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Abstract

The analyticity strip method is used to trace complex singularities in direct numerical simulations of the Kida–Pelz
and Taylor–Green flows, performed with up to 20483 collocation points. Oscillations found in the Kida–Pelz energy
spectrum are attributed to interferences of complex singularities. A generalized least-square fit that separates out
the oscillations from the measure of the width of the analyticity strip� is introduced. Using the available resolution,
� is found to decay exponentially in time up tot = 1.25. It is argued that resolutions in the range 163843–327683

(within reach of the Earth Simulator) are needed to really probe the Pelz singularity att ∼ 2.
© 2005 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
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1. Introduction

The existence of a finite-time infinite-vorticity singularity in three-dimensional incompressible Euler
flow developing from smooth initial conditions is still an open mathematical problem (Frisch et al., 2003).
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One possible approach to this problem is the so-called analyticity strip method (Sulem et al., 1983). The
basic idea of this method is to trace complex singularities numerically on direct numerical simulations
(DNS) of the Euler equation with enough spatial resolution to capture the exponential tails in the Fourier
transforms. The logarithmic decrement of the energy spectrum at high-k is twice the width�(t) of the
analyticity strip of the velocity field and the problem of blowup reduces to check if�(t) vanishes in a
finite time.

This method has been applied to three-dimensional Euler flows generated by theTaylor and Green
(1937) (TG) initial conditions, with resolutions 2563 (Brachet et al., 1983) and 8643 (Brachet et al.,
1992). It was observed that, after an early transient period, the width of the analyticity strip of the velocity
field decayed exponentially in time.

The Kida–Pelz (KP) flow was introduced byKida (1985). It has all the symmetries of the TG vortex and
also displays additional symmetries that make it invariant under the full octahedral group (Pelz, 2001).
This flow was used byPelz (2003), Pelz and Gulak (1997a, b), Boratav and Pelz (1994b)to study the
problem of Euler blowup, using temporal Taylor series expansions. It was also used byBoratav and Pelz
(1994a)to make DNS of viscous turbulence.

It has been argued byKerr (1993)that more symmetries than the ones present in the TG vortex are
needed in order to observe a singularity. Thus, the KP flow could well be a better candidate for finite time
singularity than the TG flow.

The main purpose of this paper is to apply the analyticity strip method to DNS of the TG and KP flows
with resolutions up to 20483. It will turn out to be necessary to generalize the least square fit used to
extract�(t) from the energy spectrum so that the fit takes into account oscillations that are found in the
KP energy spectrum.

The paper is organized as follows. Section 2 contains a short description of the (standard) numerical
methods used to integrate the Euler equation. Section 3 contains the generalization of the least square fit
and numerical results. Finally Section 4 is our conclusion.

2. Numerical approach

The three-dimensional incompressible Euler equations,

�v
�t

+ (v · ∇)v = −∇p, (1)

∇ · v = 0 (2)

with (2�-periodic) initial data are solved numerically using standard (Gottlieb and Orszag, 1977) pseudo-
spectral methods with resolutionN. Time marching is done with a second-order leapfrog finite-difference
scheme. The solutions are dealiased by suppressing, at each time step, the modes for which at least one
wave-vector component exceeds two-thirds of the maximum wave-numberN/2 (thus a 20483 run is
truncated atkmax=682). Symmetries are used in a standard way (Brachet et al., 1983) to reduce memory
storage and speed up computations.

Two types of computations, corresponding to different initial conditions, are carried out. The first
type concerns the Taylor–Green vortex (Taylor and Green, 1937) which is the incompressible
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three-dimensional flow developing from the single-mode initial data

uTG = sin(x) cos(y) cos(z), vTG = −uTG(y, −x, z), wTG = 0. (3)

The second type of runs concerns the Kida–Pelz (Kida, 1985; Pelz, 2001; Boratav and Pelz, 1994b) flow,
that develops from the initial data

uKP= sin(x)(cos(3y) cos(z) − cos(y) cos(3z)), vKP = uKP(y, z, x), wKP = uKP(z, x, y). (4)

Series of runs are made for the two flows by varying the resolutionN.
Two quantities are extracted from the runs, in order to monitor the time-evolution of the flows. The

energy spectrum is defined by averagingv̂(k ′, t) (the spatial Fourier transform of the solution to Eq. (1))
on spherical shells of width�k = 1,

E(k, t) = 1

2

∑
k−�k/2<|k ′|<k+�k/2

|v̂(k ′, t)|2 (5)
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Fig. 1. Enstrophy�(t)and its normalized time derivativeS(t) (see Eq. (7)) for the TG flow (left) and KP flow (right) at various
resolutions.



