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The stability of perfect-fluid capillary-gravity surface flows past a cylindrical obstacle is studied in
the shallow water limit, using the two-dimensional compressible Euler equations, with leading-order
dispersive corrections. Stationary solutions with different contact angles are obtained by Newton
branch following, based on Fourier pseudospectral methods, using mapped Chebychev polynomials.
Stable and unstable branches are found to meet, through a saddle-node bifurcation, at a critical speed
beyond which no stationary solution exists. For large obstacles, the stable branch is compared with
the stationary solutions of the compressible Euler equation without dispersion. Boundary layers are
investigated. In this regime, the unstable dynamics are shown to lead to a finite-time dewetting
singularity. ©2005 American Institute of PhysidDOI: 10.1063/1.1926267

I. INTRODUCTION at constant depth of an immersed object a continuous transi-
Nonlinear problems involving capillary and gravity ef- tion should be found. However, this qualitative agreement

fects in free surface perfect flows, such as the generation aﬁ’&'th .the expen.njent was not entirely saUsfactory, since the
radiation of capillary-gravity waves by a moving obstacle,pred'Cted transition was rather sharp and very different func-
have attracted much attentidf tionally from the experimental one. Furthermore, the behav-

Although the existence of a critical speed for the onset of®" of the wave drag abov'e the transition was not in a good
capillary-gravity wave drag is well established, there remain&9reément with the experimental observations.
a controversy on the order of the transition. In the infinite ~ ©On Palance, it thus appears crucial not to neglect the
depth limit, early theoretical wofkand experimenfawere in ~ Wetting and capillary forces on the immersed object. As a
favor of a discontinuousor first-ordey transition. However, first SteP In this direction we will study here the Sh?IIOW
another experimental result published at the same’tiae Water 'I|m|t where the problem becomes quasi-two-
vored a continuougor second-ordértransition. It was sug- dimensional. o
gested in this paper and in the following extended pet When the channel depth is infinite, it was recogn_lr’zﬁed
the large scatter observed in the former experifherts the ~ that, due to the existence of a wave number at which the
result of uncontrolled pinning and stick slip due to wetting Phaseé speed is minimum, the problem has a deep analogy
and capillary forces that considerably exceed the wave drad!!th that of the breakdown of superfluidity in a model of
It was also argued that this scatter was interpreted by th ehumslthat includes roton excitations. o ,
authors of the former experiment as a discontinuous transi- _ At finite depth, itis well known that two distinct regimes
tion. Moreover, by switching on and off the feedback, exist for the prppagatlon of linear waves. .If the depth is !arge
Burghelea and Steinbérghowed the crucial role of capillary €"0ugh. a regime analogous to the infinite depth one is ob-

forces in altering the results of measurements of the wavéined with a negative dispersive term. In contrast, if the

drag force. It thus appears that experimentally only continud€Pth is small enough, the dispersion changes sign and there

ous transition to the wave drag state was observed. is no minimum in phase speed.
Later on, it was suggestbthat two different results on The present study is devoted to that latter small-depth

the order of the transition could be obtained, depending ofi€9ime. This regime is analogous to the problem of break-
the experimental condition: at constant force on an immersefoWn of superfluidity when only phonon excitations are

—11 .
object a discontinuous transition should be observed, whil@resent™" It also corresponds to the experimentally ob-
served critical speed for onset of dissipation in Bose—

Einstein condensatés.

¥Electronic mail: pham@lps.ens.fr

bEjectronic mail: nore@limsi.fr The paper is organized as follows. In Sec. Il we show
®Electronic mail: brachet@Ips.ens.fr that the small-depth regime can be studied in the shallow
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water limit where the problem becomes two dimensional. ' ' C
Section Il is devoted to the derivation of the boundary layer
analytical expressions for Neumann boundary conditions; ) — H < H,
Sec. IV contains validations of the numerical procedure and
new results on bifurcation diagrams and critical Mach num- ¢,(k)/c | ~ H>H. -~
bers; in Sec. V, our results on the dynamical regime are re- | .7
ported, paying particular attention to a finite-time dewetting P -

singularity; finally Sec. VI is our conclusion. The specially
adapted numerical method used in this work is detailed in the
Appendix. /e

Il. PRESENTATION OF THE MODEL 0 ] 5 3 4

In this section, we present the approximated two-
dimensional equations that model the effect of a disk of raF!G. 1. Nondimensionalized phase speedk)=w(k)/ck [see Eq.(1)],

dius un|ty (diameter D=2) movmg at constant speevl where c= \gH is the gravity wave speed. In the large-depth regithle
. ! >H,), the curve displays a minimum similar to the roton minimum in su-
=ve, in a shallow layer fluid at rest.

