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The stability of perfect-fluid capillary-gravity surface flows past a cylindrical obstacle is studied in
the shallow water limit, using the two-dimensional compressible Euler equations, with leading-order
dispersive corrections. Stationary solutions with different contact angles are obtained by Newton
branch following, based on Fourier pseudospectral methods, using mapped Chebychev polynomials.
Stable and unstable branches are found to meet, through a saddle-node bifurcation, at a critical speed
beyond which no stationary solution exists. For large obstacles, the stable branch is compared with
the stationary solutions of the compressible Euler equation without dispersion. Boundary layers are
investigated. In this regime, the unstable dynamics are shown to lead to a finite-time dewetting
singularity. ©2005 American Institute of Physics. fDOI: 10.1063/1.1926267g

I. INTRODUCTION

Nonlinear problems involving capillary and gravity ef-
fects in free surface perfect flows, such as the generation and
radiation of capillary-gravity waves by a moving obstacle,
have attracted much attention.1,2

Although the existence of a critical speed for the onset of
capillary-gravity wave drag is well established, there remains
a controversy on the order of the transition. In the infinite
depth limit, early theoretical work3 and experiments4 were in
favor of a discontinuoussor first-orderd transition. However,
another experimental result published at the same time5 fa-
vored a continuoussor second-orderd transition. It was sug-
gested in this paper and in the following extended paper6 that
the large scatter observed in the former experiment4 was the
result of uncontrolled pinning and stick slip due to wetting
and capillary forces that considerably exceed the wave drag.
It was also argued that this scatter was interpreted by the
authors of the former experiment as a discontinuous transi-
tion. Moreover, by switching on and off the feedback,
Burghelea and Steinberg5 showed the crucial role of capillary
forces in altering the results of measurements of the wave
drag force. It thus appears that experimentally only continu-
ous transition to the wave drag state was observed.

Later on, it was suggested7 that two different results on
the order of the transition could be obtained, depending on
the experimental condition: at constant force on an immersed
object a discontinuous transition should be observed, while

at constant depth of an immersed object a continuous transi-
tion should be found. However, this qualitative agreement
with the experiment was not entirely satisfactory, since the
predicted transition was rather sharp and very different func-
tionally from the experimental one. Furthermore, the behav-
ior of the wave drag above the transition was not in a good
agreement with the experimental observations.

On balance, it thus appears crucial not to neglect the
wetting and capillary forces on the immersed object. As a
first step in this direction we will study here the shallow
water limit where the problem becomes quasi-two-
dimensional.

When the channel depth is infinite, it was recognized5,6

that, due to the existence of a wave number at which the
phase speed is minimum, the problem has a deep analogy
with that of the breakdown of superfluidity in a model of
helium8 that includes roton excitations.

At finite depth, it is well known that two distinct regimes
exist for the propagation of linear waves. If the depth is large
enough, a regime analogous to the infinite depth one is ob-
tained with a negative dispersive term. In contrast, if the
depth is small enough, the dispersion changes sign and there
is no minimum in phase speed.

The present study is devoted to that latter small-depth
regime. This regime is analogous to the problem of break-
down of superfluidity when only phonon excitations are
present.9–11 It also corresponds to the experimentally ob-
served critical speed for onset of dissipation in Bose–
Einstein condensates.12

The paper is organized as follows. In Sec. II we show
that the small-depth regime can be studied in the shallow
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water limit where the problem becomes two dimensional.
Section III is devoted to the derivation of the boundary layer
analytical expressions for Neumann boundary conditions;
Sec. IV contains validations of the numerical procedure and
new results on bifurcation diagrams and critical Mach num-
bers; in Sec. V, our results on the dynamical regime are re-
ported, paying particular attention to a finite-time dewetting
singularity; finally Sec. VI is our conclusion. The specially
adapted numerical method used in this work is detailed in the
Appendix.

II. PRESENTATION OF THE MODEL

In this section, we present the approximated two-
dimensional equations that model the effect of a disk of ra-
dius unity sdiameter D=2d, moving at constant speedv
=vex in a shallow layer fluid at rest.

We first discuss this approximation in term of waves
propagating on a fluid layer and then introduce the cylindri-
cal obstacle. We next propose a variational formulation asso-
ciated with our dispersive shallow water equationssDSWEd.
We introduce also a relaxation procedure allowing to reach
steady solutions in a simple manner.

A. Dispersion relation with surface tension

Let us first consider waves propagating on a fluid layer
with no obstacle. Specifically, we are interested in the dy-
namics of surface disturbances of vertical amplitudea and
typical horizontal length scalek−1, in a fluid of depthH and
surface tensions.

