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Introduction

The aim of this short set of lectures is to make available in a self-contained form
the basics of classical turbulence theory. A first section is concerned with orders
of magnitude. How can one determine what the size of a parachute on a Martian
probe should be? The second section is devoted to exact results. It culminates
with the demonstration of the four-fifth law obeyed by the third order structure
function. Finally, the last section is about intermittency. The multifractal scaling
behavior of the pdf of velocity increments and the associated structure functions
is investigated. A new double asymptotic relation between pdf and moments is
derived.

1 Orders of magnitude and basic phenomenology

Imagine that you are faced with the following physical situation: a viscous fluid
is stirred by a device that drives it with typical speed variations δuI at length
scale ℓI .

An important physical parameter of the flow is its Mach number MI =
uI/csound, the ratio of the stirring speed to the sound velocity csound =
√

(

∂p
∂ρ

)

S
. In these lectures, we will restrict our attention to low-Mach number

flows, in other words we will be concerned with sub-sonic turbulence.
Low-Mach number flows are described [1] by the incompressible Navier-

Stokes equations
{

∂tu + (u.∇)u = − 1
ρ∇p + ν∆u

div u = 0
(1)

where ρ is the (constant) density of the fluid, p the pressure and ν the kinematic
viscosity. The pressure field is determined at all times by div u = 0. Indeed, this
condition yields

∆p = −ρ div((u · ∇)u) (2)

a Poisson equation for p with right hand side computable from u.
An important characteristic of a viscous flow is its Reynolds number

RI =
uIℓI

ν
.

This number estimates the relative importance of the inertial terms (u.∇)u with
respect to viscous effects ν∆u. Indeed, the first term contains two velocities and
one spatial derivative while the second term contains the viscosity, one velocity
and two spatial derivatives. The order of magnitude of their ratio is thus (velocity
× length)/viscosity.

We now suppose that the stirring is strong in the sense that RI >> 1.
This very large Reynolds number RI >> 1 and small Mach number (in prac-
tice MI < 1/3) regime is called “fully developed incompressible turbulence”.
Experimentally, such a flow is extremely complex. The aim of the following con-
siderations is to obtain a quantitative understanding of the order of magnitude
of the turbulent velocity fluctuations.
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1.1 The Richardson cascade

Let us suppose that our system is in a statistically stationary state. The stirring
device is communicating energy to the flow. What happens to this energy? Once
communicated to the fluid, in the form of kinetic energy Ecin = 1

2

∫

ρu2d3x, it
is conserved by the nonlinear terms of the Navier-Stokes equation. The viscous
terms will dissipate it into heat, with power

Wd =
ν

2

∫

d3x
∑

ij

(

∂ui

∂xj
+

∂uj

∂xi

)2

.

However, this dissipation cannot take place at the injection scale as the Reynolds
number associated to this scale is very large and thus the dissipation very small.

One is thus led to the physical image of the “Richardson cascade” [2]. The
energy injected in the fluid at scale ℓI “cascades” down to smaller scales. This
process stops when scales ℓd small enough for the energy to be dissipated into
heat are reached. One can picture this cascade as a succession of eddies insta-
bilities happening at scales ℓI > ℓ > ℓd.

Using the concept of Richardson cascade, it is possible to understand why a
modification of viscosity in a turbulent flow has no effect on its overall energy
dissipation. This rather surprising fact is well supported experimentally. The
point is that when ν is modified, it is the number of steps in the cascade that is
changed. The small scales of the flow just adapt themselves in order to dissipate
the energy injected at large scale by the stirring.

1.2 Kolmogorov scaling

In 1941, Kolmogorov [3] [4] [5] found quantitative expressions for the intensity
of fluid motions at scale ℓ and for the dissipation scale ℓd.

Let us first remark that the Navier-Stokes equation is invariant under Galilean
transformations: if u(x, t) is a Navier-Stokes solution, then u(x − u0t, t) + u0 is
also a solution. A constant advection has thus no dynamical effect on the evo-
lution of the flow. Accordingly, we define the intensity of the motions at scale ℓ
to be the typical velocity variation over distance ℓ.

Furthermore, at scales much smaller than ℓI , the flow can be considered
homogeneous. Quantities such as kinetic energy, or dissipated power are exten-
sive. This just means that, if the statistical properties of the velocity u(x, t) are
homogeneous, the total kinetic energy Ec and the dissipated power Wd are pro-
portional to the total mass of fluid. We will thus normalize these quantities by
the total mass.

We will denote by ε the energy injection rate per unit mass (also equal to
the cascade and dissipation rates). The dimension of ε is:

[ε] = W/kg = L2T−3.



4 Marc BRACHET

Our turbulence is thus characterized by three parameters: the injection scale ℓI ,
the injection velocity δuI and the viscosity of the fluid ν. These parameters have
dimensions [ℓI ] = L, [δuI ] = LT−1 and [ν] = L2T−1.

The Richardson cascade leads us to a first hypothesis:

– H0 : ε is independent of ν.

The only combination of δuI and ℓI with a correct dimension is δu3
I/ℓI . Thus

(the symbol ∼ meaning proportional)

ε ∼ δu3
I

ℓI
. (3)

The scaling law for δu(ℓ) will be obtained using the following two hypotheses:

– HI : δu(ℓ) does not depend on ν (for ℓd < ℓ < ℓI)
– H2 : δu(ℓ) is a function of only ε and ℓ.

Dimensional analysis yields

δu(ℓ) ∼ (εℓ)1/3. (4)

Using (3), (4) can be written

δu(ℓ) ∼ δuI

(

ℓ

ℓI

)1/3

(5)

Let us remark that H2 amounts to say that δu(ℓ) is a function of ℓI only through
ε. Or, in other words, that there is no way by observing at scale ℓ to distinguish
between two turbulences having the same ε but driven at two different injection
scales.//

We can compute the Reynolds number associated with motions at scale ℓ

Rℓ ∼
δu(ℓ)ℓ

ν
=

ε1/3ℓ4/3

ν
.

Viscous dissipation will take place at scales ℓd such that Rℓd
∼ 1. It follows that

ℓd ∼ ν3/4ε−1/4. (6)

Using (3), (6) can also be written

ℓd ∼ ℓIR
−3/4
I . (7)

To end this section, let us remark that the scaling laws (3) together with (4) or
(5) and (6) or (7) are in good agreement with experiments. They can be used
to get order of magnitude estimates for real turbulence, as we now proceed to
show.
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1.3 Elementary examples

Turbulent dispersion Consider the time evolution of the separation of two
particles initially separated by ℓ0. Kolmogorov’s law gives, for ℓd ≪ ℓ ≪ ℓI ,

dℓ

dt
∼ (εℓ)1/3.

Integrating this equation, one gets

ℓ2/3 − ℓ
2/3
0 ∼ ε1/3t.

Thus the diameter of a suspension of particles evolves as

ε1/2t3/2.