: A ) ° ) ) perfluid, whereas in the small-depth regirft¢<H.), the minimum phase
We first discuss this approximation in term of wavesvelocity is that of the gravity wavesatk=0. The small-depth regime is the

propagating on a fluid layer and then introduce the cylindri-regime studied in this paper.

cal obstacle. We next propose a variational formulation asso-

ciated with our dispersive shallow water equati¢pSWE).

We introduce also a relaxation procedure allowing to reach sinh(Hk.,)?
steady solutions in a simple manner. Cm= ZC\/Hkm[ZHkm+ sinh(2Hk)]"

A. Dispersion relation with surface tension Note that this minimum is somewhat equivalent to the roton

Im|n|mum in the dispersion relation of superflwd heliath.
Conversely, in the small-depth regimé < \3/260, the

phase velocity is a strictly increasing functionlofsee Fig.

1). Taylor expanding»?(k) aroundk=0 yields

(5

Let us first consider waves propagating on a fluid laye
with no obstacle. Specifically, we are interested in the dy-
namics of surface disturbances of vertical amplitedand
typical horizontal length scalk™, in a fluid of depthH and
surface tensiomw. X o s 2 2

In the linear regimea/H <1 andka<1, the dispersion w’(k) = ¢*| K>+ k* 2 3/ (6)
relation reads

5 showing that dispersion effects are controlled by an effective

w?(K) = k(g + k—o>tanr(Hk), (1) capillary length defined by
where u is the fluid density and) the gravity acceleration.

In the infinite depth limitH — o, the dispersion relation Note that in this regime, the dispersion relati@ is similar
reads to that encountered in the Gross—Pitaevskii equation, also

2,2 called the nonlinear Schrodinger equati®flLS), modeling
M, (2)  superfluid$**** or accurately describing Bose—Einstein
2 condensate¥’
where?{ —\'m is the capillary Iengtﬁ In this limit, the Inyie following, th? ﬂ_Uid Iaygr is suppqse_d tP be smaller
phase_peed: (K =w(K) /K admlts a local minimumc,, thgn\e’3/2€c and the fluid is c0n5|dered.as |pV|sc?|d. Note that
=21/4,g¢. at wave numbekm—\2/€ this supposes that although the flow is thin, viscous effects
are small enough to be neglected.

Let us be more quantitative on this aspect of the prob-
lem. At leading order, we can estimate the viscous effects
2K = k(2 +k?€2)tanh(HK) 3 within two different approximations: for very thin films in

2H ' the lubrication approximation and for thicker films in the
boundary layer approximation. On the one hand, the lubrica-
tion approximatio®® gives the damping time scatg=H?/v,
wherewv is the fluid kinematic viscosity. Viscous effects can
be neglected iff is greater than the time scale of advection
7,=D/U, whereU is of the order of gravity wave speed
On the other hand, the boundary layer approximation gives

w’(K) =

For finite depthH, the dispersion relatioml)_can be
expressed in terms of the gravity wave speed/gH as

Two different regimes can be distinguished.

The large-depth reg|md—|>v3/2€c, is similar to the
infinite depth regime. The phase speggk) admits a mini-
mum at a finite wave numbd;, (see Fig. ], related to the
capillary length€. by

N 4HK., the following thickness of the boundary layé=D/\Re,

b= 1 50 sinf2Hk )’ (4)  with Re=UD/ . Viscous effects are negligible &< £ which

m m amounts tov/ U< ¢/D. For a water layer of thicknesd

The minimum phase spee,<c is related tok,, by =1 mm and viscosityy=10° m?s™%, we find =1 s and
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m,=D/c. Thus viscous effects are small provided ttat
< 0.1 m. Turning now to boundary layer effects, the condi-
tion for viscous effects to be small yielddD>3x 1073,
Therefore, there is a range of diameter 1 mi <10 cm
for which the viscosity can be neglected in the regimes we
study.
The model we study is formally very close to the NLS obstacle
equation describing superflows, the capillary lengtplay-
ing the role of the so-called coherence length. It is thus ofiG. 2. Definition of the contact angle, at the cylinder. It corresponds to
interest to compare both systems. Moreover, the model of atre Neumann boundary conditiahp|s=cotag/H=p; [Eq. (12)].
inviscid flow past an obstacle in the small-depth regiire,
with no local minimum for the phase velocjtyhas not yet
been studied.

as the unique boundary condition. The stationary solutions of
the two-dimensional Eulerian flow and the critical Mach
number have been calculated previo&%ly.

