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A method of approximating an SU (2) ordered exponential U(t I E), defined in termsof a two-dimensional input vector 
E(t) ~ E  (t)E(t), E = +(g2) 1/2, is suggested for the stochastic limit of strongly varying E, where I dE/dtl ~" E. In the con- 
text of an "averaged" representation, where the high frequency fluctuations normally superimposed upon a relatively slow- 
ly-varying background are suppressed, U(tlE) is given as a functional of E(t), suitable for use as an integrand in a functional 
integral with gaussian white-noise weighting. 

Ordered exponentials (OEs) are typical ly found, or 
may be employed in every branch o f  physics which 
deals with the causal t ime development of  systems con- 
taining more than one degree o f  freedom. In very gen- 
eral quantized systems, for example,  one may  ask for 
the time development of  a wave function [ 1,2]. In a 
modern,  atomic physics context  o f  Stark line-broaden- 
ing where random electric fields produced by a back- 
ground plasma act on the emitt ing atom, the lat ter 's  
wave function, and hence the form of  the emit ted 
frequency spectrum, may be wri ten* 1 in terms of  an 
OE which is then subjected to fluctuations o f  the ran- 
dom electric fields. In abelian and (especially) non- 
abelian quantum field theories, one has relevant expres- 
sions ,2  for exact Green functions and objects con- 
structed from them (such as closed fermion loops) 
given in terms of  exponentials ordered with respect to 

,1 An exact treatment of a model "scalar" radiation has been 
given by Frisch and Brissaud [3 ]. The realistic situation in- 
volves dipole radiation, and is expressable in terms of an 
ordered, rather than an ordinary exponential. 

~:2 A most useful t~eatment, which has application to a wide 
variety of fields, has been given by Fradkin [4]. The orig- 
inal idea stems from Schwinger [5]. 
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a proper-time parameter;  for abelian gauge theories in 
greater than two space - t ime  dimensions, or in non- 
abelian gauge theories o f  any dimension, all formal 
manipulations reach their limit of  practical applica- 
tion - even when other dynamical approximations are 
employed * 3 _ precisely at the point  where one re- 
quires an explicit expression for an OE, and then an 
estimate of  a functional integral over fluctuations of  
the fields that appear in that OE. A variety o f  exam- 
pies drawn from classical physics may also be given ,4 

The time-honored way of  proceeding, as well as 
the simplest method imaginable, has been to resort to 
a perturbative development. However, in strong-cou- 
pling (SC) problems this is impossible. For  some 
years it  has been known [1,2] how to approximate 
OEs in an "adiabat ic"  or "quasi-static" SC situation; 

,a  This can be clearly seen in the context of recent infrared 
models: ref. [6], where the SC analysis performed for 
scalar (QED)4 would fail for ordinary (QED)4 ; and in ref. 
[ 7 ], where a generalization to the closed fermion loops of 
(QCD) 2 would meet an OE. 

,4 For example, an application to Navier-Stokes fluid flow 
and the onset of turbulence, using an SU (3) formalism, 
may be found in ref. [8]. 
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but this is not suitable for rapidly fluctuating input 
fields, as discussed below. The purpose of these re- 
marks is to exhibit an approximation to a finite-dimen- 
sional OE in a "stochastic" or wildly fluctuating" situ- 
ation; here, the output of the method, an approximate 

m _  

OE = OE, is given as a functional of the wildly fluc- 
tuating input fields that generate the OE. A typical ap- 
plication of our result would use an OE as (part of) 
the integrand of a functional integral whose field fluc- 
tuations are defined by gaussian stochastic, or white- 
noise weighting. We here state our results for the sim- 
plest case of SU(2), using as input a time-dependent 
vector E(t) in the (x, y)  plane; and we then compare 
the result of an exactly soluble, white-noise functional 
integration over the SU(2) OE with the same integra- 
tion, which can also be exactly performed, over our 
OE. Generalizations, derivations, computer displays, 
and all details will appear elsewhere. 

The ordered exponential in question is given as the 
solution to 

aU/bt=i~.E(t)U, Vit=o =1 ; (1) 

that is 

U(tlE)=[exp(i f dt'.'E(t'))]+ , (2) 
0 

where the o i denote the Pauli matrices. Writing U = 
F 0 + i a .F ,  substitution into (1) generates a set of cou- 
pled, non.linear equations for (Fo, Fi), with the unitar- 
ity restriction F0 2 + F 2 = 1. For aparticular choice of 
E(t) = l~(t)E(t), E = + (E2) 1/2, this form is conve- 
nient for the direct numerical integration of (1). 