It is interesting to note that this law was established 15 years before Kol-
mogorov’s law [6].

Terminal velocity in free fall Consider an object of size ℓ and mass M
in free fall (the gravity is g) in a fluid of density ρ and kinematic viscosity ν.
The terminal speed is obtained by equaling the weight Mg with the drag. In a
laminar regime, the drag force is proportional to speed and viscosity. Dimensional
analysis gives: [ν] = L2T−1, [F ] = MLT−2, [ρ] = ML−3 and thus Fvisc ∼ νρℓv.
In this laminar regime, one has

vvisc ∼ Mg

νρℓ

(for a spherical object, there is a factor 6π in the denominator that is beyond
dimensional analysis).

In the turbulent regime, the law ε ∼ v3

ℓ tells us that the power is proportional
to the cube of velocity. As the power is the product of force by velocity, it follows
that the force is proportional to the square of velocity. The dimensionally correct
expression is:

Fturb ∼ ρℓ2v2.

It follows that:

vturb ∼
√

Mg

ρℓ2
.

The ratio
Fturb
Fvisc

=
ρℓ2v2

νρℓv
=

ℓv

ν

is simply the Reynolds number.

Let us compute the order of magnitude for the terminal speed of a para-
trooper. The order of magnitudes are: ρair ∼ 1Kg/m3, M ∼ 100 Kg, g ∼ 10
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m/s2, ℓ ∼ 1m (without parachute). One finds vturb ∼
√

1000 = 33m/s, or about
120 Km/h. Taking ℓ = 10 m (after opening the parachute) one finds a speed of
3,3 m/s. These orders of magnitude are correct (the real free fall speed is about
twice as big).
The Reynolds number in free fall is about (νair ∼ 10−5m2/s)

R =
1 × 33

105
∼ 3.106.

Note that in these conditions the laminar formula gives a ridiculous result for
the terminal speed (of the order of the speed of light).

Parachutes on Mars The previous estimates for free fall terminal speed have
practical engineering applications. This is illustrated by the following discus-
sion on the working of the parachutes of NASA’s Martian probe Pathfinder.
This section was extracted from the JPL Pathfinder site on Internet at http://-
mars.sgi.com/mpf/faqs edl.html#parachute. The answers are by Rob Manning.

Q. If the Mars atmosphere is less than 1% than that of Earth, how can a
parachute of the size you are using be sufficient? It would seem to me that you
would need a parachute close to 1000’ wide to achieve the same effect. Would
you please explain the dynamics of placing a lander on Mars, and why a small
parachute would work on Mars as it does on Earth?

A. You ask a very insightful question. The bottom line is you’re right,
parachutes this small aren’t sufficient on Mars! On Mars Pathfinder, as on
Viking, we use a “small” 40.5 ft (12.5 m) chute. It was scaled so that, with
our lighter lander, it does about as much for the our descent speed as does
Viking’s. Our terminal velocity seconds before getting to the ground (where the
atmosphere is “thickest”) is still about 65 m/s (146 mph)!!

You are correct, it would indeed take a a larger chute to get slower “normal”
Earth-like terminal velocities. Our chute on Mars is about the equivalent of a
chute 38 times smaller in area on Earth (6.5 ft across!), and this includes the
effect of Mars’ lower gravity! A chute that could lower our lander to the Martian
ground at a gentle 10 m/s (22 mph) would have to have an area about 42 times
larger than our “little” chute (or a diameter of 263 ft)! That’s 42 times the mass
(and volume) of our 10 kg chute, or 420 kg, more than the mass of our entire
lander! It wouldn’t fit! We would need to have a “gossamer” (ultra-light weight
material) parachute and then figure out how to get it open at high speeds!

This is why we turned to solid rockets to stop our lander just before we hit
the ground. Viking, too, used liquid rockets to slow the terminal decent. Also
Pathfinder’s airbags protect the lander from the local terrain variations (bumps,
craters, rocks, hills, etc.) after the rockets do their thing.

So why do we do we use a chute at all? Well, parachutes might not be all
that good a laying a lander gently down on the Martian surface, but they do
a spectacular job of braking something moving very fast. Remember, the drag
FORCE a chute generates (therefore its deceleration), is proportional to the
square of the velocity and only linearly proportional to the atmospheric density;
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so even a thin atmosphere and a “small” chute will do much to slow our entry
vehicle down once the heatshield’s aerobraking has been mostly achieved.

This is also true of heatshield, our entry vehicle (like Viking’s) enters the
upper atmosphere at 7 km/s (or more than 15,000 mph!). Most of this is reduced
by the friction with the heatshield. But even 2 minutes later, our vehicle is still
screaming in at nearly 400 m/s (900 mph) when the parachute opens before
slowing down to 65 m/s near the ground. I’d say that reducing our velocity by
a factor of 6 (a factor of 36 in kinetic energy), isn’t all that bad for only 10 kg
of extra payload mass, wouldn’t you?

So, the short answer is, you’re right, parachutes don’t work on Mars like
they do on Earth (neither do airbags, but that is another story), but they do a
great job when you need to slow down something that is whipping through the
Martian atmosphere FAST!

2 Exact results

In this section, we will follow the methods and notations of references [1], [7]
and [8].

2.1 General framework

A popular experimental setting is to take velocimetry data, using a hot-wire
probe, in a turbulent flow with a large mean velocity. This is mostly done in
wind tunnels, using grid generated turbulence.

Calling u the velocity on the probe and uT = u− 〈u〉 the turbulent velocity
fluctuations. The turbulence rate of such a flow is defined as the ratio of the
fluctuations (r.m.s.) to the mean velocity.

τ =

√

〈u2
T 〉

|〈u〉| ·

In typical grid turbulence τ ∼ 10−2. This small value of τ allows for two simpli-
fications.

First, as the hot-wire probe is sensitive to the modulus of velocity, it is the
longitudinal fluctuations that are measured. Indeed, writing uT = uT‖ + uT⊥

with uT⊥ · 〈u〉 = 0 one gets

(〈u〉 + uT‖ + uT⊥)2 = 〈u〉2 + 2〈u〉uT‖ + u2
T‖ + u2

T⊥

which shows that the transverse fluctuations have contributions that are second-
order in τ and thus negligible.

Second, making use of the Galilean invariance, the temporal velocimetry
series, taken at a fixed location, can be translated into spatial measurements. To
do that, we make a Galilean transformation to the frame where 〈u〉 = 0. In this
frame, one has

uprobe(t) = 〈u〉 + uT (−〈u〉t, t),
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where the function uT is defined in the mobile referential, whose spatial origin is
on the probe at t = 0. The Taylor hypothesis amounts to consider that, provided
that the time interval is not too large, one can consider that the turbulence is
temporally frozen. In this way, one can measure the space variations of the tur-
bulent velocity.