Taking into account nonlinear effects and dominant or-  We denote by() the planeC deprived ofD) the disk of
der dispersive effects, in the small-depth linear regime, ouradius unity and by the boundary of the domain, that is,
shallow water approximatiérreads, in the frame of a cylin- the circle of radius unity. We will naturally use the polar
drical obstacle of unit radius, moving at speed+uve,, coordinategr, 6) such thatx=r cosé andy=r sin 4, and the

associated unit vectors are denoted(bye,).
dp=3C2EAp—3(VP)?+c3(L-p)+v- V ¢, (8) aye

B. Two-dimensional reduction

C. Variational formulation

dp=—pAdp—Vp-Vo+v-Vp, 9
w=-pAd P ¢rv-Vp © In the rest of the paper, we usé=1.

where p stands for the thickness of the fluid lay@rondi- The dispersive shallow water equations may be derived
mensionalized byd), ¢ is the horizontal velocity potentiaf, ~ from the following action functionajwith n=-e, the unitary

is the effective capillary length renormalized by the effects ofexternal normat

finite depth given by Eq(7), andc the gravity wave speed.

Note that the standard shallow water equation does not con- o | 1 P TIRE VI Jr e
tain the dispersive correction. €= fﬂd X[ 2p(V¢) * z(p D7+ ¢ (Vo)
Defining the velocity in the obstacle frame as
1
U=Vd¢o-v, (10 —§§zﬂgﬂd€anp, (14)
17
Eq. (9) reads
dp+ V -(pU)=0. (11 P:f dZX[(p—l)V(,‘[)]'Fé dtne, (15)
Q 179}

Therefore, the systeii8) and(11) yields, respectively, to
the Bernoulli equatioriwith a supplementary dispersive term
depending or¥) and the continuity equation for a barotropic F=E-Vv- P, (16)
compressible and irrotational flow. These equations are our
DSWE in the presence of a disk.

The boundary conditions on the obstactel read A= _J dt{pdip + F}, (17)

dp = cotag/H = pg, (12
by considering the Euler—Lagrang®4/5p=0 and 8 A/ ¢
a(p—-v-r)=0, (13 =0 associated t@17). Note the presence of supplementary

. o boundary terms o) that ensure the appropriate boundary
the angleq, being the contact angle of the liquid on the -nditions on the obstacle.

obstacle measured with respect to the ascendant vefisieal This formulation stresses that the dynamics under the

Fig. 2). For convenience, we denofg=cotao/H, the de-  pgweE is conservative. Therefore, in order to obtain station-
rivative of p with respect tor at the cylinder which has the 51y solutions from arbitrary initial conditions, we need to
dimension of the inverse of a length. The Neumann bou”dar}ﬁroceed through a relaxation procedure.

condition (12) physically corresponds to a hydrophobic ob-

stacle forage[0:m/2[ or py>0 and to a hydrophilic ob- p Relaxation toward steady states

stacle forage Jm/2:7] or py<0. The particular valuey, o _ _ ) )
=7/2 corresponds to a homogeneous Neumann condition Our aim is to find steady solutions starting from arbitrary

ph=0. initial conditions. Note that the equations
Note that, foré=0, Egs.(8) and(9) reduce to the Euler 1. 1 5
equations for a compressible barotropic fluid, with ELR) dp=380p—3(VP) +1-p+tv- Ve, (18
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hp=pAdp+ Vp-V-v-Vp, (19

admit the same stationary solutions than E@. and (9)

(with c®=1). However, this relaxation method can only reach
stable stationary solutions. In order to also capture unstable

stationary solution&® we apply to Egs.(18) and (19) the

Newton branch-following method that is detailed in the Ap-

pendix.

IIl. BOUNDARY LAYER SOLUTIONS: ANALYTICAL
RESULTS

We now present calculations of the stationary solution

in the limit £&//2D — 0. For nonzero Mach number

M=|vllc=1v], (20
we define the new phase variable
o=—(¢p—vrcoshlv. (21)

The Bernoulli(8) and continuity(9) equations then read

1, M? )
0=§§AP—p+1+7[1—(V<P)], (22)
0=pAp+ Vp-Ve. (23

The boundary conditions now read

aplan = Pos

r@lsa=0.
At finite but small Mach number, we expapdand ¢ as

p:p<0>+M2p<l>+ +M2kp<k>+ s (24)

o= go<0>+./\/lzqo<1>+ +M2k¢<k>+ (25)

Note that if one knowsp at orderM?, one can formally
deducep at order M2 D by solving (22). The potentiale
can then be computed at ordén?**V by solving (23). In

order to computep, we will have to solve equations of the

type

d? 1d 2
E§m+;a§m—%wm:RHao, (26)

where RHS is the right-hand side.