In the linear regime,a/H!1 andka!1, the dispersion
relation reads2

v2skd = kSg +
k2s

m
DtanhsHkd, s1d

wherem is the fluid density andg the gravity acceleration.
In the infinite depth limitH→`, the dispersion relation

reads

v2skd =
gks2 + k2,c

2d
2

, s2d

where,c=Î2s /gm is the capillary length.1 In this limit, the
phase speedcwskd=vskd /k admits a local minimumcm

=21/4Îg,c at wave numberkm=Î2/,c.
For finite depthH, the dispersion relations1d can be

expressed in terms of the gravity wave speedc=ÎgH as

v2skd =
c2ks2 + k2,c

2dtanhsHkd
2H

. s3d

Two different regimes can be distinguished.
The large-depth regime,H.Î3/2,c, is similar to the

infinite depth regime. The phase speedcwskd admits a mini-
mum at a finite wave numberkm ssee Fig. 1d, related to the
capillary length,c by

,c =
Î2

km
Î1 −

4Hkm

2Hkm + sinhs2Hkmd
. s4d

The minimum phase speedcm,c is related tokm by

cm = 2cÎ sinhsHkmd2

Hkmf2Hkm + sinhs2Hkmdg
. s5d

Note that this minimum is somewhat equivalent to the roton
minimum in the dispersion relation of superfluid helium.1,8

Conversely, in the small-depth regime,H,Î3/2,c, the
phase velocity is a strictly increasing function ofk ssee Fig.
1d. Taylor expandingv2skd aroundk=0 yields

v2skd = c2Fk2 + k4S,c
2

2
−

H2

3
DG , s6d

showing that dispersion effects are controlled by an effective
capillary length defined by

j = Î,c
2 − 2

3H2. s7d

Note that in this regime, the dispersion relations6d is similar
to that encountered in the Gross–Pitaevskii equation, also
called the nonlinear Schrödinger equationsNLSd, modeling
superfluids1,13,14 or accurately describing Bose–Einstein
condensates.15

In the following, the fluid layer is supposed to be smaller
thanÎ3/2,c and the fluid is considered as inviscid. Note that
this supposes that although the flow is thin, viscous effects
are small enough to be neglected.

Let us be more quantitative on this aspect of the prob-
lem. At leading order, we can estimate the viscous effects
within two different approximations: for very thin films in
the lubrication approximation and for thicker films in the
boundary layer approximation. On the one hand, the lubrica-
tion approximation16 gives the damping time scaletl =H2/n,
wheren is the fluid kinematic viscosity. Viscous effects can
be neglected iftl is greater than the time scale of advection
ta=D /U, whereU is of the order of gravity wave speedc.
On the other hand, the boundary layer approximation gives
the following thickness of the boundary layerd=D /ÎRe,
with Re=UD /n. Viscous effects are negligible ifd!j which
amounts ton /jU!j /D. For a water layer of thicknessH
.1 mm and viscosityn.10−6 m2 s−1, we find tl .1 s and

FIG. 1. Nondimensionalized phase speedcwskd=vskd /ck fsee Eq.s1dg,
where c=ÎgH is the gravity wave speed. In the large-depth regimesH
.Hcd, the curve displays a minimum similar to the roton minimum in su-
perfluid, whereas in the small-depth regimesH,Hcd, the minimum phase
velocity is that of the gravity wavesc at k=0. The small-depth regime is the
regime studied in this paper.

062104-2 Pham, Nore, and Brachet Phys. Fluids 17, 062104 ~2005!

Downloaded 01 Oct 2005 to 129.199.120.1. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



ta.D /c. Thus viscous effects are small provided thatD
,0.1 m. Turning now to boundary layer effects, the condi-
tion for viscous effects to be small yieldsj /D@3310−3.
Therefore, there is a range of diameter 1 mm,D,10 cm
for which the viscosity can be neglected in the regimes we
study.

The model we study is formally very close to the NLS
equation describing superflows, the capillary lengthj play-
ing the role of the so-called coherence length. It is thus of
interest to compare both systems. Moreover, the model of an
inviscid flow past an obstacle in the small-depth regimesi.e.,
with no local minimum for the phase velocityd has not yet
been studied.

B. Two-dimensional reduction

Taking into account nonlinear effects and dominant or-
der dispersive effects, in the small-depth linear regime, our
shallow water approximation2 reads, in the frame of a cylin-
drical obstacle of unit radius, moving at speedv= +vex,

]tf = 1
2c2j2Dr − 1

2s=fd2 + c2s1 − rd + v · = f, s8d

]tr = − rDf − = r · = f + v · = r, s9d

where r stands for the thickness of the fluid layersnondi-
mensionalized byHd, f is the horizontal velocity potential,j
is the effective capillary length renormalized by the effects of
finite depth given by Eq.s7d, andc the gravity wave speed.
Note that the standard shallow water equation does not con-
tain the dispersive correction.