The signal is then analyzed in term of its increments. The measured incre-
ments u(t + δt) − u(t) are considered as longitudinal spatial variations of the
velocity

δu‖ = u‖(x + ℓ) − u‖(x) with ℓ = −|〈u〉|δt

The results are presented as longitudinal structure functions of order p defined
as

Sp(ℓ) = 〈(δu‖)
p〉.

The goal of the rest of this section is to derive exact results related to the
second and third order structure functions.

2.2 The Kármán-Howarth-Monin relation

We want to consider stationary turbulence. We thus need some device to inject
energy. Mathematically, the simplest method is to add to the Navier-Stokes
equations a volume force ρf(x, t), that acts only at large scale. We thus consider
the system defined by equations

{

∂tu + (u · ∇)u = 1
ρ∇p + f

div v = 0
(8)

As ρf is a volume force, f is a local acceleration, i.e. [f ] = LT−2. We now make
three hypotheses:

– H1 - We suppose that f(x, t) is stationary and homogeneous, which means
that its statistical properties are invariant by time and space translation.

– H2 - We admit that the Navier-Stokes equations have a statistically homo-
geneous solution (not in general stationary, in order to be able to discuss the
decay case f = 0).

– H3 - We suppose that the quantities that we are about to define and ma-
nipulate exist and are finite. Let us remark that we do not, at this stage,
impose isotropy.

Defining the velocity increments

δv(r, ℓ) = v(r + ℓ) − v(r),

we are interested in the quantity

〈|δv2(r, ℓ)|δv(r, ℓ)〉
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where the brackets denote an ensemble average (the average over the realizations
of f). Because of homogeneity, this quantity is a function of ℓ only and not of r.

Denoting by vi, fi, r
′, v′i, ∂i, ∂

′
i et ∇ℓ respectively vi(r), fi(r), r + ℓ, vi(r +

ℓ), ∂
∂x , ∂

∂x′

i

and ∂
∂ℓi

the homogeneity implies for all ensemble average:

∂i〈(•)〉 = −∂′
i〈(•)〉 = −∇ℓi

〈(•)〉. (9)

Starting from the Navier-Stokes equations (8) one obtains:

∂t
1
2 〈viv

′
i〉 = − 1

2∂j〈vivjv
′
i〉 − 1

2∂′
j〈v′iv′jvi〉

− 1
2ρ〈v′i∂ip〉 − 1

2ρ〈∂′
ip

′vi〉
+ 1

2 〈v′ifi〉 + 1
2 〈vif

′
i〉

+ 1
2ν(∂jj + ∂′

jj)〈viv
′
i〉

(10)

where we have used the incompressibility to write the inertial terms in the first
line. We have also commuted derivations and averages. The terms in the second
line are zero, because of incompressibility. The terms involving the force can be
grouped, using homogeneity, under the form:

〈

v(r) · f(r + ℓ) + f(r − ℓ)

2

〉

· (11)

In the same way, the viscous term can be written

ν∇2
ℓ
〈v(r)v(r + ℓ)〉. (12)

The inertial terms can be expressed using 〈|δv|2δvj〉 as follows:

〈|δv|2δvj〉 = 〈(v′i − vi)(v
′
i − vi)(v

′
j − vj)〉

= −〈v′iv′ivj〉 + 〈viviv
′
j〉

− 2〈viv
′
iv

′
j〉 + 2〈viv

′
ivj〉

+ 〈v′iv′iv′j〉 − 〈vivivj〉
(13)

The last two terms simplify, because of homogeneity.
Let us now evaluate ∇ℓj

〈|δv|2δvj〉. Using incompressibility, the first two
terms have zero contribution. We thus find that:

∇ℓj
〈|δv|2δvj〉 = −2∂′

j〈viv
′
iv

′
j〉 − 2∂j〈viv

′
ivj〉 (14)

which is four times the inertial terms of (10).

Regrouping (10), (11), (12) and (14) we finally get the Kármán-Howarth-
Monin relation:

ε(ℓ) ≡ − 1
4∇ℓ · 〈|δv(ℓ)|2δv(ℓ)〉

= −∂t
1
2 〈v(r) · v(r + ℓ)|〉

+ 〈v(r) · f(r+ℓ)+f(r−ℓ)
2 〉

+ ν∇2
ℓ 〈v(r) · v(r + ℓ)〉.

(15)

The quantity ε(ℓ) that was just defined can be interpreted in the following way.

Starting from the Navier-Stokes equation, one computes −∂t
1
2 〈v(r)·v(r+ℓ)〉.

there is a contribution from the force and one from the nonlinear terms. ε(ℓ) is
the contribution coming from the nonlinear terms.
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Energy budget in spectral space Let us take the Fourier transform with
respect to ℓ of the Kármán-Howarth-Monin relation.

1
(2π)3

∫

d3ℓeiℓk∂t
1
2 〈v(r) · v(r + ℓ)〉 = 1

(2π)3

∫

d3ℓeiℓk
[

1
4∇ℓ 〈|δv(ℓ)|2δv(ℓ)〉

+ν∇2
ℓ
〈v(r)v(r + ℓ)〉

+
〈

v(r) · f(r+ℓ)+f(r−ℓ)
2

〉]

(16)

Defining,
E(k) = 1

(2π)3

∫

d3ℓeiℓk 1
2 〈v(r) · v(r + ℓ)〉

F(k) = 1
(2π)3

∫

d3ℓeiℓk〈v(r)f(r+ℓ)+f(r−ℓ)
2 〉

T (k) = 1
(2π)3

∫

d3ℓeiℓk 1
4∇ℓ 〈|δv(ℓ)|2δv(ℓ)〉

(17)

(16) can be written

∂

∂t
E(k) = T (k) − 2νk2E(k) + F(k) (18)

This equation expresses the energy budget in spectral space. Indeed, the defini-
tion of E(k) (17) is the 3D generalization of the Winer-Kitchtine theorem that
states that the spectral energy density of a signal is the Fourier transform of its
correlation function. Indeed, using the relation

∫

d3keikℓ = (2π)3δ3(ℓ) (19)

we find that ∫

d3kE(k) =
1

2
〈v2〉. (20)

The relations we have obtained up to now have been derived from the Navier-
Stokes equations and homogeneity. They are thus valid in non-isotropic situa-
tions. In an isotropic case (for instance in grid turbulence) they can be greatly
simplified. In particular, the quantities present in (18) are not in this case func-
tions of the direction of the vector k. In the isotropic case, it is customary to
define the angle-averaged densities

E(k) = 4πk2E(k)
F (k) = 4πk2F(k)
T (k) = 4πk2T (k)

(21)

so that one can write, for instance,
∫ ∞

0 E(k)dk = 1
2 〈v2〉. In the isotropic case,

(18) reduces to
∂

∂t
E(k) = T (k) − 2νk2E(k) + F (k). (22)

The terms in this equations are called the spectrum of respectively, energy trans-
fer, energy dissipation and forcing.