Solutions to the corresponding homogeneous equation

are
y(r)=Ar"+Br ™", (27)

so that the general equation with nonzero RHSan be

computed using the method of variation of parameter. Using AFO=-V pgo> V&0

the boundary conditions lim ,..y(r)=0 anddy/dr(r=1)=0

S

Phys. Fluids 17, 062104 (2005)

-n +o0
y(r)=- %f RHS(u)(ut*"+ u™du
1

rn +o0 r_n +o0
- Ef ul RHS(u)du+ ?J u™RHS(u)du,
r r

(28)

provided that the function RHS decreases rapidly enough at
infinity. Note that the first term of(r) leads to a term of the
type C/r. Due to the expressions of RHS encountered in the
following computations, the two last terms will turn out to
tend to zero exponentiallon a length scale of ord€j), so

that the behavior at infinity of the functiop will be gov-
erned by a long-range algebraic term that reads

y(r) ~ (29)

r—+o0

1 +0o0
- Ff RHS(u)(ut*"+ u*™du.
1

A. Case of inhomogeneous Neumann conditions
(po#0)

We now turn to the computation of the stationary solu-
tion in the general case of inhomogeneous Neumann bound-
ary conditionsp} # 0. Expressions fop® and ¢!© are obvi-
ously needed to bootstrap the iteration. When the Mach
number is zerop=0 is solution of the stationary equations
and p satisfies

282Ap 0 - p@+1=0. (30)

The solution of this equation with the correct boundary con-
ditions reads

4 [or [2
i)l
V2 3 £

whereK,, is the (ordern) modified Bessel function. The pro-
file p'®-1 is displayed in Fig. @).
The velocity potentialy!® then satisfies

(31

AP ==V p9. VO +(1-p0)Ae0. (32
We write
(P<O> = ‘szler"' ¢<O>: (33

whereqog’glerz(wllr)cosa is the solution at order 0 ithM?

of the Eulerian flow. Using the relatioﬁcpg,erzo, Eq. (32

yields the following equation foz'?:

NG ==Vp - Vgl V5O VO
+(1-p AT, (39

This equation cannot be solved directly. We keep in the
right-hand side, at the dominant order of the computations,
the first term and drop the two others. The functigf is
then the solution of the equation
(39

Euler

yields for the solution of the inhomogeneous equation théThe expression c@'” can be computed using E(®8). The

explicit expression

potential ¢'© (33) is shown in Fig. &) computed with
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FIG. 4. Plot of the analytical renormalized rad[agshed line, see E(38)]
as a function oft together with the numerical solutioridots. The contact

angle on the cylinder perimeter is such tpgt -5, and the Mach number is
(b) M=0.001. The agreement is very good for sml{/2D.

e
e —
—

—
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B. Case of homogeneous Neumann condition  (p;=0)

The same procedure with homogeneous Neumann
boundary conditiorpy=0 can be shown to lead to a renor-
malized radiu¥’

2 2
e -3

lo o

LT IA
BT

ALY
LR

Note that contrary to the cagg+ 0, this effective size de-
pends on the Mach number.

IV. STATIONARY SOLUTIONS

FIG. 3. (Color onling. Plots of(a) -1 [Eq. (31)] and(b) ¢© [Eq. (33)]

for &/\2D=1/20 andpy=-1. This section is devoted to the numerical determination of
stationary solutions using the branch-following method de-
tailed in the Appendix. We first compare analytical results of
Sec. lll with numerically obtained profiles of boundary lay-
ers with inhomogeneous Neumann conditigpis# 0). It is a

MATHEMATICA . Equation(29) yields, far from the obstacle 44 test of the numerical precision and efficiency of our

and in the limit¢/v2D —0, new method, which has already been checked in Ref. 17 in a
superfluid context, with different equations of motion.

~(0) ﬁ The rest of the section contains the numerical results on

¢~ T, cost. (30 the bifurcation diagrams and the stationary solutions of the

_ _ ~ DSWE at small effective capillary lengths for the two types
Note that the compressible Eulerian flow around a diskof Neumann boundary conditions: homogeneous and inho-
of radiusr; admits at order zero iM< the following solu-  moegeneous. We study the dependence with the Mach number

tion: and the effective capillary length of the solution profiles
and show that unstable solutions far away on the branch can
o - rf become unphysical by having negative density. We also
Peuters; =\ 17 cosé, (37 study the dependence of the critical Mach number igind

with the contact angle.
- - o (0
in order to satisfy the bc(nOL:ndary conditiofpg, e, =0- THUS, A comparison with analytical boundary layer results
the correction inp® to @ ier IS @ long-range term that can be for inhomogeneous Neumann conditions
physically interpreted as a renormalization of the diameter of

the disk: at large distances the flow is equivalent to an Eule- We_ now compare the _analytlcal results of Sec._ i .W'th
rian flow around a disk of radius given by numerically obtained solutions of boundary layers with inho-

mogeneous Neumann conditions. Figure 4 displays the ana-
) o lytical renormalized radiu$Eg. (38)] as a function of¢ to-
(ﬁf) :1+Po§ +0(&). (39) gether with numerical results, obtained by computing the

ro ro coefficient in co9/r of the velocity potential of the station-
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FIG. 5. Bifurcation diagrams for differeng/\2D and p;=0. The stable ) ) — ) )

branch tends to the Euler branch wheh/2D decreasesa) Energy func- /G- 6. Stationary solutions fai/ y2D=1/2 andp;=0. (a) Densityp|;, (b)

tional &, (b) free energy functionaF. v_elocny potent'lalqb\m. Note that the steady-state density can bec_ome nega-
tive for a certain Mach number far from.. The phase varies continuously
but is very steep whep is negative.