Defining the velocity in the obstacle frame as

U = = f − v, s10d

Eq. s9d reads

]tr + = · srUd = 0. s11d

Therefore, the systems8d ands11d yields, respectively, to
the Bernoulli equationswith a supplementary dispersive term
depending onjd and the continuity equation for a barotropic
compressible and irrotational flow. These equations are our
DSWE in the presence of a disk.

The boundary conditions on the obstacler =1 read

]rr = cota0/H = r08, s12d

]rsf − v · r d = 0, s13d

the anglea0 being the contact angle of the liquid on the
obstacle measured with respect to the ascendant verticalssee
Fig. 2d. For convenience, we denoter08=cota0/H, the de-
rivative of r with respect tor at the cylinder which has the
dimension of the inverse of a length. The Neumann boundary
condition s12d physically corresponds to a hydrophobic ob-
stacle fora0P f0:p /2f or r08.0 and to a hydrophilic ob-
stacle fora0P gp /2 :pg or r08,0. The particular valuea0

=p /2 corresponds to a homogeneous Neumann condition
r08=0.

Note that, forj=0, Eqs.s8d and s9d reduce to the Euler
equations for a compressible barotropic fluid, with Eq.s13d

as the unique boundary condition. The stationary solutions of
the two-dimensional Eulerian flow and the critical Mach
number have been calculated previously.17

We denote byV the planeC deprived ofD the disk of
radius unity and by]V the boundary of the domain, that is,
the circle of radius unity. We will naturally use the polar
coordinatessr ,ud such thatx=r cosu andy=r sinu, and the
associated unit vectors are denoted byser ,eud.

C. Variational formulation

In the rest of the paper, we usec2=1.
The dispersive shallow water equations may be derived

from the following action functionalswith n=−er the unitary
external normald:

E =E
V

d2xF1

2
rs=fd2 +

1

2
sr − 1d2 +

1

2
j2s¹rd2G

−
1

2
j2R

]V

d,nr = r, s14d

P =E
V

d2xfsr − 1d = fg +R
]V

d,nf, s15d

F = E − v ·P, s16d

A = −E dthr]tf + Fj, s17d

by considering the Euler–LagrangedA /dr=0 and dA /df
=0 associated tos17d. Note the presence of supplementary
boundary terms on]V that ensure the appropriate boundary
conditions on the obstacle.

This formulation stresses that the dynamics under the
DSWE is conservative. Therefore, in order to obtain station-
ary solutions from arbitrary initial conditions, we need to
proceed through a relaxation procedure.

D. Relaxation toward steady states

Our aim is to find steady solutions starting from arbitrary
initial conditions. Note that the equations

]tr = 1
2j2Dr − 1

2s=fd2 + 1 −r + v · = f, s18d

FIG. 2. Definition of the contact anglea0 at the cylinder. It corresponds to
the Neumann boundary condition]rru]V=cota0/H=r08 fEq. s12dg.
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]tf = rDf + = r · = f − v · = r, s19d

admit the same stationary solutions than Eqs.s8d and s9d
swith c2=1d. However, this relaxation method can only reach
stable stationary solutions. In order to also capture unstable
stationary solutions,18 we apply to Eqs.s18d and s19d the
Newton branch-following method that is detailed in the Ap-
pendix.

III. BOUNDARY LAYER SOLUTIONS: ANALYTICAL
RESULTS

We now present calculations of the stationary solutions
in the limit j /Î2D→0. For nonzero Mach number

M = uvu/c = uvu, s20d

we define the new phase variable19

w = − sf − vr cosud/v. s21d

The Bernoullis8d and continuitys9d equations then read

0 =
1

2
j2Dr − r + 1 +

M2

2
f1 − s=wd2g, s22d

0 = rDw + = r · = w. s23d

The boundary conditions now read

]rru]V = r08,

]rwu]V = 0.

At finite but small Mach number, we expandr andw as

r = rk0l + M2rk1l + ¯ + M2krkkl + ¯ , s24d

w = wk0l + M2wk1l + ¯ + M2kwkkl + ¯ . s25d

Note that if one knowsw at orderM2k, one can formally
deducer at orderM2sk+1d by solving s22d. The potentialw
can then be computed at orderM2sk+1d by solving s23d. In
order to computew, we will have to solve equations of the
type

d2y

dr2 srd +
1

r

dy

dr
srd −

n2

r2 ysrd = RHSsrd, s26d

where RHS is the right-hand side.
Solutions to the corresponding homogeneous equation

are

ysrd = Arn + Br−n, s27d

so that the general equation with nonzero RHSsrd can be
computed using the method of variation of parameter. Using
the boundary conditions limr→+`ysrd=0 anddy/drsr =1d=0
yields for the solution of the inhomogeneous equation the
explicit expression

