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The Gross–Pitaevskii equation (GPE) describes the dynamics of superflows and Bose–
Einstein Condensates (BEC) at very low temperature. When a truncation of Fourier modes
is performed, the resulting truncated GPE (TGPE) can also describe the correct thermal
behavior of a Bose gas, as long as all relevant modes are highly occupied [M.J. Davis,
S.A. Morgan, K. Burnett, Simulations of Bose fields at finite temperature, Phys. Rev. Lett.
87 (16) (2001) 160402]. We review some of our group’s recent GPE- and TGPE-based
numerical studies of superfluid dynamics and BEC stability. The relations with experiments
are discussed.
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r é s u m é

L’équation de Gross–Pitaevskii (GPE) décrit la dynamique des superfluides et les condensats
de Bose–Einstein (BEC) à très basse température. Quand une troncature des modes de
Fourier est effectuée, l’équation résultante tronquée (TGPE) peut également décrire le
comportement thermique correct d’un gaz de Bose, à condition que tous les modes
concernés sont hautement occupés [M.J. Davis, S.A. Morgan, K. Burnett, Simulations of Bose
fields at finite temperature, Phys. Rev. Lett. 87 (16) (2001) 160402]. Nous passons en revue
quelques études numériques récentes faites par notre groupe, utilisant GPE et TGPE, de la
dynamique des superfluides et de la stabilité des BEC. Les relations avec les expériences
sont discutées.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The present article is a review, summary and discussion of several of the results obtained, in the last 7 years or so in our
group at ENS, by numerically studying the Gross–Pitaevskii equation (GPE) and also the so-called truncated (or Galerkin-
projected) Gross–Pitaevskii equation (TGPE).

We first used direct numerical simulations (DNS) and branch-following methods to investigate the dynamics and stability
of smooth solutions of the GPE. The present review follows a precedent review that was published in 2003 [1] in which
the fields were always tacitly supposed to be smooth and spectrally-converged and thus the Gross–Pitaevskii equation
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was considered as a partial differential equation (PDE). Since that period some progress was achieved within the same
framework. We characterized the bifurcations of the 2D superflow around a cylinder using improved and very precise
spectral methods based on mapped Chebyshev polynomials [2,3]. We also studied the sound emission produced by a pair
of rotating vortices [4] and the dynamics of Kelvin waves [5].

More recently, we studied the equilibrium properties and the dynamics of the truncated Gross–Pitaevskii equation
(TGPE), motivated by our results previously obtained on another system: the Fourier-truncated (or Galerkin-projected)
dynamics of the 3D incompressible Euler equation. Indeed, this latter system is well-known to admit so-called absolute
equilibrium solutions with Gaussian statistics and equipartition of kinetic energy among all Fourier modes [6–9]. Studying
the relaxation dynamics of incompressible Euler-truncated system, we found that the thermalized modes between some
transition wave number and the maximum wave number can act as a fictitious microworld providing an effective viscosity
to the modes with wave numbers below the transition wave number [10]. We computed the effective viscosity [11] and
also studied the effect of non-zero helicity [12] and generalized the notion of absolute equilibrium to classical compressible
flows [13].

These results led us naturally to study the equilibrium properties and the dynamics of the TGPE, with the hope that it
could provide us with a way to study finite-temperature effects such as dissipation and mutual friction. Note that several
different theories of finite-temperature effects in BEC have been proposed and, at the moment, there is no consensus on the
best model [14]. However, one of the proposed models is, indeed, the TGPE [15,14].

We clarified previous results concerning the nature of the phase transition that is present in the TGPE by showing that it
is a standard second order transition [16]. Furthermore, we showed that the thermalization dynamics presents a dispersive
bottleneck that slows down the thermalization in certain circumstances [17]. We also showed that most of the standard
mutual-friction phenomenology does apply to the interaction of the vortices with the normal fluid that is present in the
TGPE equilibrium. However, we found an exception to this agreement, due to an effect caused by the thermally induced
Kelvin waves that produce an anomalous translational velocity for vortex rings [18]. This last result was found to depend
only on the hydrodynamical effect of thermally-excited Kelvin waves. Note that such waves must also exist in physical
superfluids such as low-temperature helium.

The article is organized as follows. Section 2 is devoted to the GPE and the stability of a superflow around a cylinder.
Section 3 is devoted to the TGPE. The order of magnitude of the anomalous translational velocity for vortex rings in helium
is discussed at the end of Section 3.4. Finally Section 4 is our conclusion.