In order to have a quantitative definition of the “Richardson cascade rate”
one defines the energy flux by

π(k) = −
∫ k

0

dk T (k) (23)
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so that T (k), which is the part stemming from the nonlinearities of the time
variation of E(k), can be written as

T (k) = − ∂

∂k
π(k) (24)

Regrouping (17), (18), (21) and (23) one gets the following expression for the
energy flux:

π(k) =
1

(2π)3

∫

|k|<k

d3k

∫

d3ℓeikℓ

[

−1

4
∇ℓ〈|δu(ℓ)|2δu(ℓ)

]

(25)

This relation justifies the notation ε(ℓ) that was adopted in the preceding section.
Let us remark that (25) is also valid in the anisotropic case, if the energy budget
is written in the cumulated form

∂

∂t

∫

|k|<k

d3kE(k) + π(k) =

∫

|k|<k

d3k[F(k) − 2νk2E(k)]. (26)

The material of the following section will allow us to write (25) in a simpler way.

Isotropic case The general formulae defining the 3D Fourier transform

f(ℓ) =
∫

d3ke−ikℓf̂(k)

f̂(k) = 1
(2π)3

∫

d3ℓeikℓf(ℓ)
(27)

can be reduced to 1D integrals in the case where the function f depends only of
ℓ. Indeed, in this case the definitions (27) give, in spherical coordinates k, θ, ϕ,

f(ℓ) =
∫ ∞

0 dk
∫ π

0 kdθ
∫ 2π

0 k sin θdϕe−ikl cos θ f̂(k)

f(ℓ) =
∫ ∞

0
4πk2dk

∫ π

0
dθ
2 sin θe−ikℓ cos θf̂(k)

(28)

or, doing the θ integral

f(ℓ) =

∫ ∞

0

4πk2dk

[

e−ikℓ cos θ

2ikℓ

]π

0

f̂(k) (29)

and thus, finally

f(ℓ) =

∫ ∞

0

4πk2dk
sin(kℓ)

kℓ
f̂(k) (30)

the inverse relation is

f̂(k) =
1

(2π)3

∫ ∞

0

4πℓ2dℓ
sin(kℓ)

kℓ
f(ℓ) (31)

The relations (30) and (31) deduced from (27) can also be written, setting

F (k) = 4πk2f̂(k)

f(ℓ) =
∫ ∞

0
dk sin(kℓ)

kℓ F (k)
F (k) = 2

π

∫ ∞

0
dℓ kℓ sin(kℓ)f(ℓ)

(32)
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These relations allow the expression of π(k) from (25) under the form

π(k) =
2

π

∫ k

0

dk

∫ ∞

0

dℓ kℓ sin(kℓ)ε(ℓ) (33)

or, doing the integral over k

π(k) =
2

π

∫ ∞

0

dℓ
sin(kℓ) − kℓ cos(kℓ)

ℓ
ε(ℓ). (34)

This integral can be put under the form

π(k) =
2

π

∫ ∞

0

dℓ

[

sin(kℓ)

ℓ
− d

dℓ
sin(kℓ)

]

ε(ℓ), (35)

integrating the last term by part, one finally gets the relation

π(k) =
2

π

∫ ∞

0

dℓ
sin(kℓ)

ℓ
(1 + ℓ∂ℓ)ε(ℓ) (36)

2.3 Isotropic structure functions

The Kármán-Howarth-Monin relation involves correlation functions and a com-
bination of derivatives of the third order structure function. In order to obtain
relations that can be used in an experimental context, where only longitudinal
components can be obtained, one must use isotropy in order to re-express ev-
erything in term of those measurable components.
The computation of the third order structure function being rather involved,
we begin by computing the second order structure function. These second order
results will allow us to define the Taylor scale in terms of measurable quantities.

Second order structure functions If homogeneity and isotropy are assumed
a number of simplifications can be obtained. The second order structure function

Bij(ℓ) = 〈(v′i − vi)(v
′
j − vj)〉

(with the same notations than in section (2.2)) cannot depend, because of
isotropy on any special spatial direction. The only vector that can be present in
its expression is ℓ. Calling ℓ0

i = ℓi

ℓ the unitary vector in the direction of ℓ, the
most general form for Bij is

Bij = A(ℓ)δij + B(ℓ)ℓ0
i ℓ

0
j . (37)

Setting

bij = 〈viv
′
j〉 (38)

the definition of Bij gives

Bij = 〈vivj〉 + 〈v′iv′j〉 − bij − bji. (39)
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Using the relations

〈vivj〉 = 〈v′iv′j〉 =
1

3
〈v2〉δij (40)

and

bij(ℓ) = bji(−ℓ) = bji(ℓ) (41)

one gets

Bij =
2

3
〈v2〉δij − 2bij. (42)

On the other hand, incompressibility implies

∂

∂ℓi
Bij = 0 (43)

Using the relations

∂ℓ

∂ℓk
= ℓo

k et
∂ℓ0

i

∂ℓk
=

1

ℓ
(δik − ℓ0

i ℓ
0
k) (44)

or
∂

∂ℓi
≡ ℓ0

i

∂

∂ℓ
+

1

ℓ
(δik − ℓ0

i ℓ
0
k)

∂

∂ℓ0
k

(45)

(37) gives

ℓ0
j(A

′(ℓ) + B′(ℓ)) + 2ℓ0
j

B(ℓ)

ℓ
= 0 (46)

or

A′(ℓ) + B′(ℓ) +
2

ℓ
B(ℓ) = 0. (47)

hence,

B(ℓ) +
1

2
ℓ∂ℓ(A + B) = 0. (48)

So that, defining the longitudinal and transverse components as

A + B = Bℓℓ

A = Btt
(49)

one gets

Bℓℓ − Btt +
1

2
ℓ∂ℓBℓℓ = 0 (50)

or

Btt = (1 +
1

2
ℓ∂ℓ)Bℓℓ (51)

we thus find that, for ℓ ≪ ℓd
Bℓℓ = aℓ2, and

Btt = 2aℓ2 (52)
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Taylor scale these expressions can be used to relate a to the energy dissipation
ε.