ysrd = −
r−n

2
E

1

+`

RHSsudsu1+n + u1−nddu

−
rn

2
E

r

+`

u1−nRHSsuddu+
r−n

2
E

r

+`

un+1RHSsuddu,

s28d

provided that the function RHS decreases rapidly enough at
infinity. Note that the first term ofysrd leads to a term of the
typeC/ r. Due to the expressions of RHS encountered in the
following computations, the two last terms will turn out to
tend to zero exponentiallyson a length scale of orderjd, so
that the behavior at infinity of the functiony will be gov-
erned by a long-range algebraic term that reads

ysrd ,
r→+`

−
1

2rnE
1

+`

RHSsudsu1+n + u1−nddu. s29d

A. Case of inhomogeneous Neumann conditions
„r08Å0…

We now turn to the computation of the stationary solu-
tion in the general case of inhomogeneous Neumann bound-
ary conditionsr08Þ0. Expressions forrk0l andwk0l are obvi-
ously needed to bootstrap the iteration. When the Mach
number is zero,w=0 is solution of the stationary equations
andr satisfies

1
2j2Drk0l − rk0l + 1 = 0. s30d

The solution of this equation with the correct boundary con-
ditions reads

rk0l = 1 −
r08j

Î2
K0SÎ2r

j
DYK1SÎ2

j
D , s31d

whereKn is thesordernd modified Bessel function. The pro-
file rk0l−1 is displayed in Fig. 3sad.

The velocity potentialwk0l then satisfies

Dwk0l = − = rk0l · = wk0l + s1 − rk0ldDwk0l. s32d

We write

wk0l = wEuler
k0l + w̃k0l, s33d

wherewEuler
k0l =sr +1/rdcosu is the solution at order 0 inM2

of the Eulerian flow. Using the relationDwEuler
k0l =0, Eq. s32d

yields the following equation forw̃k0l:

Dw̃k0l = − = rk0l · = wEuler
k0l − = rk0l · = w̃k0l

+ s1 − rk0ldDw̃k0l. s34d

This equation cannot be solved directly. We keep in the
right-hand side, at the dominant order of the computations,
the first term and drop the two others. The functionw̃k0l is
then the solution of the equation

Dw̃k0l = − = r0
k0l · = wEuler

k0l . s35d

The expression ofw̃k0l can be computed using Eq.s28d. The
potential wk0l s33d is shown in Fig. 3sbd computed with

062104-4 Pham, Nore, and Brachet Phys. Fluids 17, 062104 ~2005!

Downloaded 01 Oct 2005 to 129.199.120.1. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



MATHEMATICA . Equations29d yields, far from the obstacle
and in the limitj /Î2D→0,

w̃k0l ,
r→+`

r08j
2

r
cosu. s36d

Note that the compressible Eulerian flow around a disk
of radiusr1 admits at order zero inM2 the following solu-
tion:

wEuler,r1

k0l = Sr +
r1

2

r
Dcosu, s37d

in order to satisfy the boundary condition]rwEuler,r1

k0l =0. Thus,

the correction inwk0l to wEuler
k0l is a long-range term that can be

physically interpreted as a renormalization of the diameter of
the disk: at large distances the flow is equivalent to an Eule-
rian flow around a disk of radiusreff given by

S reff

r0
D2

= 1 +
r08j

2

r0
+ Osj3d. s38d

B. Case of homogeneous Neumann condition „r08=0…

The same procedure with homogeneous Neumann
boundary conditionr08=0 can be shown to lead to a renor-
malized radius17

S reff

r0
D2

= 1 −
3

2
M2S j

r0
D2

. s39d

Note that contrary to the caser08Þ0, this effective size de-
pends on the Mach number.

IV. STATIONARY SOLUTIONS

This section is devoted to the numerical determination of
stationary solutions using the branch-following method de-
tailed in the Appendix. We first compare analytical results of
Sec. III with numerically obtained profiles of boundary lay-
ers with inhomogeneous Neumann conditionssr08Þ0d. It is a
good test of the numerical precision and efficiency of our
new method, which has already been checked in Ref. 17 in a
superfluid context, with different equations of motion.

The rest of the section contains the numerical results on
the bifurcation diagrams and the stationary solutions of the
DSWE at small effective capillary lengths for the two types
of Neumann boundary conditions: homogeneous and inho-
mogeneous. We study the dependence with the Mach number
and the effective capillary lengthj of the solution profiles
and show that unstable solutions far away on the branch can
become unphysical by having negative density. We also
study the dependence of the critical Mach number withj and
with the contact angle.

A. Comparison with analytical boundary layer results
for inhomogeneous Neumann conditions

We now compare the analytical results of Sec. III with
numerically obtained solutions of boundary layers with inho-
mogeneous Neumann conditions. Figure 4 displays the ana-
lytical renormalized radiusfEq. s38dg as a function ofj to-
gether with numerical results, obtained by computing the
coefficient in cosu / r of the velocity potential of the station-

FIG. 3. sColor onlined. Plots ofsad rk0l−1 fEq. s31dg andsbd wk0l fEq. s33dg
for j /Î2D=1/20 andr08=−1.