242 C. Cichowlas, M.-E. Brachet /Fluid Dynamics Research36 (2005) 239–248

and the enstrophy�(t) = ∫ ∞
0 k2E(k, t) dk, that is computed directly (i.e. without shell averaging) as

�(t) = 1

2

∑
k ′

|v̂(k ′, t)|2k ′2. (6)

Fig. 1displays the time variation of the enstrophy�(t) and of its normalized time derivative

S(t) =
(

135

98

)1/2

�−3/2d�

dt
(7)

(which identifies with the skewness when isotropy is assumed (Brachet et al., 1983)).
Note that (7) implies�(t)−1/2 = �(0)−1/2 − (392/135)1/2 ∫ t

0 ds S(s). ThusS(t) should tend to zero
when t goes to infinity in order to prevent a finite-time blowup of the enstrophy. Such a decay is not
visible inFig. 1. The integration time is in fact too short to reveal the asymptotic behavior ofSand�. We
will see below that more resolution is needed to extend the integration time.

3. Tracing complex singularities

When the velocity field is analytic, the energy spectrumE(k, t) decays exponentially at largek (with a
possible algebraic prefactor). The logarithmic decrement is twice the width�(t) of the analyticity strip of
the solution continued to complex spatial variables. The basic idea of the analyticity strip method (Sulem
et al., 1983) is to trace the temporal behavior of�(t) in order to obtain evidence for or against blowup.

In order to extract�(t) from the numerical integrations a least-square fit is performed on the logarithm
of the computed energy spectrum, using the functional form

log(E(k, t)) = C − n log(k) − 2�k. (8)

The error on the fit intervalk1�k�k2,

�2 =
∑

k1 �ki �k2

(log(E(ki, t)) − (C − n log(ki) − 2�ki))
2 (9)

is minimized by solving the equations��2/�C =0,��2/�n=0 and��2/��=0. Note that these equations
are linear in the fit parametersC, n and�.

Examples of KP and TG energy spectra to be fitted in such a way are presented inFig. 2. It is apparent
on the figure that resolution-dependent spectral even–odd oscillations are present, at certain times, on the
TG energy spectrum. Note that this behavior is controlled by the round-off error∼ 10−15. For a given
precision and resolution, the maximum time up to which the simulation is reliable should be the first
instance at which the value of the spectrum at the highest wavenumber becomes comparable to the square
of the round-off error. However, these round-off errors only affect the highest wavenumbers of the TG
energy spectrum. They are eliminated by averaging the TG spectrum on shells of width�k = 2 before
performing the fit (Brachet et al., 1983). Note that longer period oscillations are visible on the KP energy
spectra, but that no strong resolution-dependent effect can be seen.

The measure of�(t) is reliable as long as it remains larger than a few mesh sizes, a condition required
for the smallest scales to be accurately resolved and spectral convergence ensured. Thus only the fits
giving a value of� such that�kmax> 2 will be considered.
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Fig. 2. Energy spectra at resolutions 2563, 5123, 10243 and 20483; the spectral cut-off is indicated, for each resolution, by the
vertical dotted-lines. Left TG flow att = (1.3, 1.9, 2.5, 2.9, 3.4, 4.0); right KP flow att = (0.25, 0.5, 0.75, 0.9, 1.1, 1.5).
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Fig. 3. Time evolution of decrement� and prefactorn for TG flow (left) and KP flow (right) at various resolutions (see Eq. (8)).
Fits are performed within the intervalsk = 5 to min(k∗, N/3), wherek∗ = minE(k)<10−32(k) marks the beginning of roundoff
noise at short times.

Fig. 3displays the values of� andn for the TG and KP flows. It is visible that, after a short transient
period, the TG flow�(t) decays like

�(t) = �TG
0 e−t/TTG (10)
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with a characteristic decay timeTTG = 0.56 and�TG
0 = 2.70, up to a timet = 3.7 at resolution 20483

when it becomes comparable to twice the smallest resolved scale.
In contrast, it is apparent on the right pannels ofFig. 3 that the behavior of� andn in the KP flow is

erratic and that their values are not stable when the resolution is changed. This happens even though the
higher resolution energy spectrum has identical low-wavenumber values than the lower resolution energy
spectrum (seeFig. 2). This kind of behavior is possible only if some kind of systematic error is present
in the fit procedure. It is plausible that this error comes from the long period oscillations slightly visible
on the KP energy spectra displayed inFig. 2.

In order to take this oscillation into account, we generalize the functional form of (8) to

log(E(k, t)) = C − n log(k) − 2�k + a cos

(
2�

k

kp

)
. (11)

The least square fit equations determining the values of the parametersC, n, � anda are linear but the
one determiningkp is non-linear. In practice we determineC, n, � anda for an assumed value ofkp and
search for the minimum of the sum of the square of the errors as a function ofkp.

Note that assuming interferences from two complex singularities with the same value of� but spatial
positions differing by 2�i and contrast factora would yield contributions to the energy spectrum of the
form

E(k) ∼ e−2�k(1 + a cos 2�ik). (12)

Expanding the log of this expression to the first order ina yields the additional term present in (11), with
kp = �/�i .