The relation ε = 〈1
2ν

(

∂vi

∂xj
+

∂vj

∂xi

)2

〉 gives

ε = ν

[

〈 ∂vi∂vi

∂xj∂xj
〉 + 〈 ∂vi

∂xj

∂vj

∂xi
〉
]

(53)

and (37) yields

〈viv
′
j〉 = 〈vivj〉 −

1

2
Bij (54)

thus, using (49), (51), and (52) gives

〈viv
′
j〉 = 〈vivj〉 −

[

aℓ2δij −
a

2
ℓiℓj

]

(55)

Taking into account the relations

∂

∂x′
i

=
∂

∂ℓ
et

∂

∂xi
= − ∂

∂ℓi
(56)

one has

〈 ∂vi

∂xk

∂v′j
∂x′

ℓ

〉 = +
∂2

∂ℓk∂ℓℓ
[aℓ2δij −

a

2
ℓiℓj ] (57)

or

〈 ∂vi

∂xk

∂v′j
∂x′

ℓ

〉 = a

[

2δkℓδij −
1

2
(δikδjℓ + δjkδiℓ

]

(58)

The first term of (53) is obtained in the limit ℓ → 0 as j → 1, ℓ → k

νa
∑

i,k

[2 − δ2
ik] = νa[18 − 3] = 15νa (59)

The second term is obtained by setting j → k, ℓ → i

νa
∑

i,k

[2δ2
ik − 1

2
(δ2

ik + 1)] = νa
∑

i,k

[

3δik − 1

2

]

= 0 (60)

One thus find
ε = 15νa. (61)

(52) can thus be written
Bℓℓ = 1

15
ε
ν ℓ2

Btt = 2
15

ε
ν ℓ2 (62)

Defining the Taylor scale λ as

Bℓℓ = v2
rms

ℓ2

λ2
(63)

with
vrms =

√

〈v2〉 (64)
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on gets
ε = 15νv2

rms/λ2 (65)

or

λ =

√

15ν

ε
vrms (66)

In a Kolmogorov regime, one expects

ε ∼ u3
I/ℓI vrms ∼ uI (67)

and

λ ∼
√

νu2
I

u3
I/ℓI

= ℓI

√

ν

uIℓI
=

ℓI√
RI

(68)

The Taylor scale λ and the velocity urms can be used to define a Reynolds
number based on “internal” scales Rλ = urmsλ

ν , in a Kolmogorov regime, one
has Rλ ∼

√
RI . Rλ is extensively used in the experimental literature.

Third order structure functions We now turn our attention to third or-
der structure functions. To wit, let us consider the quantities (with the same
notations than in section (2.2))

bij,m = 〈vivjv
′
m〉 (69)

because of isotropy, bij,m must be a function of δij , ℓ0
i ≡ ℓi

ℓ and of ℓ. Taking into
account the i, j symmetry, the most general form for bij,m is

bij,m = C(ℓ)δijℓ
0
m + D(ℓ)(δimℓ0

j + δjmℓ0
i ) + F (ℓ)ℓ0

i ℓ
0
jℓ

0
m (70)

the incompressibility implies
∂′

mbij,m = 0 (71)

to compute the divergence, let us recall the relations

∂ℓ
∂ℓk

= ℓ0
k

∂ℓ0i
∂ℓk

= 1
ℓ (δik − ℓ0

i ℓ
0
k)

(72)

which are obtained by computing the derivatives of ℓ =
√

ℓ2
i , (72) implies in

particular
∂ℓ0i
∂ℓi

= 2
ℓ et ℓ0

i
∂ℓ0j
∂ℓi

= 0.

Using these expressions, (71) yields

C′(ℓ)δij + 2
ℓ C(ℓ)δij

+2D′(ℓ)ℓ0
i ℓ

0
j + D(ℓ)2

ℓ (δij − ℓ0
i ℓ

0
j)

+F ′(ℓ)ℓ0
i ℓ

0
j + F (ℓ)

[

2
ℓ ℓ0

i ℓ
0
j

]

= 0
(73)

or

[C′ +
2

ℓ
(C + D)]δij +

[

(2D + F )′ +
2(F − D)

ℓ

]

ℓ0
i ℓ

0
j = 0. (74)
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These equations can be written under the equivalent form

[ℓ2(3C + 2D + F )]′ = 0 (by taking the trace)
C′ + 2

ℓ (C + D) = 0.
(75)

The only solution of the first equation compatible with a finite bij,m in ℓ = 0 is:

3C + 2D + F = 0 (76)

We can thus express D and F in function of C et C′, under the form:

D = −(C + ℓC′

2 )
F = ℓC′ − C.

(77)

Using these expressions, one gets

bij,m = Cδijℓ
0
m −(C + ℓC′

2 )(δimℓ0
j + δjmℓ0

i )
+(ℓC′ − C)ℓ0

i ℓ
0
jℓ

0
m.

(78)

This expression yields the value of any component of the third order structure
function

Bijm = 〈(v′i − vi)(v
′
j − vj)(v

′
m − vm)〉

Bijm = 2(bij,m + bjm,i + bmi,j).
(79)

One finds
Bijm = −2(ℓC′ + C)(δijℓ

0
m + δjmℓ0

i + δmiℓ
0
j)

+6(ℓC′ − C)ℓ0
i ℓ

0
jℓ

0
m

(80)

Using this general result, we can express the longitudinal third order structure
function as

S3(ℓ) = 〈(δv‖(ℓ))〉 = −6(ℓC′ + C) + 6(ℓC′ − C) (81)

thus
S3(ℓ) = −12C. (82)

The general result also yields the isotropic expression of

〈|δv|2δvm〉 = Biim

Biim = [−10(ℓC′ + C) + 6(ℓC′ − C)]ℓ0
m

Biim = [−4ℓC′ − 16C]ℓ0
m

(83)

thus
ε(ℓ) ≡ − 1

4∇ℓ〈|δv|2δv〉 = (2
ℓ + ∂ℓ)(ℓC

′ + 4C)
ε(ℓ) = ℓC′′ + 7C′ + 8C

ℓ .
(84)

This expression is homogeneous to C
ℓ , it can thus be cast under the form

(ℓ∂ℓ + α)(ℓ∂ℓ + β)
C(ℓ)

ℓ
= ℓC′′(ℓ) + (α + β − 1)C′(ℓ) + (α− 1)(β − 1)

C(ℓ)

ℓ
(85)

one finds, by identification

α + β = 8 , (α − 1)(β − 1) = 8 (86)



A Primer in Turbulence 17

thus

α = 3, β = 5. (87)

ε(ℓ) = (3 + ℓ∂ℓ)(5 + ℓ∂ℓ)
C(ℓ)

ℓ
(88)

Regrouping (82) and (88) one gets an expression that relates ε(ℓ) to the third
order longitudinal structure function.

ε(ℓ) = − 1

12
(3 + ℓ∂ℓ)(5 + ℓ∂ℓ)

S3(ℓ)

ℓ
(89)

The final expression for the energy flux in terms of the longitudinal third
order structure function is obtained by putting (89) into (36), one gets

π(k) =

(

− 1

12

)

2

π

∫ ∞

0

dℓ
sin(kℓ)

ℓ
(1 + ℓ∂ℓ)(3 + ℓ∂ℓ)(5 + ℓ∂ℓ)

S3(ℓ)

ℓ
(90)

This relation, together with (36) is what is needed to establish the four-fifth law,
as we will see in details in the next section.