2. Gross–Pitaevskii equation

2.1. Definitions of the system

Much work has been devoted to the determination of the critical velocity at which superfluidity breaks into a turbulent
regime [19]. A mathematical model of superfluid 4He, valid at temperatures low enough for the normal fluid to be negligible,
is the Gross–Pitaevskii equation [20–22]. In a related context, since dilute Bose–Einstein condensates (BEC) were produced
experimentally [23–25], the dynamics of these compressible nonlinear quantum fluids has been accurately described by the
GPE allowing direct quantitative comparison between theory and experiment [26].

Excitations of superfluid 4He are described by the famous Landau spectrum which includes phonons in the low wave
number range, and maxons and rotons in the high (atomic-scale) wave number range. In contrast, the standard GPE (the
equation used in the present paper) only has (dispersive) phonon excitations. It therefore incompletely represents the
atomic-scale excitations in superfluid 4He. However, note that there exist generalizations of the GPE [27] that do reproduce
the correct excitation spectrum, at the cost of introducing a spatially non-local nonlinear term. Note that further modifica-
tions to the nonlinear term also allow for obtaining any given density–pressure relation [1]. In this way a generalized GPE
can be written with both the correct 4He equation of state and excitation spectrum.

However, for the sake of simplicity, we will work with the following simple form of the GPE, written with the physically
relevant parameters: the coherence length ξ and the sound velocity c corresponding to unit density |ψ |2 = 1.

i
∂ψ

∂t
= c√

2ξ

[−ξ2�ψ − ψ + |ψ |2ψ]
(1)

Several problems pertaining to superfluidity and BEC can thus be studied in the framework of Eq. (1). We now concentrate
on the stability of a superflow in the presence of a moving obstacle [3].

2.2. Superflow past a disk

Following Ref. [3], the effect of a disk of radius unity (diameter D = 2) moving at constant speed v = vex in a two-
dimensional superfluid at rest is studied in the frame of the disk. This system is equivalent to a superflow around a disk,
with constant speed −v at infinity. Let Ω be the plane C deprived of D the disk of radius unity and ∂Ω the boundary of
the domain, that is the circle of radius unity. The system can then be described with the following action functional:

A[ψ, ψ̄] =
∫

dt

{√
2cξ

∫
d2x

i

2
[ψ̄∂tψ − ψ∂tψ̄] −F0

}
(2)
Ω
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F0 is the energy of the system that reads

F0[ψ, ψ̄] = E − v ·P (3)

with

E[ψ, ψ̄] = c2
∫
Ω

d2x

[
ξ2|∇ψ |2 + 1

2

(|ψ |2 − 1
)2

]
(4)

P[ψ, ψ̄] = √
2cξ

∫
Ω

d2x
i

2

[
(ψ − 1)∇ψ̄ − (ψ̄ − 1)∇ψ

]
(5)

The presence of the constants −1 in Eq. (5) ensures the convergence of the integral. The Euler–Lagrange equation corre-
sponding to (2) is the following, slightly modified, GPE:

i∂tψ = c√
2ξ

[−ξ2�ψ − ψ + |ψ |2ψ] + iv · ∇ψ (6)

defined in the domain Ω . This equation can be mapped into two hydrodynamical equations by applying Madelung’s trans-
formation [19]

ψ = √
ρ exp

(
iφ√
2cξ

)
(7)

that defines a fluid of density ρ and velocity

U = ∇φ − v (8)

The real and imaginary parts of the NLSE yield the following equations of motion:

∂tρ + ∇ · (ρU) = 0 (9)

∂tφ = −1

2
(∇φ)2 + c2(1 − ρ) + c2ξ2 �

√
ρ√

ρ
+ v · ∇φ (10)

Note that two non-dimensional parameters control the system: the Mach number M = |v|/c (where v is the flow velocity
at infinity) and the ratio of the healing length ξ to the diameter of the disk D .

In previous studies [28], boundary conditions were applied by adding to the GPE a repulsive potential term strong enough
to force the density to zero inside the disk. Here, mathematically standard Dirichlet and Neumann boundary conditions will
both be directly imposed at the border of the obstacle.

The Dirichlet boundary conditions read ψ |r=1 = 0. They thus prescribe zero density on the obstacle and correspond to
the presence of an impenetrable obstacle (a laser in a BEC or a solid obstacle in superfluid 4He). The condition on ρ is ρ = 0
at r = 1 and the square root of the density R = √

ρ being constant on the obstacle, we have ∂t R|r=1 = 0 and ∂θ R|r=1 = 0.
Using the continuity equation (9), it is easy to show that U⊥ = ∂rφ − v cos θ = 0 at r = 1.