FIG. 4. Plot of the analytical renormalized radiusfdashed line, see Eq.s38dg
as a function ofj together with the numerical solutionssdotsd. The contact
angle on the cylinder perimeter is such thatr08=−5, and the Mach number is
M=0.001. The agreement is very good for smallj /Î2D.
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ary state. The agreement between analyticalsdashed lined
and numerical resultsspointsd is very good for smallj /Î2D
emphasizing the ability of our method to compute thin
boundary layers.

B. Bifurcation diagrams and stationary states

We present the bifurcation diagrams and the stationary
solutions of the DSWE for the homogeneous Neumann
boundary conditionr08=0. The hydrophobicsr08.0d and hy-
drophilic sr08,0d cases lead to similar diagrams and solu-
tions.

The values of EsMd−Es0d and FsMd−Fs0d sthe
change of energiesE andF, relative to zero Mach numberd
are displayed in Fig. 5 as a function of the Mach numberM
for various values ofj /Î2D andr08=0. As can be seen by the
inspection of the figure, the stable stationary branches are
almost superimposed on the Euler branch whenj /Î2D de-
creases. For eachj /Î2D, the stable branchslower branchd
disappears with the unstable solutionsupper branchd at a
saddle-node bifurcation whenM=Mc. There are no station-
ary solutions beyond this point. Furthermore,FsMd−Fs0d
presents a cusp at the bifurcation point. This qualitative be-

havior is the signature of a Hamiltonian saddle-node bifur-
cation. This is the same type of bifurcation as that obtained
in Bose–Einstein condensates.11

Density minima of the steady solutions are located on
the disk border atsu ,rd=s±p /2 ,1d for r08=0. Unstable solu-

FIG. 6. Stationary solutions forj /Î2D=1/2 andr08=0. sad Densityru]V, sbd
velocity potentialfu]V. Note that the steady-state density can become nega-
tive for a certain Mach number far fromMc. The phase varies continuously
but is very steep whenr is negative.

FIG. 7. Density minimarmin as a function of the Mach numberM and the
effective capillary lengthj /Î2D for r08=0. Note that, far enough on the
unstable branch, the density can reach unphysical negative values for anyj.

FIG. 5. Bifurcation diagrams for differentj /Î2D and r08=0. The stable
branch tends to the Euler branch whenj /Î2D decreases.sad Energy func-
tional E, sbd free energy functionalF.
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tions far from the bifurcation tip see their density decrease,
reach zero, and become negative. A negative density solution
is unphysical but is nevertheless solution of the DSWE. It
can be inferred that it is dynamically unstable since the local
sound speed satisfies

cloc = ÎgHr, s40d

the DSWE are thus unstablesbecause of the antipropagative
instabilityd whencloc

2 ,0.
Figure 6 shows that both the density and the phase go

into the unphysical regime continuously. This behavior ap-
pears for any effective capillary length as shown in Fig. 7.

Figure 8 shows the variation of the critical Mach number
with the effective capillary length: it increases withj and
tends to the Euler value17 Mc

Euler.0.369 697 052 59s9d for
j /Î2D→0 following the scaling law Mc.Mc

Euler

+gsj /Ddb with b.0.69.
Whenr08Þ0, the contact angle creates an exponentially

decreasing boundary layer around the obstacle. Bifurcation
diagrams similar to those found withr08=0 are obtained:
stable and unstable branches meet at a saddle-node bifurca-
tion, at a critical Mach number beyond which no stationary
solution existssdata not shownd. The only difference stems
from the location of the density minima: forr08.0 shydro-
phobic obstacled, the latter are located on the disk border
while, for r08,0 shydrophilic obstacled, they are situated at a
finite distance from the diskssee Fig. 9d.

Figure 10 reports the variation of the critical Mach num-
ber with the nature of the obstacle. The critical Mach number
decreases linearly withr08.

FIG. 8. Critical Mach number as a function of the effective capillary length
for r08=0. Inset: differenceD between the critical Mach number and the
Eulerian onesD=Mc−Mc

Eulerd as a function of the effective capillary length
for r08=0. It follows the scaling lawD,sj /Ddb with b.0.69. The dashed
line in the inset stands forsj /Dd0.69.

FIG. 9. Stationary densityr sleftd and
velocity potentialf srightd for differ-
ent Mach numbers. The density van-
ishes at finite distance of the obstacle
in the case of a hydrophilic obstacle
sherer08=−5 andj /Î2D=1/20d. From
top to bottom:M=Mc=0.4841, 0.4
and 0.36. At critical Mach number, the
free surface height is nonzero. The
minimum of the density of the un-
stable solution gets closer to the cylin-
der and decreases far from the bifurca-
tion. Its value eventually becomes
unphysicalsnegatived sleft bottomd.
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V. DYNAMICAL RESULTS: DEWETTING SINGULARITY

The stationary solutions obtained numerically provide us
with adequate initial data for the study of dynamical solu-
tions. Indeed, after a small perturbation, their integration in
time will generate a dynamical evolution with emission of
small amplitude capillary-gravity waves.