2.4 The four-fifth law

Relation (90) can be used to obtain the 4
5 law. We need the following three

hypotheses:

– H1 the forcing term is acting only at small k
– H2 we can take the limit t → ∞, and in this limit (ν fixed) there is a finite

dissipation rate per unit mass.
– H3 we can then take the limit ν → 0, with a finite dissipation rate.

The energy budget relation (23) and (24)

∂E(k)

∂t
= −∂π(k)

∂k
− 2νk2E(k) + F (k) (91)

give, using H2

0 = −∂π(k)

∂k
− 2νk2E(k) + F (k). (92)

Integrating this relation over k one obtains

εinjection =

∫ ∞

0

E(k)dk = εd = 2ν

∫ ∞

0

k2E(k)dk (93)

Using H1 one gets

F (k) = 0 for k ≫ kI (94)

And H3 gives (putting ε = lim ν → 0 εd)

π(k) = ε for k ≫ kI . (95)
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The expression of π(k) (90) is of the form

π(k) =
2

π

∫ ∞

0

dℓ
sin(kℓ)

ℓ
G(ℓ) (96)

with

G(ℓ) = − 1

12
(1 + ℓ∂ℓ)(3 + ℓ∂ℓ)(5 + ℓ∂ℓ)

S3(ℓ)

ℓ
(97)

the large k behavior of π(k) is dominated by the small ℓ behavior of G(ℓ). Indeed,
putting x = kℓ one finds

π(k) =
2

π

∫ ∞

0

dx
sin x

x
G

(x

k

)

(98)

and thus

lim
k→∞

π(k) = G(0)
2

π

∫ ∞

0

dx
sin x

x
. (99)

the integral
∫ ∞

0
dx sin x

x can be computed as

1

2

∫ +∞

−∞

dx
1

2

∫ +1

−1

dkeikx =
1

4

∫ +1

−1

dk2πδ(k) =
π

2
. (100)

One thus finds the relation, valid for ℓ ≪ ℓI

− 1

12
(1 + ℓ∂ℓ)(3 + ℓ∂ℓ)(5 + ℓ∂ℓ)

S3(ℓ)

ℓ
= ε. (101)

Setting y = S3(ℓ)
ℓ , x = log(ℓ) this reads

− 1

12
(1 + ∂x)(3 + ∂x)(5 + ∂x)y = ε (102)

and, putting y = − 4
5ε + u, we find

(1 + ∂x)(3 + ∂x)(5 + ∂x)u = 0 (103)

thus

u = Ae−x + Be−3x + Ce−5x, (104)

The only solution, finite in ℓ → 0 (x → −∞) is A = B = C = 0.
Thus

S3(ℓ) = −4

5
εℓ (105)

Q.E.D.
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3 Multifractal Asymptotic Models

3.1 Inertial intermittency

The K41 theory is the following expression for the r-th order structure function
[8]

Sr(ℓ) = Cr(εℓ)
r/3. (106)

We have demonstrated in the preceding section the exact result

C3 = −4

5
(107)

The original success of the K41 theory was helped by early experimental ver-
ifications [9]. However the experiments later showed some imperfections in the
theory, related to small-scale intermittency [8] [10] [11] [7].

Furthermore Landau [1] objected that, if the injection rate ε was fluctuating,
the constant Cr could not be universal because < εr/3 > 6=< ε >r/3, for r 6= 3.
Note that Landau’s argument breaks down for r = 3, the only case where it was
possible to derive an exact result!

More generally, one calls “intermittency” the variations in space and time of
ε. When it is the cascade rate that fluctuates at inertial scales, one talks about
“inertial intermittency”.

In 1961, Kolmogorov and Obukhov introduced the log-normal model [12] [13],
in order to take into account intermittency effects due to the spatial fluctuations
of the energy dissipation. This model has never been directly related to the
Navier-Stokes equations, but rather to experimental and numerical results. It
paved the way to other intermittency models based, in a geometric context, on
the concept of the Richardson cascade. These new approaches introduced the
notion of fractal dimension [14] [15]. Examples are the β model, [16] [17], the
random β model [18] [19], and the Parisi-Frisch [20] multifractal model.

In this section, we will be concerned with inertial intermittency models, where
the structure functions follow scaling laws of the form

Sr(ℓ) = Cr(εℓ)
r/3(ℓ/ℓI)

ζr−r/3. (108)

The scaling exponent ζr is in general a nonlinear convex function of r. Such a
scaling law is called “multifractal” (in contrast to simple “unifractal” scaling
when ζr is linear in r). The following simple cascade model shows that such a
behavior is simple to obtain.

3.2 Random cascade models

The random cascade model is a simple and explicit model where the moments fol-
low, by construction, multifractal scaling laws. It was first introduced by Novikov
and Stewart [16] in a special case, and then extended by Yaglom [21]. A number
of authors have then studied it, including Mandelbrot [22], [23].
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Consider the interval IℓΛ
with initial length ℓΛ that is decomposed into 2N

sub-intervals of length

ℓ = ℓΛ 2−N . (109)

To each interval, we attribute a random variable uℓ, product of N identically
distributed independent random variables (vi)i=1...N , that obey the following
hypotheses

v ≥ 0, 〈v〉 = 1, 〈vr〉 < ∞, ∀r > 0. (110)

Where the symbol 〈.〉 denotes the statistical mean.
Consider the a real random variable v, following the hypotheses (110). By

construction

uℓ =
N
∏

i=1

vi. (111)

The multiplicative process that constructs uℓ can be repeated indefinitely: N →
∞.
We now compute the moments associated with uℓ

S(r) = 〈ur
ℓ〉 = 〈

N
∏

j=1

vr
j 〉 =

N
∏

j=1

〈vr
j 〉 = [〈vr〉]N . (112)

Or, in logarithmic form

log S(r) = N log〈vr〉. (113)

According to the definition of ℓ (109), one finds

log S(r) = ζr log
ℓ

ℓΛ
(114)

with

ζr = − log2 〈vr〉. (115)

Thus, the order-r moments follow scaling laws with exponents ζr

S(r) =

[

ℓ

ℓΛ

]ζr

. (116)

3.3 The Parisi-Frisch multifractal model

The Parisi-Frisch [20] model can be defined by considering that singularities cor-
responding to scaling exponents h are located over fractal sets Sh with Hausdorff
dimension [14] D(h) < 3. Defining the fractal codimension

µPF (h) = 3 − D(h). (117)
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Parisi-Frisch hypotheses We admit that the scaling exponents h belong to
the interval I = [hmin, hmax]. To each exponent h one associates a fractal set
Sh ∈ IR3 with dimension D(h) such that

∆uℓ

∆uℓI

∼
[

ℓ

ℓI

]h

. (118)

The exponents hmin et hmax and the dimension D(h) are universal and do not
depend on the turbulence production mechanism.