ary state. The agreement between analyticished ling havior is the signature of a Hamiltonian saddle-node bifur-
and numerical result@oints is very good for smal/ V2D cation. This is the same type of bifurcation as that obtained

emphasizing the ability of our method to compute thin'n Bose—Einstein condensatés. ,
boundary layers. Density minima of the steady solutions are located on

the disk border atd,r)=(x=/2,1) for p,=0. Unstable solu-
B. Bifurcation diagrams and stationary states

We present the bifurcation diagrams and the stationary g, ' '
solutions of the DSWE for the homogeneous Neumann
boundary conditiop)=0. The hydrophobiépj>0) and hy- 08 i
drophilic (py<0) cases lead to similar diagrams and solu- 0s | Euler N\
tions. R §/\/§D =1/40 ,,{

The values of E(M)-£(0) and F(M)-F(0) (the 04 | -€/V3D=1/20 | |
change of energie§ and 7, relative to zero Mach numbger e §/V2D=1/V10 | |
are displayed in Fig. 5 as a function of the Mach numiér 0.2 . £V2D=1/2 |
for various values of/v2D andpy=0. As can be seen by the
inspection of the figure, the stable stationary branches are Or )
almost superimposed on the Euler branch wien2D de- 02 . ‘ A
creases. For eacl/ V2D, the stable brancllower branch "0 01 02 03 04 05 06 07 08
disappears with the unstable solutiGmpper branch at a M

saddle-node bifurcation whek =M. There are no station- FIG. 7. Density minimepy,, as a function of the Mach numbgvt and the

ary solutions beyond thi? point.. FurthermoﬂM)_.f(_O) effective capillary length¢/ 2D for py=0. Note that, far enough on the
presents a cusp at the bifurcation point. This qualitative beunstable branch, the density can reach unphysical negative values fér any
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08 1 I Coc = \‘;‘ng: (40)
075 . _ _
07| the DSWE are thus unstablbecause of the antipropagative
M. oes L instability) whenc? . <O0.
' Figure 6 shows that both the density and the phase go
08T o into the unphysical regime continuously. This behavior ap-
055 ° pears for any effective capillary length as shown in Fig. 7.
0.5 | Figure 8 shows the variation of the critical Mach number
045 | MEder ~ (369697 - with the effective capillary length: it increases withand
0al J | tends to the Euler valdé ME"*'=0.369 697 052 5@) for
' . £\2D—0 following the scaling law M= MEUer
Y 0.1 1 +y(¢/D)P with B=0.69.
£/v/2D When p{ # 0, the contact angle creates an exponentially

decreasing boundary layer around the obstacle. Bifurcation
FIG. 8. Critical Mach number as a function of the effective capillary length diagrams similar to those found With('):O are obtained:
for pg=0. Inset: differenceA between the critical Mach number and the bl d ble b h ddl d b'l;
Eulerian one(A =M~ ME"®) as a function of the effective capillary length S.ta €an lj":]Sta e branches meet at a Szli €-no e. ffurca-
for py=0. It follows the scaling lawA ~ (£/D)? with 8=~0.69. The dashed tion, at a critical Mach number beyond which no stationary
line in the inset stands fd&/ D)%% solution exists(data not shown The only difference stems
from the location of the density minima: fag>0 (hydro-
phobic obstaclg the latter are located on the disk border
tions far from the bifurcation tip see their density decreasewhile, for p;<0 (hydrophilic obstaclg they are situated at a
reach zero, and become negative. A negative density solutidimite distance from the disksee Fig. 9.
is unphysical but is nevertheless solution of the DSWE. It  Figure 10 reports the variation of the critical Mach num-
can be inferred that it is dynamically unstable since the locaber with the nature of the obstacle. The critical Mach number
sound speed satisfies decreases linearly witpy.

M= M, ~0.4841 M= M, ~0.4841

FIG. 9. Stationary density (left) and
velocity potential¢ (right) for differ-
ent Mach numbers. The density van-
ishes at finite distance of the obstacle
in the case of a hydrophilic obstacle
(herepy=-5 andé/V2D=1/20). From
top to bottom: M=M_.=0.4841, 0.4
and 0.36. At critical Mach number, the
free surface height is nonzero. The
minimum of the density of the un-
stable solution gets closer to the cylin-
der and decreases far from the bifurca-
tion. Its value eventually becomes
unphysical(negative (left bottom).