When perturbing an unstable steady solution, it relaxes
toward the corresponding stable solution or it is destabilized.
In this latter case, we always find that the density minima
finally reach zero: the free surface of the fluid attains the
layer bottom. This behavior appears to be a finite-time sin-
gularity that can be related to the dewetting singularity of a
liquid on a hydrophobic solid. Such phenomenon is observed
in falling fluid experiments.20 A dry area is created, grows,
and forms stationary arches.

In our case, the singularity is found to happen for any
contact angle and takes place on the obstacle border for a
hydrophobic disk as well as for the caser08=0 ssee Fig. 11d
or in the bulk for a hydrophilic obstaclessee Fig. 12d. One
can qualitatively study the nature of this finite-time singular-
ity in the caser08=0. With this boundary condition, the den-
sity minimum located atsu ,rd=sumin,1d is such that

=rsumin,1d = 0. s41d

Denotingvmin as the displacement velocity of this minimum,
one can write

Dr

Dt
sumin,1d =

]r

]t
sumin,1d + vmin · = rsumin,1d s42d

FIG. 10. Critical Mach number as a function of the Neumann boundary
conditionr08 for j / sÎ2Dd=1/10.

FIG. 11. Time evolution of the dewet-
ting dynamics withr08=0 andj /Î2D
=1/Î2 at time t=0, t=s9/10dt* , t= t*

where t* is the singularity time. Left
column, densityr; right column, ve-
locity potentialf. The velocity poten-
tial gets steeper like in a shock forma-
tion at t* . The dewetting singularity
swhen r becomes negatived takes
place on the obstacle border forr08=0.
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=
]r

]t
sumin,1d. s43d

Defining the expressionsrmin=rsumin,1d and Dfmin8
=Df8sumin,1d ff8=f−v ·r , see Eq.s10dg and using the con-
tinuity equations9d, rmin satisfies

]trmin = − rminDfmin8 , s44d

which can be integrated as

rminstd = rminst0dexpF−E
t0

t

Dfmin8 sudduG . s45d

Therefore, the minimumrmin decreases exponentially
with time and can reach zero only whenDfmin8 std→`.

Note that the dynamical equation forf8 is the Bernoulli
equation

]tf8 = − 1
2s=f8d2 + 1

2v2 + 1 −r + 1
2j2Dr, s46d

which, in the absence of the surface tension term, corre-
sponds to the Euler equation known to present a finite-time
singularity. To check such a behavior, we plot the logarithm

of the density minimum and the velocity potential Laplacian.
While the energy is conserved, the two latter quantities di-
verge at a finite timet* as seen in Fig. 13. We have checked
that this singularity is independent of the time-stepping
schemes sleapfrog-Crank–Nicolson or implicit Euler
schemes have been testedd and is not due to a lack of spatial
or temporal resolutions.

VI. CONCLUSION

In summary, we have shown the existence of a saddle-
node bifurcation for capillary-gravity flows around a cylin-
drical obstacle in the limit of small depthH,Î3/2,c. The
saddle-node bifurcation of steady-state branches defines a
critical speed above which no stationary solution exists. At
subcritical speeds, the system can develop an instability if
enough energy is provided for it to reach the unstable branch.
The height of this nucleation barrier vanishes at the critical
speed. This bifurcation is robust and thus is expected to sur-
vive even when effects neglected in the present study are
taken into account, e.g., at finite but large enough Reynolds
numbers. Note that at the critical speed the transition is con-
tinuous.

FIG. 12. Same as Fig. 11sbut at a dis-
tinct intermediate timed with r08=−0.5
shydrophilic obstacled and j /Î2D
=1/Î2. The dewetting singularity
takes place at a finite distance from the
obstacle as seen in the bottom left
figure.
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Furthermore, the nonlinear time evolution of this insta-
bility has been shown to lead to a finite-time dewetting sin-
gularity beyond which the shallow water description does
not apply.

In the case of a two-dimensional nonlinear Schrödinger
superflow past a disk, it has been shown that an unstable
solution can emit a vortex pair corresponding to points where
the density vanishes11 for a small enough ratiojNLS/DNLS,
wherejNLS is the so-called coherence length andDNLS the
diameter of the obstacle. The analog of the vortex pair for-
mation in our present study is the dewetting singularity.
However, whenjNLS/DNLS.15, the emission of vortex pair
is replaced by the emission of rarefation pulses, which are
density depletion with nonzero density minimum.17 In the
case of our DSWE, it would be interesting to find if the
equivalent of the rarefaction pulse emissionsthat is, the ab-
sence of vanishing densityd exists in the limit of largej /D
with appropriate boundary conditionssin rd. This question is
left for future study.
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APPENDIX: SPECIALLY ADAPTED
PSEUDOSPECTRAL METHOD

We have specifically developed a code that can accu-
rately accommodate both large-r asymptotic behavior and
thin boundary layers near the obstacle atr =1. It is based on
a Chebychev decomposition using an adequate mapping. It
allows us to consider a unique obstacle in contrast with pe-
riodic pseudospectral methods11 which in fact model a net-
work of obstacles.