What is the probability to belong to set Sh ? We need to compute the prob-
ability Pℓ to intersect a fractal set with dimension D(h) with a ball of radius ℓ,
[14] :

Pℓ =
Number of balls associated with Sh

Number of balls associated with IR3 . (119)

It is easy to figure out this probability when D in an integer. If D = 1, consider
a segment of length ℓ. When divided in 2 (ℓ → ℓ/2), one then gets 2 segments
of length ℓ/2. The number of segments is thus multiplied by 2 (N → 2N).
The same argument gives:

D = 2, ℓ → ℓ/2, N → 4N (120)

D = 3, ℓ → ℓ/2, N → 8N (121)

So, using (121), we must write N ∼ ℓ−D. Thus, from (119) :

Pℓ ∼ ℓ3−D(h). (122)

We can now compute the order-r moment as:

Sr(ℓ)

(∆uℓI
)r

∼
∫

I

[

ℓ

ℓI

]rh+3−D(h)

dM(h). (123)

Where the explicit form of the measure dM(h) is not needed. In the limit ℓ → 0,
the power law with the smallest exponent is dominant. We thus obtain:

Sr(ℓ)

(∆uℓI
)r

∼
[

ℓ

ℓI

]ζr

(124)

with

ζr = inf
h

(rh + 3 − D(h)) = inf
h

(rh + µPF (h)). (125)

Relation (125), defines ζr in terms of the Legendre transform of µPF (h). Note
that this Legendre Transform formalism was first introduced by Polyakov [24].
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The Frisch probabilistic reformulation The aim of the probabilistic refor-
mulation is to avoid the (rather ill defined outside of measure theory) notions
of singularities and fractal sets and to directly relate the codimension µPF (h)
to the probability distribution function (pdf) of velocity increments. The actual
definition is (see [8], in the following definition p actually denotes the cdf of
velocity increments)

µ(h) = lim
ℓ→0

lim
ν→0

log p(±ℓh, ℓ)

log ℓ
. (126)

Where the double limit is non commutative.

3.4 Integral relations between pdf and moments

We now turn to the new asymptotic formalism developed in [25]. We restrict our
attention to absolute value structure functions S(r) =< |v(x + ℓ)− v(x)| >. We
do this in order to deal with a formalism of minimum complexity. It would be
simple, in principle, to introduce positive and negative fluctuations by separating
the pdf into plus and minus parts as done in [8].

Let us denote by pu(u) the pdf of the increment uℓ = |v(x + ℓ) − v(x)|. The
order-r moments read

S(r) = 〈ur〉 =

∫ ∞

0

urpu(u)du. (127)

In what follows, we will make change of variable of the type Lu = log u. Such
change of variables introduce new pdf. We will denote, by convention, the den-
sities by pu for the variable u and pLu for the variable Lu = log u. One has

pLu(Lu) dLu = pu(u) du

, where udLu = du and thus pLu(Lu) = pu(e
Lu)eLu . To avoid any confusion, let

us remark that the symbols u or Lu indexing “p” are part of the name of the
pdf. These symbols are not variables, in contrast to those between parentheses.
The structure function S(r) can then be expressed using pLu(.) under the form

S(r) =

∫ ∞

0

ur−1pLu
(log u) du

which is a Mellin transformation [26].
Using the Lu variable, the moments can be expressed as

S(r) =

∫ +∞

−∞

erLupLu(Lu)dLu. (128)

In what follows, me will write pLu(.) under the form p(.).
Introducing the characteristic function associated with the pdf p(Lu)

ZLu
(k) =

∫ +∞

−∞

eikLu p(Lu)dLu (129)
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one gets

S(r) = ZLu
(−ir) (130)

ZLu
(k) = S(ik). (131)

(here the index Lu of “Z” is part of the name of the characteristic function and
does not stand for a variable). Inverting the Fourier transform, one gets

p(Lu) = (2π)−1

∫ ∞

−∞

e−ikLuZLu
(k)dk. (132)

The relations (128) and (132) thus relate pdf and moments.

Steepest descent approximation Direct method

The idea is to evaluate the integrals (128) et (132) using the steepest de-
scent approximation. The asymptotic validity of the approximation will latter
be studied in detail.

Using the Laplace method, we can evaluate the integral (128),

S(r) =

∫ +∞

−∞

erLup(Lu)dLu

. Setting
Lp(.) = log pLu

(.) = log p(.)

. The order-r moments are defined by

S(r) =

∫ ∞

−∞

erLu+LpdLu (133)

where Lp is a notation for Lp(Lu). This integral admits a critical point in Lu if
r verifies the relation

r = −dLp

dLu
. (134)

Doing a second order Taylor expansion and computing the Gaussian integral one
obtains

S(r) ∼



− 2π
d2Lp

dL2
u





1/2

erLu+Lp . (135)

Setting LS = log S(r), we thus obtain a parametric representation (the param-
eter is Lu) of the function S(r)

r = −dLp

dLu
(136)

LS ∼ −dLp

dLu
Lu + Lp +

1

2
log



− 2π
d2Lp

dL2
u



 . (137)
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Inverse method

Relation (132) can be written, using (131):

p(Lu) =
1

2π

∫ +∞

−∞

ef(k) dk (138)

where

f(k) = −ikLu + log S(ik). (139)

The integral (138) can be evaluated using a steepest descent method [27]. The
function f defined in (139) being analytic, it is possible to deform the contour
of integration from the real axis (−∞ < k < +∞) to a new contour (C) in the
complex plane such that the imaginary part of f is zero on (C). The saddle point
of f is defined by f

′

(ks) = 0. Supposing the existence of such a saddle point in
ks = −ir with r ∈ IR. The condition f

′

(ks) = 0 is equivalent to the relation Lu =

dLS/dr. Taylor-expanding f yields: f(k) = f(ks) +
(k − ks)

2

2
f

′′

(ks) + O[(k −
ks)

3]. We now look for k such that ℑ(f(k)) = 0 with f defined by (139), close to

the saddle point ks. One has ℑ
[

f(ks) +
(k − ks)

2

2
f

′′

(ks)

]

= ℑ
[

(k − ks)
2
]

= 0.

There is thus a double family of solutions k = ks + iα et k = ks +α with α ∈ IR.
As ks is generically a saddle point of order two, taking into account the other
terms in the Taylor expansion two lines crossing on the saddle point exist such
that the imaginary part of f is zero on them. One is the imaginary axis itself,
and the other is the curve (C) that will be taken as the integration contour. This
curve is the steepest descent line for the real part of f . We thus have:

p(Lu) = (2π)−1

∫ +∞

−∞

ef(k) dk = (2π)−1

∫

(C)

ef(k) dγ(k), (140)

where γ(k) is the total arc length taken along (C) at point k. Applying Laplace
method to the integral (140) is the essence of the steepest descent method [27].
Using (130) and (139), we find

f(ks) = −rLu + LS , f
′

(ks) =

[

−Lu +
dLS

dr

]

i, f
′′

(ks) = −d2LS

dr2
.