The Neumann boundary conditions read

∂rρ = 0 at r = 1 (11)

U⊥ = ∂rφ − v cos θ = 0 at r = 1 (12)

and correspond to ψ: ∂r(ψ exp (
ivr2

0 cos θ√
2cξr

))|r=r0=1 = 0.

Note that, compared to the Dirichlet conditions, the Neumann conditions are more academic than physically realistic.
However they correspond somewhat more closely to free-slip condition in standard compressible hydrodynamics.

2.3. Mapped Chebychev method

A code that can accurately accommodate both large-r asymptotic behavior and thin boundary layers near the obstacle
at r = 1 was developed in Ref. [3] based on a Chebychev decomposition using an adequate mapping. The code describes a
single obstacle, in contrast with periodic pseudo-spectral methods (previously used in Ref. [28]) which describe a periodic
array of obstacles.

Using standard polar coordinates {θ, r}, together with the relation

r(z) = z−1 (13)

the domain {0 � θ < 2π,−1 � z � 1}, can be mapped into the physical domain {x, y}, with x2 + y2 � 1.
The basic mapping is

x = z−1 cos θ, y = z−1 sin θ (14)
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Fig. 1. Bifurcation diagrams for small coherence lengths. Energy functional F(M) −F(0) versus Mach number. (a) Dirichlet conditions; (b) Neumann con-
ditions. For ξ/D = 1/20, the asymmetric unstable solution branch is represented (it stands for a one-vortex branch stemming from a pitchfork bifurcation).
At a fixed Mach number, the energy difference between a stable and an asymmetric unstable solution is roughly half the energy difference between a
stable and a symmetric unstable solution.

and the inverse transformation reads

z = ± 1√
x2 + y2

, θ = arctan(y/x) + π ∓ π

2
(15)

The equations of motion are expressed as partial differential equations in the {θ, z} domain by writing the differential
operators ∇ and � in terms of θ and z derivatives that are polynomial in z, e.g.,

�ψ = z2 ∂2ψ

∂θ2
+ z4 ∂2ψ

∂z2
+ z3 ∂ψ

∂z

The field ψ is then spatially discretized, in the (θ, z) domain, using a standard Chebychev–Fourier pseudo-spectral
method [29], based on the expansion

ψ(θ, z) =
Nθ /2∑

n=1−Nθ /2

{
Nr∑

p=0

ψn,p T p(z)

}
exp inθ (16)

where T p(z) = cos (p arccos z) is the order-p Chebychev polynomial and Nθ and Nr represent resolutions.
In order to study bifurcation diagrams, one needs to define a new free energy by

F[ψ, ψ̄] = F0[ψ, ψ̄] − v · √2cξ

∮
∂Ω

d�n
1

2i
(ψ − ψ̄) (17)

which implies the existence of a generic cusp in F at the bifurcation point (see Fig. 1).

2.4. Numerical results

The values of F(M) −F(0) are displayed in Fig. 1 as a function of the Mach number M for various values of ξ/D and
the two types of boundary conditions. As can be seen by inspection of the figure, for each ξ/D , the stable branch (solid line)
disappears with the unstable solution (dashed line) at a saddle-node bifurcation when M = Mc. There are no stationary
solutions beyond this point. This qualitative behavior is the signature of a Hamiltonian saddle-node bifurcation.

At a fixed Mach number, the energy difference between a stable and an unstable solution corresponds to the energy
barrier necessary to dynamically nucleate an excitation. Note that this barrier for a symmetric unstable solution is about
twice that of an asymmetric unstable solution.

Fig. 2 shows the density ρ = |ψ |2 of stationary symmetric unstable solutions M= 0.3 and ξ/D = 1/20 for the two types
of boundary conditions, obtained by a branch-following method that allows to also find unstable solutions. It is apparent by
inspection of the figure that the symmetric unstable branch corresponds to a two-vortex solution.

For Dirichlet boundary conditions, similar results were found with periodic pseudo-spectral codes [28]. However, the
new method directly imposes the correct boundary conditions without resorting to an artificial repulsive potential. Also
note that the critical Mach number is here determined for a single obstacle, whereas a periodic array of obstacles was used
previously.
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Fig. 2. Density ρ = |ψ |2 of stationary symmetric unstable solutions for ξ/D = 1/20 and M = 0.3 far from the bifurcation threshold. Left: Dirichlet condi-
tions; right: Neumann conditions.