The presence of a contrast factor may be understood, as in optics, by considering interfering singularities
that are not punctual but extended objects. Indeed there is good numerical evidence (Frisch et al., 2003)
that complex singularities of the two-dimensional Euler equations arere situated on regular 1D manifolds.
Note that, in the case of the viscous 1-D Burgers equation, where the nature of the complex singularities
(isolated poles) is well-understood, there is another way than the present fitting procedure to disentangle
the information on� from the oscillating energy spectrum (Kida, 1986). However in the Burgers case the
contrast factora is constantly high.

The residual oscillating part of the data, together with the fit, are displayed inFig. 4. It is clear by
inspection of the figure that the quality of the fit is correct.

It is apparent inFig. 5 that the erratic behavior of� andn manifest inFig. 3 has been corrected by
the extended fit (11). Perhaps the most salient effect is observed onn. The resolution dependent sharp
maxima ofn visible in Fig. 3 are not present inFig. 5. The corresponding behavior of� has also been
smoothed out.

The fitted singularity separation parameter�i = �/kp and amplitudesa are also presented inFig. 5.
�i appears to decay exponentially in time (with�i(t) = 0.30e−t/0.271 up to a timet = 1.25 at resolution
20483).The amplitudes have resolution dependent maxima that happen at the same time than the resolution
dependent maxima of the uncorrectedn (seeFig. 3). It is easy to check out that these maxima happen
whenkp ∼ kmax.

This point is easily understood as follows. Whenkp>kmax, the oscillations are averaged out in the
uncorrected fit (8) and both corrected and uncorrected fits give the same values ofn and�. In the opposite
regimekp?kmax no oscillations can be detected on the available data. In the intermediate regime, when
kp approacheskmax from below, the curvature of the spectrum caused by the oscillation is seen by the
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uncorrected fit as a change in then term in (8). The corrected fit (11) does a better job separating out, in
this regime, the oscillation from the curvature.

Using the data on� obtained from the corrected fit (seeFig. 4), we obtain that�(t) decays like

�(t) = �KP
0 e−t/TKP (13)

with a characteristic decay timeTKP = 0.24 and�KP
0 = 1.02, up to a timet = 1.25 at resolution 20483,

where the corrected fit begins to be affected.
By inspection ofFig. 5 it is apparent that the amplitudea of the fit near its maxima almost reaches

one, which is not consistent with the approximation (i.e. usinga>1 to expand the log of (12)) needed to
derive (11). This suggests that a fit using the logarithm of (12) may give an even better result. In order to
investigate this point, we have performed these logarithmic fits. Note that this necessitates to search for
the minimum of a 2-parameter function (see the discussion below Eq. (11)).

The results are presented inFig. 6. It is apparent, by inspection of the figure, that the quality of the fit,
measured by the quadratic error�2, normalized by the number of fitted points, is much improved when
the oscillations are taken into account. However, the level of improvement is not sensibly changed by
replacing the 1-parameter non-linear fit Eq. (11) by the 2-parameter non-linear fit Eq. (12). The behavior
of � andn are not sensibly affected (data not shown) but the amplitudea is decreased when using the
logarithm of (12).

4. Conclusion

In summary, complex singularities in DNS (resolutions up to 20483) of TG and KP flows, have been
traced, using the analyticity strip method. The energy spectra fit procedure had to be generalized to take
into account oscillations caused by interferences between complex singularities. Exponential-in-time
decay of� is found for both flows.

The temporal Taylor series expansions estimates for the Pelz singularity timet∗P given byPelz (2003),
Pelz and Gulak (1997a, b), Boratav and Pelz (1994b)aret∗P ∼ 2.
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We now estimate, using data generated by the present DNS with resolution up to 20483, how much
resolution is needed to reacht∗P, assuming that the exponential regime (13) persists in time. The condition
that�kmax = 2 reads�kmax = N/3�KP

0 e−t∗P/TKP = 2 and its solution isN = 6e2/TKP/�KP
0 = 24 472. Note

that the same condition�ikmax = 2 applied to the imaginary part of singularities yieldsN = 32 074,
a more stringent condition.

Thus DNS performed with resolutions in the range 163843–327683 would really probe the Pelz sin-
gularity att∗P ∼ 2. Assuming a real singularity at this time, they should display a numerically-reliable
faster-than-exponential decay of�(t).

General periodic turbulent flows have been simulated with resolutions up to 40963 on the Earth Sim-
ulator (Kaneda et al., 2003). Efficient implementation of the TG and KP symmetries reduce memory
storage and speed up computation allowing a gain in resolution up to a factor 4 in each spatial direc-
tion (Brachet et al., 1983). Thus KP simulations with resolutions 163843 are within reach of the Earth
Simulator.
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