A. Mapping for a unique obstacle

Using standard polar coordinateshu ,rj, together with the
relation

rszd = z−1, sA1d

the domainh0øu,2p ,−1øzø1j can be mapped into the
physical domainhx,yj, with x2+y2ù1.

The basic mapping is

x = z−1cosu, y = z−1sinu, sA2d

and the inverse transformation reads

z= ±
1

Îx2 + y2
, u = arctansy/xd +

p 7 p

2
. sA3d

Any generic real fieldcsx,yd sc stands for the velocity
potential f or the densityrd appearing in the encountered
equations of motion is expressed in thehu ,zj domain as

csu,zd = cfxsu,zd,ysu,zdg, sA4d

with xsu ,zd andysu ,zd defined insA2d.
As xsu ,zd=xsu+p ,−zd and ysu ,zd=ysu+p ,−zd, the

hx,yj domain is mapped twice onto thehu ,zj domain. A
mapped field must therefore satisfy

csu,zd = csu + p,− zd. sA5d

The equations of motion are expressed as partial
differential equations in thehu ,zj domain by writing the
differential operators= and D in terms of u and z deriva-
tives that are polynomial inz, e.g., Dc=z2s]2c /]u2d
+z4s]2c /]z2d+z3s]c /]zd.

B. Spatial discretization

The fieldc is spatially discretized, in thesu ,zd domain,
using a standard Chebychev–Fourier pseudospectral
method,21 based on the expansion

FIG. 13. Dewetting singularity forr08=0. sad Top: Time evolution of the
density minimum logrmin, the Laplacian of the velocity potentialDfmin, and
the energyF as indicated in the legend. The energy is numerically con-
served until the singularity.sbd Bottom: the Laplacian of the velocity poten-
tial as a function ofu during time. Dots are the loci of the density minimum.
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csu,zd = o
n=1−Nu/2

Nu/2 Ho
p=0

Nr

cn,pTpszdJexp inu, sA6d

whereTpszd=cossp arccoszd is the order-p Chebychev poly-
nomial, andNu and Nr represent azimuthal and radial reso-
lutions.

The pseudospectral method calls for using fast Fourier
transforms to evaluatesA6d on the collocation points grid
sum,zkd with

um =
2pm

Nu

, 0 ø m, Nu, sA7d

zk = cos
pk

Nr
, 0 ø k ø Nr . sA8d

The relationTnscosxd=cosnx reduces the Chebychev
transform appearing insA6d to a sfastd Fourier cosine trans-
form. Thus, the evaluation ofsA6d sand its inversed only
requires a time proportional toNuNrlnsNuNrd. Computations
of nonlinear terms are carried out on the grid representations,
while u andz derivatives are carried out on the Chebychev–
Fourier representations.

The main virtue of mappingsA2d together with expan-
sionsA6d is its ability to accurately accommodate both large-
r asymptotic behavior and thin boundary layers nearr =1.
Indeed, on the one hand,sA6d is an expansion in product of
polynomials in r−1 with functions cosnu and sinnu, pre-
cisely the type of functions needed to capture large-r behav-
ior ssee Sec. IV A and Ref. 19d. On the other hand, the ac-
cumulation of collocation pointszp fsee Eq.sA8dg and the
regularity of sA2d nearz= ±1 allows expansionsA6d to si-
multaneously resolve boundary layers atr =1 with thickness
of order 1/Nr

2 ssee Ref. 21d.

C. Spectral symmetries of the fields

As c is real, the coefficientscn,p in sA6d are complex
conjugate,

c−n,p = c̄n,p. sA9d

They obey an additional relation, stemming fromsA5d.
Setting z=cossu8d, the fields must be invariant under the
transformationu°u+p , u8°u8+p. In spectral space, this
transformation readscn,p° s−1dns−1dpcn,p, implying

cn,p = s− 1dn+pcn,p. sA10d

Thus thecn,p coefficients are nonzero only whensn,pd
are jointly even or jointly odd. This relation, similar to that

found in the Taylor–Green vortex,22 is used to speed-up the
evaluation ofsA6d by a factor 2, using specially designed
even-odd fast Fourier transforms.