We find that using the relations
d

dk
=

d

d(−ir)
= i

d

dr
.

(140) evaluates as

p(Lu) = (2π)−1

∫

(C)

ef(k) dγ(k) ∼ (2π)−1

[

2π

−[f(ks)]
′′

]1/2

ef(ks) (141)

or

p(Lu) ∼ (2π)−1

[

2π
d2LS

dr2

]1/2

e−rLu+LS . (142)
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The parametric representation (with parameter r) of the function Lp(Lu) finally
reads

Lu =
dLS

dr
(143)

Lp ∼ −r
dLS

dr
+ LS − 1

2
log

[

2π
d2LS

dr2

]

. (144)

The ℓ → 0 asymptotic In this section we show that, in the case of the random
cascade model of section 3.2, the expressions (137) et (144) are the first terms
of an asymptotic in − log(ℓ/ℓΛ).

The scaling law (116) strongly suggests to make in integrals (128) et (132)
the following change of variables

ζr =
LS

log(ℓ/ℓΛ)
(145)

h =
Lu

log(ℓ/ℓΛ)
(146)

µ =
Lp

log(ℓ/ℓΛ).
(147)

We thus get from (128)

Sr(ℓ) =

∫ ∞

−∞

e{log(ℓ/ℓΛ)(rh+µ)}dLu. (148)

On the other hand, using (131) and (132), gives for the density

p(Lu) = (2π)−1

∫ ∞

−∞

e{log(ℓ/ℓΛ)(−ikh+ζ(ik))}dk. (149)

The integrals thus have (as they should) the asymptotic parameter − log(ℓ/ℓΛ)
factorized in the exponential.
In this way, (144) gives the asymptotically correct expression of the probability
Lp(Lu)

Lu = log(
ℓ

ℓΛ
)
dζr

dr
(150)

Lp = log(
ℓ

ℓΛ
)(−r

dζr

dr
+ ζr) −

1

2
log(2π) − 1

2
log

[

log(
ℓ

ℓΛ
)
d2ζr

dr2

]

+ O
[

1

log(ℓ/ℓΛ)

]

. (151)

In the same way, using (146), (147), (145), and (137) gives the asymptotically
correct relations

r = −dµ

dh
(152)
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LS = log(
ℓ

ℓΛ
)(rh + µ) +

1

2
log(2π) − 1

2
log

[

− 1

log(ℓ/ℓΛ)

d2µ

dh2

]

+ O
[

1

log(ℓ/ℓΛ)

]

. (153)

Setting

µ = −r
dζr

dr
+ ζr, (154)

relation (151) can be written

Lp = µ log(
ℓ

ℓΛ
) − 1

2
log(2π) − 1

2
log

[

log(
ℓ

ℓΛ
)
d2ζr

dr2

]

+ O
[

1

log(ℓ/ℓΛ)

]

.

We can then define the relation between µ (147) and µ (154) using (147) and

-n
µn

n(h)
(h)

ζ

n

(h)µ

hn

n

µ

µn + ζ= - n h n n

= h n(h) + 

(h)ζ

(h)ζ (h)µ

n

h

ζ

h

TRANSFORMEE
DE
LEGENDRE

Fig. 1. The Parisi-Frisch Legendre transform.

(151) :

µ = µ − 1

log( ℓ
ℓΛ

)

{

−1

2
log(2π) − 1

2
log

[

log(
ℓ

ℓΛ
)
d2ζr

dr2

]}

. (155)
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Expressing µ in function of µ, (153) can be written

LS = (rh + µ) log(
ℓ

ℓΛ
) − 1

2
log

[

d2ζr

dr2

]

− 1

2
log

[

−d2µ

dh2

]

+ O
[

1

log(ℓ/ℓΛ)

]

.(156)

Where we have used the fact that according to (155) the correction between µ

and µ is in
1

log( ℓ
ℓΛ

)
. Thus, at the required order, we can replace

d2µ

dh2
by

d2µ

dh2
in

(153).
The expressions (151) and (156) naturally yield the formalism of the Parisi-

Frisch [20] model, which is the Legendre transformation that relates ζr to µ(h).
This Legendre transform is defined by ζr = infh [rh + µ(h)], thus dµ/dh = −r
and admits a simple geometric representation (see Fig.(1)). In the same way
the inverse transformation is defined by µ(h) = supr(ζr − rh) (see Fig.(1)), or
dζr/dr = h.

3.5 Explicit multifractal expressions for densities
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Fig. 2. Reconstruction of the pdf (see text) for different models (see table (1)) at scales
ℓ/ℓΛ = 1/4, 1/16, 1/64, 1/512. Figure (A) : log u(n, ℓ) as a function of the parameter
r. Figure (B) : log p(n, ℓ) as a function of the parameter r. Figure (C) : Classical
representation log p(log u, ℓ). Figure (D) : Classical representation log p(u, ℓ).

Experimental studies [28] [29] [30] show that the order-r structure functions
follow multifractal scaling laws whose exponent ζr is a nonlinear function of r.

We now show that if the exponents ζr and the prefactors Ar of the scaling
laws are known it is possible to use the the asymptotic relations of the previous
section to reconstruct the pdf in the inertial range.

Let us first write the structure function as

log Sr(ℓ) = Ar + ζr log ℓ (157)
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Table 1. Multifractal models of exponents ζn

models exponents parameters

Log-normal ζn = n/3 + η (3n − n2)/18 η = 0.2

She-Lévêque ζn = n/9 + 2 (1 − (2/3)n/3) no parameters

= log Sr(ℓΛ) + ζr log
ℓ

ℓΛ
(158)

with Ar = log Sr(ℓΛ) + ζr log ℓΛ.
Let us now suppose that at the reference scale ℓΛ (that is of the order of

the integral scale ℓI ,see ref. [25]) the structure functions are Gaussian. Using the
relation

∫ ∞

0

e−x2/(2σ2) xr dx =

Γ

[

r + 1

2

]

[

1

2

]r/2 √
π [σ−2]r/2

∫ ∞

0

e−x2/(2σ2) dx.

we find

log Sr(ℓΛ) = log Γ

[

r + 1

2

]

− 1

2
log π + r log uΛ − r

2
log

[

1

2

]

. (159)

where uΛ is a velocity of the order of the integral velocity [25].

Reconstruction of inertial range pdf Using the asymptotic relations

Lu =
d log Sr(ℓ)

dr
(160)

Lp ∼ −r
d log Sr(ℓ)

dr
+ log Sr(ℓ) −

1

2
log

[

2π
d2 log Sr(ℓ)

dr2

]

(161)

and the expression of log Sr(ℓ), (158) et (159) together with the exponents given
in table (1) generates the pdf displayed on figure (2).

This method to reconstruct the pdf is new and was developed in [25]. It is
apparent on figure (2) that the pdf change form when ℓ is varied.
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