M =10.36
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M.

G\

0.475 \
0.45 \

0.425 9\
o

0.4
-6 -4 -2 0 2 4

/

Po

FIG. 10. Critical Mach number as a function of the Neumann boundary,

condition p}, for ¢/(v2D)=1/10.

V. DYNAMICAL RESULTS: DEWETTING SINGULARITY

The stationary solutions obtained numerically provide u
with adequate initial data for the study of dynamical solu-

S
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When perturbing an unstable steady solution, it relaxes
toward the corresponding stable solution or it is destabilized.
In this latter case, we always find that the density minima
finally reach zero: the free surface of the fluid attains the
layer bottom. This behavior appears to be a finite-time sin-
gularity that can be related to the dewetting singularity of a
liquid on a hydrophobic solid. Such phenomenon is observed
in falling fluid experiment§.0A dry area is created, grows,
and forms stationary arches.

In our case, the singularity is found to happen for any
contact angle and takes place on the obstacle border for a
hydrophobic disk as well as for the cagl=0 (see Fig. 11
or in the bulk for a hydrophilic obstacleee Fig. 12 One
can qualitatively study the nature of this finite-time singular-
ity in the casepy=0. With this boundary condition, the den-
sity minimum located até,r)=(6ui,, 1) is such that

Vo(6in 1) = 0. (41)

Denotingu i, as the displacement velocity of this minimum,
one can write

tions. Indeed, after a small perturbation, their integration in

time will generate a dynamical evolution with emission of

small amplitude capillary-gravity waves.

1/t =9/10

000 =+
ofhhmm-iv

=1

dp

%(0mina 1) = —(bmin D + Viin - V p(Orins 1) (42)

Dt ot

t/t* =9/10 . .
/ / FIG. 11. Time evolution of the dewet-

ting dynamics withpj=0 and ¢/+2D
=1/y2 at timet=0,t=(9/10t", t=t"
wheret” is the singularity time. Left
column, densityp; right column, ve-
locity potential ¢. The velocity poten-
tial gets steeper like in a shock forma-
6 tion at t". The dewetting singularity
(when p becomes negatiye takes
place on the obstacle border fa§=0.
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=0

t/e =3/4

R
RTINS
s

N2

Ip
= ( Omins 1) .

P (43

Defining the expressiongmin=p(6min, 1) and Ad/,
=Ad' (0pim, D) [ ==V 1, see Eq(10)] and using the con-
tinuity equation(9), pmi, satisfies

HPmin =~ pminA(ﬁrl’nin* (44)
which can be integrated as
t

Prin(D) = pmin(to)expl — f Ad)r’nin(u)du (45)

to

Therefore, the minimunp,,,, decreases exponentially
with time and can reach zero only whéwp/; (t) — .

Note that the dynamical equation fgt is the Bernoulli
equation

g’ ==3(Ve')2+ 502 +1-p+38Ap, (46)

RN
SRR
iR
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' =0

FIG. 12. Same as Fig. 1but at a dis-
tinct intermediate timewith py=-0.5
(hydrophilic obstacle and &/v2D
=1/y2. The dewetting singularity
takes place at a finite distance from the

6 obstacle as seen in the bottom left
figure.

of the density minimum and the velocity potential Laplacian.
While the energy is conserved, the two latter quantities di-
verge at a finite tim¢" as seen in Fig. 13. We have checked
that this singularity is independent of the time-stepping
schemes (leapfrog-Crank—Nicolson or implicit Euler
schemes have been testedid is not due to a lack of spatial
or temporal resolutions.

VI. CONCLUSION

In summary, we have shown the existence of a saddle-
node bifurcation for capillary-gravity flows around a cylin-
drical obstacle in the limit of small deptH <3/2¢.. The
saddle-node bifurcation of steady-state branches defines a
critical speed above which no stationary solution exists. At
subcritical speeds, the system can develop an instability if
enough energy is provided for it to reach the unstable branch.
The height of this nucleation barrier vanishes at the critical
speed. This bifurcation is robust and thus is expected to sur-
vive even when effects neglected in the present study are

which, in the absence of the surface tension term, corretaken into account, e.g., at finite but large enough Reynolds
sponds to the Euler equation known to present a finite-tim&umbers. Note that at the critical speed the transition is con-
singularity. To check such a behavior, we plot the logarithmtinuous.
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FIG. 13. Dewetting singularity fop,=0. (a) Top: Time evolution of the
density minimum log,,i,, the Laplacian of the velocity potentialg,,, and

the energyF as indicated in the legend. The energy is numerically con-
served until the singularityb) Bottom: the Laplacian of the velocity poten-
tial as a function o during time. Dots are the loci of the density minimum.