3. Spectrally truncated Gross–Pitaevskii equation

Following Refs. [16–18], we now turn to the TGPE and finite-temperature effects.

3.1. Definitions of the system

The TGPE is obtained from the GPE by simply truncating the Fourier transform of the wavefunction ψ : ψ̂k ≡ 0 for
|k| > kmax [15,14]. Introducing the Galerkin projector PG that reads in Fourier space PG[ψ̂k] = θ(kmax − |k|)ψ̂k with the
Heaviside function θ(·), the TGPE explicitly reads

ih̄
∂ψ

∂t
= PG

[
− h̄2

2m
∇2ψ + gPG

[|ψ |2]ψ]
(18)

where m is the mass of the condensed particles and g = 4π ãh̄2/m, with the s-wave scattering length ã. Madelung’s trans-
formation

ψ(x, t) =
√

ρ(x, t)

m
exp

[
i
m

h̄
φ(x, t)

]

relates the (complex) wavefunction ψ to a superfluid of density ρ(x, t) and velocity v = ∇φ, where h/m is the Onsager–
Feynman quantum of velocity circulation around the ψ = 0 vortex lines [14]. When Eq. (18) is linearized around a constant

ψ = ψ̂0 , the sound velocity is given by c = (g|ψ̂0|2/m)
1/2

with dispersive effects taking place at length scales smaller than

the coherence length ξ = (h̄2/2m|ψ̂0|2 g)
1/2

that also corresponds to the vortex core size. In the TGPE numerical simulations
presented here the density ρ = mN/V is fixed to 1 and the physical constants in Eq. (18) are determined by the values of
ξkmax and c = 2. The quantum of circulation h/m has the value cξ/

√
2 and V = (2π)3.

Eq. (18) exactly conserves the energy

H =
∫

d3x

(
h̄2

2m
|∇ψ |2 + g

2

[
PG|ψ |2]2

)

and the number of particles

N =
∫

d3x |ψ |2

Using Fourier pseudo-spectral methods the momentum P = ih̄
2

∫
d3x (ψ∇ψ̄ − ψ̄∇ψ) is also conserved with dealiasing per-

formed by the 2/3-rule (kmax = 2/3 × M/2 [29] at resolution M).

3.2. Absolute equilibrium and second order phase transition

The discovery of the phase transition present in the microcanonical equilibrium of the TGPE has a somewhat convoluted
story. Davis et al. [15] first considered random initial data defined in Fourier space by modes with constant modulus and
random phases up to some maximum wavenumber (determined by the energy). They found that the numerical evolution
of the TGPE reached (microcanonical) equilibrium and that a condensation transition of the equilibrium was obtained when
the initial-data energy was varied.

The same condensation transition was later studied by Connaughton et al. [30] and interpreted as a condensation of
classical nonlinear waves. Using a modified wave turbulence theory with ultraviolet cutoff, they argued that the transition
to condensation should be subcritical. They found their theory in quantitative agreement with numerical integration of the
GPE, using the same stochastic initial conditions than those of Ref. [15]. However, the authors later argued that, as weak
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turbulence theory is expected to breakdown nearby the transition to condensation, the subcritical nature of the transition
predicted by their theory was not physical [31].

Microcanonical equilibrium states were thus well-known to result from long-time integration of TGPE [15,30,32]. In this
context, we reflected upon the analogy of the TGPE with classical truncated systems, such as the truncated Euler equation,
that are known to admit absolute equilibrium solutions with Gaussian statistics and equipartition of kinetic energy among
all Fourier modes [6–9].

This analogy led us to consider [16] grand canonical states that are given by the probability distribution

Pst[ψ] = Z−1 exp
[−β(H − μN − vn · P)

]
(19)

They allow to directly control the temperature (instead of the energy in a microcanonical framework). These states are
not Gaussian because of the quartic character of H (see above). However, they can be efficiently obtained by constructing
a stochastic process that converges to a realization with the probability Pst[ψ] [13]. This process is simply a nonlinear
diffusion equation with noise. It is formally defined by a Langevin equation consisting in a stochastic Ginbzurg–Landau
equation (SGLE):

h̄
∂ψ

∂t
= PG

[
h̄2

2m
∇2ψ − gPG

[|ψ |2]ψ]
+PG[μψ − ih̄vn · ∇ψ] +

√
2h̄

V β
PG

[
ζ(x, t)

]
(20)

where the white noise ζ(x, t) satisfies 〈ζ(x, t)ζ ∗(x′, t′)〉 = δ(t − t′)δ(x − x′), β is the inverse temperature, μ is the chemical
potential and vn is the normal velocity. The term ih̄vn · ∇ψ induces an asymmetry in the repartition of sound waves and
generates non-zero momentum states. These states do not generally correspond to a condensate moving at velocity vs = vn
because vs is the gradient of a phase and takes discrete values for finite size systems. Equilibrium states with non-zero
values of the counterflow w = vn − vs can be generated in this way.