Integrals of mapped fields are performed on the colloca-
tion points using the discrete formula

E
V

rdr ducsr,ud = −
2p

Nu

p

Nr
o
n=0

Nu−1

o
p=0

Nr/2−1

csum,zkd

3Î1 − zp
2dr

dz
szpdrszpd. sA11d

D. Spectra

We define ther spectrum andu spectrum of a fieldc
spectrally represented bycn,p as the respective sequence of
numbers,

Sprspd = o
n=−sNu/2d+1

Nu/2

ucn,pu2, 0 ø p ø Nr , sA12d

TABLE I. Azimuthal and radial resolutions used for computing the bifurca-
tion diagram for differentj /Î2D for the two types of boundary conditions.

j / sÎ2Dd 1/2 1/s2Î10d 1/20 1/40 1/80

Nu3Nr 64332 64332 64364 1283128 1283256

FIG. 14. Stationary solution spectra withj /Î2D=1/20, Nu3Nr =64364,
andr08=−5: sad u spectra andsbd r spectra for a stable solution far from the
bifurcation, for the solution at the bifurcation and for an unsteady solution.
Spectral convergence is achieved for all stationary solutions.
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Spusnd = o
p=0

Nr

ucn,pu2, 0 ø n ø
Nu

2
. sA13d

Only half of theu spectrum is considered for theu represen-
tation is complex conjugated.

E. Time steppings

1. Stationary States
We search for stationary solutions of the dynamic equa-

tions s8d and s9d. Note that stationary solutions are those of
the equivalent diffusive equations that read in the abbrevi-
ated form, by lettingr=1+%,

]C

]t
= LC + WsCd, sA14d

with

C ; Sf

%
D, L ; SD 0

0 sD
D, W; SNLf

NL%
D , sA15d

and

NL%sf,%d = − 1
2s=fd2 − % + v · = f, sA16d

NLfsf,%d = %Df + = % · = f − v · = %. sA17d

To integratesA14d a mixed implicit-explicit first-order time-
stepping scheme is used,

Cst + td = sId − tLd−1sId + tWdCstd, sA18d

where Id is the identity operator andt the time step.
The Helmholtz operatorsId−tLd, block-diagonal with

respect to Fourier modes, is easily inverted in the Fourier–
Chebychev representation using the LU algorithm.23

As called for thet method21 the boundary conditions
s12d ands13d are substituted to the Eq.sA14d for the highest
Chebychev modesTNr−1 and TNr

. The operatorsId−tLd is
thus modified before inversion.

This relaxation method can only reach stable stationary
solutions ofsA14d. In order to also capture unstable station-
ary solutions18 we use the Newton branch-following method
detailed in Refs. 24, 10, and 11.

2. Branch-following Procedure
We search for fixed points ofsA18d, a condition strictly

equivalent to the stationarity ofsA14d. Each Newton step
requires solving a linear system for the decrementc to be
substracted fromC,

fsId − tLd−1sId + tDWd − Idgc

= fsId − tLd−1sId + tWd − IdgC, sA19d

whereDWsCd is the Fréchet derivative, or Jacobian matrix,
of W evaluated atC. EquationsA19d is equivalent to

sId − tLd−1tsL + DWdc = sId − rLd−1tsL + WdC. sA20d

The role oft is formally that of the time step insA18d,
but in sA19d or sA20d its value can be taken to be arbitrarily
large. Fort→`, sA20d becomes

L−1sL + DWdc = L−1sL + WdC. sA21d

In order to solve the linearized systems stemming from
the Newton method, we use BiCGSTAB.25 We vary t em-
pirically to optimize the preconditioning and convergence of
BiCGSTAB. A few hundred BiCGSTAB iterations are usu-
ally required to solve the linear system.

3. Dynamics
We write s8d and s9d in the abbreviated form

]C

]t
= L8C + W8sCd, sA22d

where

C ; Sf

%
D, L8 ; S 0 sD

− D 0
D, W8 ; S NL%

− NLf
D ,

sA23d

with NL% and NLf defined in Eqs.sA16d and sA17d.
EquationsA22d is time stepped using either the leap-frog

Cranck–Nicolson scheme

Cst + td = s1 − tL8d−1hs1 + tL8dCst − td + 2tW8fCstdgj

sA24d

or the implicit Euler scheme

Cst + td = s1 − tL8d−1hCstd + tW8fCstdgj. sA25d

The boundary conditionss12d and s13d are imposed by
modifying the operators1−tLd−1, as done for the relaxation
time-stepping algorithmsA14d. The leap-frog Cranck–
Nicolson scheme is initiated by an Euler time step and mix-
ing steps21 are performed periodically to avoid leap-frog in-
stability.

F. Numerical convergence

Our numerical method based on Chebychev polynomial
expansions allows to solve the boundary layer of orderj by
refining the collocation points near the boundary conditions.
The smallerj is the larger the radial resolutionNr must be.
Table I lists the resolutions used for computing the bifurca-
tion diagram for eachj /Î2D. Spectral convergence is
achieved for all stationary solutions as shown in Fig. 14.
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