Furthermore, the nonlinear time evolution of this insta-
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APPENDIX: SPECIALLY ADAPTED
PSEUDOSPECTRAL METHOD

We have specifically developed a code that can accu-
rately accommodate both largeasymptotic behavior and
thin boundary layers near the obstacle atl. It is based on
a Chebychev decomposition using an adequate mapping. It
allows us to consider a unique obstacle in contrast with pe-
riodic pseudospectral methddsvhich in fact model a net-
work of obstacles.

A. Mapping for a unique obstacle

Using standard polar coordinatf r}, together with the
relation

r(z)=z71, (A1)
the domain{0< §<2m,-1<z<1} can be mapped into the

physical domair{x,y}, with x2+y?=1.
The basic mapping is

x=zcosh, y=z"1sing, (A2)
and the inverse transformation reads
1 TF T
Z= =, 0 = arctary/x) + (A3)
VX" +y

Any generic real field/(x,y) (¢ stands for the velocity
potential ¢ or the densityp) appearing in the encountered
equations of motion is expressed in &z} domain as

#(6,2) = Y{x(6,2),y(6,2)], (A4)

bility has been shown to lead to a finite-time dewetting sin- _ .
gularity beyond which the shallow water description doesWith x(6,2) andy(6,2) defined in(A2).

not apply.

As x(0,2)=x(0+m,-z) and y(6,2=y(0+m,-2), the

In the case of a two-dimensional nonlinear SchrédingefX,y; domain is mapped twice onto thg,z; domain. A
superflow past a disk, it has been shown that an unstabl@apped field must therefore satisfy
solution can emit a vortex pair corresponding to points where

the density vanishésfor a small enough rati@y, s/Dys,
where &, s is the so-called coherence length abg, s the
diameter of the obstacle. The analog of the vortex pair for

mation in our present study is the dewetting singularity.

However, wheréy s/Dy s> 15, the emission of vortex pair
is replaced by the emission of rarefation pulses, which ar
density depletion with nonzero density minimdfin the
case of our DSWE, it would be interesting to find if the
equivalent of the rarefaction pulse emissi@hat is, the ab-
sence of vanishing densjtexists in the limit of largeg/D
with appropriate boundary conditiofi® p). This question is
left for future study.

Downloaded 01 Oct 2005 to 129.199.120.1. Redistribution subject to AIP

W6,2) = Y(0+7,—2). (A5)

The equations of motion are expressed as partial
differential equations in thd#,z} domain by writing the
differential operatorsV and A in terms of 8 and z deriva-

fives that are polynomial inz, e.g., Ay=22(Pyl 967

Y2 (Pl 922) + (9l 92).

B. Spatial discretization

The field ¢ is spatially discretized, in théd,z) domain,
using a standard Chebychev—Fourier pseudospectral
method?* based on the expansion

license or copyright, see http://pof.aip.org/pof/copyright.jsp



062104-11  Critical speed for capillary-gravity surface flows

TABLE I. Azimuthal and radial resolutions used for computing the bifurca-
tion diagram for different/2D for the two types of boundary conditions.

&(\2D) 1/2 1/(2y10  1/20 1/40 1/80
NyXN, 64x32  64x32  64x64 128128 128x256
Ng/2 N,
WO.2)= 2 |2 tnpTp(2@ [exping, (A6)
n=1-Ny2 | p=0

whereT,(2)=cogp arccos) is the orderp Chebychev poly-
nomial, andN, and N, represent azimuthal and radial reso-
lutions.

Phys. Fluids 17, 062104 (2005)

The pseudospectral method calls for using fast Fourier

transforms to evaluat@A6) on the collocation points grid

27m
6n=——, 0=m<N, (A7)
Ny
k
z=cos—, O0s<k=N,. (A8)

N,

The relationT,(cosx)=cosnx reduces the Chebychev
transform appearing ifA6) to a (fast) Fourier cosine trans-
form. Thus, the evaluation ofA6) (and its inversg only
requires a time proportional td,N,In(NyN,). Computations

of nonlinear terms are carried out on the grid representations,
while 6 andz derivatives are carried out on the Chebychev-

Fourier representations.