Using this algorithm in [16] the microcanonical and grand canonical ensembles were shown to be equivalent and the
condensation transition reported in [15,30] identified with the standard second order λ-transition. Indeed, the (vn = 0)
statistic weight of distribution (19) exactly corresponds to that of (standard two-component) second order phase transitions
[33,34]. The condensation transition must thus be in this standard universality class.

3.3. Dispersive bottleneck

Motivated by the spontaneous thermalization of the truncated Euler dynamics [10], we now study the equivalent TGPE
problem by making use of the so-called superfluid Taylor–Green (TG) vortex [1]. The TGPE integrations are performed with
a dedicated pseudo-spectral code that uses the symmetries to speed up computations (see Refs. [35,36]). Up to 5123 col-
location points are used and the coherence length is determined by ξkmax = 1.48. To study this relaxation dynamics, we
express the energy per unit volume Etot = (H − mc2N)/V + mc2

2 as the sum of three (space-averaged) parts [35,36]: the ki-
netic energy Ekin = 〈1/2(

√
ρv j)

2〉, the internal energy E int = 〈(c2/2)(ρ − 1)2〉 and the quantum energy Eq = 〈c2ξ2(∂ j
√

ρ)2〉.
Parseval’s theorem allows to define corresponding energy spectra: e.g. the kinetic energy spectrum Ekin(k) as the (solid an-
gle) integral of | 1

2(2π)3

∫
d3r eir jk j

√
ρv j |2. Ekin(k) can be further decomposed into compressible Ec

kin(k) and incompressible

E i
kin(k) parts, using (

√
ρv j) = (

√
ρv j)

c + (
√

ρv j)
i with ∇ · (√ρv j)

i = 0. The temporal evolution of Ekin, E i
kin, Ec

kin, Eq + E int
is displayed in Fig. 3(a) and the corresponding energy spectra in Fig. 3(c–d).

Three evolution phases are apparent from Fig. 3(a). The first phase, for t � 15, corresponds to the GPE regime previously
studied in [35,36]. In the second phase, for 20 � t � 70, the spectral convergence of the GP partial differential equation
is lost and the dynamics is influenced by kmax. Partial thermalization starts to take place at large wavenumbers where
Ekin(k) ∼ k2 (see Fig. 3(c)). Fig. 3(b) shows that this phase is delayed when the resolution is increased at constant ξkmax.
When t > 80 the system reaches the thermodynamic equilibrium with equipartition of energy between Ec

kin and Eq + E int,
see Fig. 3(d). Finally, E i

kin vanishes before final thermalization (see Fig. 3(a–b)). Similar relaxation mechanisms are also
present in the truncated Euler dynamics [10]. Note that Salort, Roche and Lèvêque [37], using a “truncated HVBK” model,
also obtained equipartition of kinetic energy in quantum turbulence with a characteristic k2 velocity spectrum.

We now turn to the study of dispersive effects on the thermalization of the TGPE dynamics. In order to investigate
dispersive effects, the TG initial condition described above is prepared at fixed ξ = √

2/20 and varying resolution: 643, 1283

and 2563. The three initial conditions thus represent the same field at different resolutions and thus different kmax.
The evolutions of the energies of the three runs are shown in Fig. 4(a). They are identical until t ≈ 5 where the run at

resolution 643 starts to lose spectral convergence. All runs appear to have completely thermalized at t ≈ 20. However the
kinetic energy spectrum corresponding to this time, displayed in Fig. 4(b), shows clear differences between runs. The high-
wavenumber modes are thermalized in the 643 run but they decay at large-k at higher resolutions. In the 2563 run, two
zones are clearly distinguished: an intermediate thermalized range (with approximative k2 scaling) followed, well before
kmax = 85, by a steep decay zone.

