behind the null geodesic when approaching the r = 0 singularity. The agreement between the geodesics and the density profile of the
walk gets better as we increase the resolution of the simulation: 200 gridpoints in (a1), 800 in (a2) and 1600 in (a3).

Ref. [32] offers plots of the spatial density |Ψ (T , X)|2 for several initial conditions. These plots confirm that the QW
follows to a great accuracy the radial null geodesics of the Schwarzschild metric, except perhaps as the QW approaches the
singularity. This phenomenon is explored in detail by Fig. 3. The plots reveal the existence of interesting ‘interferences’ near
the singularity (see (a1) and (a2)), which seem to disappear as ϵ tends to zero.

7. Conclusion

We have revisited the continuous limit of discrete time QWs on the line, keeping every step or only one step out of two.
We have identified all families of walks which admit a continuous limit and obtained the associated PDEs. In all cases but
one, the PDE describes the propagation of a Dirac fermion coupled to an electric field and, possibly, to a general relativistic
gravitational field. We have also illustrated these conclusions by new numerical simulations.

Let us now briefly discuss the above results.
Asmentioned in the introduction, all above literal computations are based on a newmethod first introduced in Refs. [30–

32,29]. New to this article is all the material presented in Section 5. The Dirac equation obtained in Section 4 has already
been presented in Refs. [30–32,29], but without the important discussion of the U(1) gauge invariance. The discrete gauge
invariance presented in Section 2 is also new. Let us mention in this context that QWs coupled to a uniform and constant
electric field have also been considered theoretically and experimentally in Refs. [44,45]. These so-called ‘electric walks’ are
particular cases of the walks considered in Refs. [30–32,29] and in Section 4 of the present article. In Ref. [44], the constant
and uniform electric field is put by hand on the equations of motion of the walks. In contrast, the approach developed in
the present article makes it clear that the electric field is simply a manifestation of the time-and space-dependence of the
angles defining the walks. This approach also allows for a straightforward generalization to nonconstant and/or nonuniform
electric fields (Sections 4 and 5), and to gravitational fields 5. The electric and gravitational fields coupled top the QWs thus
clearly appear as synthetic gauge fields [46].
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Experiments with time- and space-dependent coins are now possible thanks to at least two recently developed
techniques [47,48]. For example, one can use integrated waveguide circuits [47] where the quantum coin and step operator
at a given point and time corresponds to a precise beamsplitter that can be individually set. These techniques could be used
to implement experiments where arbitrary electric and/or gravitational fields are simulated by properly choosing the time-
and space-dependence of the angles α, ξ and θ .

The work presented in this article should be extended in several directions. One should first determine how the new
method works, and what it delivers, when one keeps only one step out of n for arbitrary n > 2. Extensions to higher
dimensional space and/or to higher dimensional Hilbert space are also desirable. In particular, the fact that some QWs on
the line can be interpreted as the propagation of charged massless Dirac fermions suggests that QWs could be useful in
modeling charge transport in graphene [49,50], both natural and artificial [51,52]. Let us note that the inherent discreteness
would give QWs a strong computational advantage over the more traditional models based on PDEs. Finally, determining
systematically the continuous limit of nonlinear QWs [53] and of walks in randommedia [54] should also prove interesting.
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