The main virtue of mappingA2) together with expan-
sion(A6) is its ability to accurately accommodate both large-
r asymptotic behavior and thin boundary layers nead.
Indeed, on the one han@i6) is an expansion in product of
polynomials inr~! with functions cos\@ and sinng, pre-
cisely the type of functions needed to capture lardeshav-
ior (see Sec. IV A and Ref. 190n the other hand, the ac-
cumulation of collocation pointg, [see Eq.(A8)] and the
regularity of (A2) nearz==1 allows expansioriA6) to si-
multaneously resolve boundary layers atl with thickness
of order 1N? (see Ref. 21

C. Spectral symmetries of the fields
As ¢ is real, the coefficients), , in (A6) are complex
conjugate,

Vonp = Unp- (A9)

They obey an additional relation, stemming frd&b).
Setting z=coq#’), the fields must be invariant under the
transformation6— 6+, 8’ — 6’ + . In spectral space, this
transformation readgy, ,— (-1)"(-1)P¢, ,, implying

‘ﬂn,p = (_ 1)n+p¢n,p- (AlO)

Thus they, , coefficients are nonzero only when, p)
are jointly even or jointly odd. This relation, similar to that
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FIG. 14. Stationary solution spectra wit \fED:l/ZO, Ny X N,=64X 64,
andpy=-5: (a) ¢ spectra andb) r spectra for a stable solution far from the
bifurcation, for the solution at the bifurcation and for an unsteady solution.
Spectral convergence is achieved for all stationary solutions.

found in the Taylor-Green vortex,is used to speed-up the
evaluation of(A6) by a factor 2, using specially designed
even-odd fast Fourier transforms.

Integrals of mapped fields are performed on the colloca-
tion points using the discrete formula

Ng=1 Ny/2-1
J Q

rdr dOy(r, 6) = Jgmm > X W0z

N0 Nr n=0 p=0

——d
12 (7)r(z). (A1)

D. Spectra

We define ther spectrum and spectrum of a fieldy
spectrally represented by, , as the respective sequence of
numbers,

Ny/2

>

n=-(Ny2)+1

SP(p) lYnpl?, O<p=N,, (A12)
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N, N In order to solve the linearized systems stemming from
SN =2 [¢npl2, 0<n< ?‘9 (A13)  the Newton method, we use BiCGSTABWe vary r em-
p=0 pirically to optimize the preconditioning and convergence of

Only half of thed spectrum is considered for therepresen- BiCGSTAB. A few hundred BiCGSTAB iterations are usu-

tation is complex conjugated. ally required to solve the linear system.
3. Dynamics
E. Time steppings We write (8) and(9) in the abbreviated form

1. Stationary States

We search for stationary solutions of the dynamic equa-
tions (8) and (9). Note that stationary solutions are those of
the equivalent diffusive equations that read in the abbreviwhere
ated form, by lettingp=1+p,

A4
E:L’\P+W'(\P), (A22)

¢ 0 oA NL,
PG v=|"] L= , W= :
L W), (A14) e -A 0 —NLy
(A23)
with . . .
with NL, and NL, defined in Eqs(A16) and (A17).
K (A 0 _ (NLy Equation(A22) is time stepped using either the leap-frog
V= , L= , W= . (A15) .
0 0 oA NL, Cranck—Nicolson scheme
and Yi+=1-AL)HA+L)V({t-7+2W [FOD]
NL,(¢,0)==3(V$)* -0 +Vv- V ¢, (A16) (A24)
or the implicit Euler scheme
NL,(0)=eAd+ Ve - Vh-v- Vo (A17) b
— _ -1 ’
To integrate(A14) a mixed implicit-explicit first-order time- W(t+7) =0 =) PO + WO (A25)
stepping scheme is used, The boundary condition&l2) and (13) are imposed by
— (1 — A -1 modifying the operatof1-7L)"%, as done for the relaxation
P(t+7)=(1d=7)7(d+ W), (A18) time-stepping algorithm(A14). The leap-frog Cranck—
where Id is the identity operator andthe time step. Nicolson scheme is initiated by an Euler time step and mix-

The Helmholtz operatofld—17L), block-diagonal with ing step§l are performed periodically to avoid leap-frog in-
respect to Fourier modes, is easily inverted in the Fourier-stability.
Chebychev representation using the LU algoriﬁ?fm.

As called for ther method* the boundary conditions F. Numerical convergence
(12) and(193) are substituted to the EGA14) for the highest

Chebychev modeSy_, and Ty . The operator(ld—7L) is gy ansions allows to solve the boundary layer of olby

thus modified before inversion. refining the collocation points near the boundary conditions.

This relaxation method can only reach stable stationaryy,o smaller¢ is the larger the radial resolutidd, must be.
solutions of(A14). In order to also capture unstable station-rape | jists the resolutions used for computing the bifurca-
ary solutions® we use the Newton branch-following method - diagram for eachg/2D. Spectral convergence is
detailed in Refs. 24, 10, and 11. '

2. Branch-following Procedure

We search for fixed points dA18), a condition strictly 1| p_Landau and E. M. LifshitzFluid Mechanics 2nd ed.(Butterworth-
equivalent to the stationarity dfA14). Each Newton step  Heinemann, Oxford, 1995
requires solving a linear system for the decremgrib be 2G. B. Whitham,Linear and Nonlinear Wave8Niley-Interscience, New

Our numerical method based on Chebychev polynomial

achieved for all stationary solutions as shown in Fig. 14.
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