The temporal evolution of Ekin(k) for the 2563 run displayed in Fig. 4(c) is well represented by a fit of the form
A(t)k2 exp [−γ 2(t)k2], where A(t) and kc(t) ∼ γ −1(t) � kmax are increasing functions of t . Such a behavior of the energy
spectra ensures spectral convergence and the dynamics is thus not influenced by kmax.
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Fig. 3. (Color online.) (a) Temporal evolution of energies Ec
kin , E i

kin , Ekin and Eq + E int . At large times, the incompressible energy vanishes and equipartition

of energy between Ekin and Eq + E int is observed. Resolution of 2563. (b) Temporal evolution of E i
kin at resolution of 643, 1283, 2563 and 5123 with

constant ξkmax = 1.48. (c–d) Energy spectra at t = 55 and t = 77 resolution 5123 and 2563 respectively.

This new regime can be described as a (quasi) thermalization, with self-truncation at wavenumber kc and temperature
T ∼ E/k3

c , that spontaneously establishes itself within the GP partial differential equation dynamics when the direct energy
cascade is inhibited by a dispersive bottleneck for the energy transfer.

An open question is whether thermalization is simply delayed or completely inhibited in the self-truncation regime
ξkmax → ∞. It is not feasible now to directly study this limit, within the TG framework, as it requires long runs at arbitrarily
high resolution. To skip the TG cascade regime and directly study the self-truncated thermalization regime we use initial
data generated by the SGLE instead of the TG vortex. To wit, we use Eq. (20) with a variable truncation wavenumber
kin

c , set to a target value of kc , smaller than the maximum truncation wavenumber kmax allowed by the resolution. This
SGLE-generated initial data is then used to run the TGPE at a given value of ξkc with arbitrarily large values of ξkmax.

A number of such runs were performed at resolution 643 with various values of kin
c , ξ , and initial energy E in. The results

of these computations are compared with the TG runs and displayed in Fig. 4(d). It is apparent from the figure that the
self-truncation behavior is robust. Orders of magnitudes pertaining to physical BEC are discussed in Refs. [17,16].

3.4. Two-fluid effects and anomalous velocity of vortex rings

We now turn to the study of two-fluid effects. The direct control of the counterflow vn in the SGLE algorithm given in
Section 3.2 allows to obtain the temperature dependence of ρn in the TGPE context.

In Ref. [18], the response to SGLE-generated counterflow of two types of vortex arrays (straight vortices and rings,
generated using a Newton method) was compared with the prediction of the standard phenomenological model for the
vortex line velocity vL [19]:

vL = vsl + αs′ × (vn − vsl) − α′s′ × [
s′ × (vn − vsl)

]
(21)

where s′ is the tangent of the vortex line, vsl = vs +ui is the local superfluid velocity with the self-induced vortex velocity ui
and the normal velocity vn. The mutual-friction coefficients in Eq. (21) are typically written as α = Bρn/2ρ , α′ = B ′ρn/2ρ
where B and B ′ are order-one and weakly temperature-dependent. Eq. (21) applied to a straight vortex with vn perpendic-
ular to the vortex and vs = 0 yields α′ = v‖/vn, where v‖ denotes the induced velocity of the vortex line parallel to vn.
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Fig. 4. (Color online.) (a) Evolution of energies at ξ = √
2/20 and resolution 643, 1283 and 2563. (b) Energy spectrum Ekin(k) at t = 19.8 for the three

TG runs. (c) Evolution of Ekin(k), solid red lines are fits of the form Ak2 exp [−γ 2k2] (see text). (d) Evolution of kc . Curves i–iv: ξ = 2
√

2/5, kin
c = 4,

E in = 0.1, 0.2, 0.4, 1; v: ξ = √
2/10, kin

c = 8, E in = 0.2; vi–viii: ξ = √
2/5, E in = 0.1, 0.2, 0.4 (i–viii in resolution 643); ix–xi: Taylor–Green resolutions 643,

1283 and 2563. (e) Parametric representation dkc/dt vs. kc/kmax (same labels as (d)).

It was found in Ref. [18] that the straight vortex array was behaving consistently with standard phenomenology and
reasonable (order unity) values for the constants B and B ′ .

We now turn to the interaction of vortex rings and counterflow. The Biot–Savart self-induced velocity of a perfectly
circular vortex ring of radius R is given by

ui = h̄

2m

C(R/ξ)

R
, C(z) = ln (8z) − a (22)

where a is a core model-depending constant [19]. We have checked, using an initial data ψring prepared by a Newton
method that the GPE (large R/ξ ) ring translational velocity is well reproduced by (22) with a = 0.615.
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Fig. 5. (Color online.) (a) Temporal evolution of the (squared) length of a vortex ring at different values of counterflow vn (temperature T = 0.4Tλ and initial
radius R = 15ξ ). (b–c) 3D visualization of vortex ring (R = 20ξ ) and density fluctuations at t = 18, 19, with T = 0.4Tλ and resolution 643. Thermally-excited
Kelvin waves are apparent.