We are concerned with the approximate representa- 
tion of the F0, i as functionals of E(t)  for SC, f~ dr' 
E(t') >~ 1, and in the "stochastic" limit (1 dE~dr I/E) = 
p(t) ~" 1. The other SC limit, the "adiabatic" situation 
where p ~ 1, has been discussed and applied in various 
physical contexts [1,2,8,9]. One can, in fact, specify 
an algorithm for closely approximating U(t [E) in this 
simpler region where variations of  the unit vector/~(t) 
are small. In the stochastic limit, dealing with a wildly 
fluctuating/~, our approximate results will be denoted 
by fro,i( t I E)  and should be understood as follows. For 
any input E with p ~" 1 the exact (numerically in- 
tegrated) F 0,i have the form of rapid fluctuations 
superimposed upon a more slowly-varying background 
of frequency ~E/2np. Our ff0,i are "averaged" in the 

sense that they reproduce the slowly varying back- 
ground but not the rapid fluctuations. They are ob- 
tained by an analysis which replaces the exact differ- 
ential equations of this system by approximate equa- 
tions valid over time intervals larger than the very 
small ones associated with the high-frequency (pE) 
oscillations; our results are 

F 0 = c o s G ,  f f3[(1-~2)/P~]  s inG,  (3) 

ffl = ~ s i n G c o s L + [ ( 1 - ~ 2 ) / p ]  c o s G s i n L ,  (4a) 

fi2 = ~ sin G sin L -  [(1 - ~2)/p] cos G cos L ,  (4b) 

with 

= (1 +~p 2 )1 /2 { 1 -  [ 1 -  (1 +~p2)-21 1/2 }1/2, 

t t 

G--f L=fd,'ep 
0 0 

Limiting forms for ~(p) are: ~[p~l ~ ( l /p)  + .... 
~[p¢l ~ 1 - (p/2)+ .... 

For p > 5 the accuracy of (3) is surprisingly good, 
with typical errors no worse than a few percent, and 
frequently considerably less. For various input situa- 
tions, but not all, a small phase lag may appear be- 
tween F0 and F 0, and between/~3 and/73; but this 
should have little effect on subsequent functional inte- 
gration over 0 if the result of the integration is expo. 
nentially damped, as in eqs. (5). For the/~1,2 of(4)the 
situation is less satisfactory, since they do not display 
some of the low frequency behavior of the correct 
F1,2; however, in the stochastic limit, they are small 
and unitarity is preserved: 

3 

+ : 1 + 

What is really quite pleasing is the ability of the fro, 3 
• to track in phase with, while providing averaged values 
of their numerically integrated counterparts, for a 
variety of input E(t), even for situations where p 
"-- O(1). 

That these approximations can be useful when cal- 
culating a functional integral over U(t IE) with gauss- 
tan white-noise weighting is suggested by comparing 
the familiar, soluble problem of such integration over 
U with the same functional integral over :frO, which is 
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also exactly obtainable. These calculations are per- 
formed by breaking up the region of  integration into 
n intervals labeled by ti, of  width At = t/n; in the in- 
tegration over each ith region E i scales as (At ) -1 /2 ,  
and hence the Pi in ~(p) scale as (At ) -1 /2 ,  so that the 
p >> 1 stochastic limit is appropriate. With this tech- 
nique, the exact functional integral over the exact OE, 

( ~1 f d t ,  E2( t  ' )  Fo(t lE)=e -tc N f v d[E] exp - 
0 (Sa) 

may be compared with the exact functional integral 
over our OE, 

( 1 t ~I 
N f d[E] exp - ~  f dt' E2(t' Fo(tiE ) 

0 
= e - tc  cos[2tc ln(2/cAt)] , (5b) 

where in both cases the normalization is given by 

N - l =  f d [ E ]  e x p ( - l  f d t 'E2( t ' ) ) .  
0 

The difference between these results is the spurious 
oscillation o f  (5b), which requires little insight to 
understand and remove: An infinitesimal error is made 
in each t i interval, which, unless discarded, will grow 
larger with each interval's contribution. The error may 
be removed by first calculating the real part o f  each 
interval's contribution and then summing over all 

ti, 

[Re (1 - tc/n + (2itc/mr) ln(2/cAt)} ] n l n-~* , 

rather than following the procedure that leads to the 
result o f  (5b), calculating the sum of  all t i contribu- 
tions and then taking the real part o f  that quantity, 

Re([1 - tc/n + (2itc/mr) ln(2/cAt)] n inoo,} • 

In this elementary example a simple "renormalization" 
correction can be adopted to obtain the same results 
for a white-noise functional integral over an OE and its 
corresponding OE. Hence we expect U(t I E ) t o  be use- 
ful in the estimation o f  more complicated functional 
integrals as long as the restriction to white noise aver- 
aging is kept , s ,  or for any similar restriction to p >> 1. 

Generalization of  the stochastic construction to a 
three-dimensional input E(t), and to arbitrary SU(N) 
for the adiabatic limit, together with the derivation of  
the results quoted above, will be given elsewhere. 

One of  us (HMF) warmly thanks U. Frisch for ex- 
tending the hospitality o f  the Observatoire de Nice 
where most of  this work was performed; he is also in- 
debted to G. Heller o f  Brown for the loan of  an 
Apple II. 

,s  For non-white-noise gaussian weighting, Pi ~ O(1) so that 
one requires a decent representation of 0 for all p. How- 
ever, in various SC problems E is proportional to a dimension- 
less coupling g, so that forg ~, 1, one has in effect p ,¢ 1; 
precisely this adiabatic limit was treated some years ago - 
without justification - on a particle physics context [9]. 
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