Fig. 6. (Color online.) Temperature dependence of counterflow-induced lattice velocity v‖/vn (bottom) and ring slowdown �v L/ui (top) obtained with
vn = 0. Dashed line: prediction of Eq. (21) with α′ = 0.83ρn/2ρ; solid line: prediction of anomalous slowdown by Eq. (24) with R = 20ξ at various
resolutions.

Eq. (21) with vn perpendicular to the ring and vs = 0 yields the radial velocity Ṙ = −α(ui − vn). The case without
counterflow (vn = 0) was studied by Berloff and Youd [32] and a contraction of vortex rings compatible with (21) was
reported. To study the influence of counterflow we prepare an initial condition ψ = ψring × ψeq (with ψeq obtained through
Eq. (20)). The temporal evolution of the (squared) vortex length of a ring of initial radius R = 15ξ at temperature T = 0.4 Tλ

and vn = 0, 0.2 and 0.4 is displayed in Fig. 5(a). The Berloff–Youd contraction [32] is apparent in absence of counterflow
(bottom curve). The temperature dependence of the contraction, related to the α coefficient in Eq. (21), also quantitatively
agrees with their published results (data not shown).

A dilatation of vortex rings is obtained (top curve in Fig. 5(a)) when the counterflow vn is large enough. Such a dilatation
– a hallmark of counterflow effects – is expected [19] to correspond to a change of sign of vn − vsl in Eq. (21). However,
the predictions of Eq. (21) unexpectedly turn out to be quantitatively wrong. Indeed, using Eq. (22) in the conditions of
Fig. 5(a) one finds vsl = ui = 0.39 which is significantly larger than normal velocity vn = 0.2 around which dilatation starts
to take place (see middle curve in Fig. 5(a)). Eq. (21) prediction for the longitudinal velocity v L = (1 − α′)ui + α′vn is also
unexpectedly wrong. Using the value of α′ determined in Ref. [18] on the vortex array, one finds v L ∼ 0.98ui and from
Eq. (22) one finds for v L the value 0.38 that is larger than the measured value v L = 0.23.

This anomaly of the ring velocity v L is also present in the absence of counterflow (vn = 0) where Eq. (21) predicts
that α′ should be equal to �v L/ui ≡ (ui − v L)/ui . The temperature dependence of �v L/ui is displayed in Fig. 6 (top curve).
Observe that �v L/ui is one order of magnitude above the transverse mutual-friction coefficient α′ measured on the lattice
of straight vortices.

We now relate the thermally-induced anomaly to the velocity va induced on a vortex ring by a single Kelvin wave of
(small) amplitude A and (large) wavenumber NK/2π R . Indeed, the presence of a Kelvin wave is known to slowdown the
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Fig. 7. Estimates of ring velocities in 4He (see text): (a) standard ring velocity ui(R), see Eq. (22), (b) time to travel one radius: R/ui(R), (d) relative
anomalous slowdown �v L/ui , see Eq. (24) as a function of the radius at T = 1.6 K and (d) for a ring of 1 mm radius as a function of temperature.

ring, by an amount that was obtained in the LIA [38] and Biot–Savart [39] frameworks. The velocity va reads (see Eq. (26)
of [38])

va = ui
(
1 − A2N2

K/R2 + 3A2/4R2) (23)

where ui is the (undisturbed) ring velocity (22).
The TGPE model naturally contains thermal fluctuations that excite Kelvin waves as apparent from Fig. 5(b–c). We assume

that the slowing down effect of each individual Kelvin wave is additive and that the waves populate all the possible modes.
Kelvin waves being bending oscillations of the quantized vortex lines their wavenumber must satisfy k � kξ = 2π/ξ . The
total number of thermally-excited Kelvin waves is thus NKelvin ≈ Rkξ .

The amplitude term A2N2
K/R2 in (23) can be obtained by simple equipartition arguments. The energy of a (perfect) ring

is

E = 2π2ρsh̄2

m2
R
[
C(R/ξ) − 1

]
with the superfluid density ρs [19]. A Kelvin wave produces a variation of the ring length �L = π A2N2

K/R . Its en-
ergy can thus be estimated as �E = dE

dR
�L
2π . Assuming �E = β−1 yields, at low temperature where ρs ≈ ρ , A2N2

K/R2 =
m2β−1/π2ρh̄2 RC(R/ξ). Replacing A2/R2 in Eq. (23), the dominant effect is obtained by summing up to NKelvin and it
finally reads:

�v L

ui
≡ ui − va

ui
≈ β−1m2

π2ρh̄2C(R/ξ)
kξ (24)

The thermally-induced anomalous slowdown (24) is in good agreement with the TGPE data displayed in Fig. 6.
We now try to estimate the order of magnitude of the effect in liquid 4He. We use the value 238 m/s for the speed

of sound at very low temperatures. The standard values of h̄ and the atomic mass of 4He then yield a coherence length of
ξHe = 0.47 × 10−10 m. This, together with the GPE value of 0.615 for a (see Eq. (22)) gives the standard velocities of 4He
vortex ring that are displayed in Fig. 7(a–b).

Using the standard values of kB and the density of 4He ρHe = 145 kg/m3 gives the estimates for the slowdown for-
mula (24) that are displayed in Fig. 7(c–d).
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A ring of radius 1 mm is seen to travel at only 0.446 of its standard velocity at T = 1.6 K. The slowdown is linear
in T and at T = 0 the standard velocity of a 1 mm ring is 0.29 mm/s. The effect is larger for smaller rings. Note that
experimentally independent measurements of velocity and radius are needed to detect the effect.

However, note that these estimates are based on (24), a purely classical formula that needs to be extended in or-
der to take into account quantum effects. Indeed, the dispersion relation of Kelvin waves ω(k) = h̄

2m k2C(R/ξ) [38] im-
plies (using the relation h̄ω(keq) = β−1 = kBT ) that Kelvin waves are not in equipartition for wavenumbers k > keq =
(2mkBT /h̄2C(R/ξ))1/2, as (like in blackbody radiation) quantum effects are relevant in this range.

In the case of weakly-interacting BEC with mean inter-atomic particle distance � ∼ |ψ̂0|−2/3 satisfying ã � � � ξ the
condensation temperature is Tλ ∼ h̄2/kBm�2. For T > T ∗ , where T ∗/Tλ ∼ C(R/ξ)�2/ξ2 � 1, it is straightforward to show
that keq > kξ and therefore that (24) directly applies and reads �v L/ui ∼ (�/ξ)(T /TλC(R/ξ)). For T < T ∗ , kξ must be
replaced by keq in formula (24) and the slowdown becomes �v L/ui ∼ (T /TλC(R/ξ))3/2.

Furthermore note that, at zero-temperature, it is natural to suggest that the quantum fluctuations of the amplitudes of
Kelvin waves produce an additional effect. This effect can be estimated by using �E = h̄ω(k)/2. It is radius-independent
and of order �v L/ui ∼ (�/ξ)3 (see the discussion following Eq. (91) in Ref. [16]).

In a low-T physical BEC, with quantum distribution of sound waves, ρn/ρ ∼ (T /Tλ)
4 [22] and the standard effects (21)

are of order (T /Tλ)
4. Thus the new effect should dominate in this limit. In the case of superfluid 4He the interaction is not

weak and the GPE description is only expected to give qualitative predictions [19]. Nevertheless the new effect should also
be dominant at low temperature and Fig. 7(c–d) should give correct orders of magnitude for T ∗ < T < Tλ .

4. Conclusion

The condensation transition observed in Refs. [15,30,31] was shown to correspond to a standard two-component second
order phase transitions [33,34] which is the class of the λ-transition of 4He. We found that TGPE equilibrium can also be
obtained by a direct energy cascade, just like in the truncated Euler equation [10]. Increasing the amount of dispersion
of the system a slowdown of the energy transfer was produced inducing a partial thermalization independently of the
truncation wavenumber.

Having both the right very low-temperature dynamics and the correct λ-transition it makes sense to check if the TGPE
dynamics is consistent with standard mutual-friction phenomenology. We found that the answer was yes, with one excep-
tion.

The unexpected result was found by immersing a vortex ring in a finite-temperature bath: a strong dependence of the
translational velocity in the temperature was observed. We explained this effect by relating it to the anomalous translational
velocity due to finite amplitude Kelvin waves that was previously found by Kiknadze and Mamaladze [38] and Barenghi
et al. [39]. Assuming equipartition of the energy of the Kelvin waves with the heat bath yields a formula that gives a
very good quantitative estimate of the numerically observed effect. This new formula also gives an experimentally-testable
quantitative prediction for the thermal slowdown of vortex rings in superfluid 4He.
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