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PACS. 47.20. - Hydrodinamic stability and instability. 

Abstract. - We study the spatial stability of systems at  onset of the temporal intermittent 
transition to chaos. We show that the phase dynamics during laminar episodes, described as 
orbits near a saddle-node bifurcation of limit cycles, is second order in time and can lead to 
propagative behaviour. 

The phenomenon of chaotic behaviour in deterministic nonlinear systems has attracted a 
great deal of interest in a wide range of disciplines [I]. Transition scenarios to erratic 
temporal regimes have been understood in the framework of dynamical system theory [23, 
and good experimental agreement has been found in confined systems where spatial degrees 
of freedom are quenched[3]. A question of interest is how the transition scenarios are 
modified in systems where spatial structures must be taken into account. 

The intermittent transition to chaos is well documented experimentally [4-71 as well as 
theoretically [8,9]. One of its basic mechanisms consists of a saddle-node bifurcation for a 
limit cycle, which is usually studied with the help of the Poincare map [lo]. In this letter we 
consider a spatially extended time-periodic flow undergoing such a saddle-node bifurcation 
and show that the coupling between the phase and the amplitude of the limit cycle may lead 
to propagative behaviour for long-wavelength phase modes. We first derive the nonlinear 
equation that governs the dynamics of these modes; we then exhibit a simple model in which 
propagative behaviour does indeed take place. 

Let us first consider a real field governed by the evolution equation 
dv - = F(v, 8) , 
dt  

where F involves linear and nonlinear terms in v. We assume that a saddle-node bifurcation 
occurs at v = 0. For v > 0 eq. (1) has a family of solutions 

v(t) = vo(A s) , (2) 

(§) Also at  Observatoire de Nice. 
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of period 27: in s = w(A) t ,  
= 2 x / w ( A ) .  A parametrizes 
period T depends on it, as 

which represent the limit cycle amplitudes of period T(A)= 
both the stable and unstable limit cycles amplitudes, and the 
usual for nonlinear oscillations. From (1) and (2) we get 

To study the stability of the limit cycle solutions, we write 

v(t)  = V O M ,  8) + 4 0  , 
and linearize eq. (1) in U around vo(A, s). We get 

(4) 

(5) 

where L is the Jacobian of F computed at vo. We write, following Floquet analysis [U], 

u(0 =V(s) exp [ytl , 

du - = Uvo(A, 8)) U , dt 

where V is 2x  periodic in s, and get from eq. (5 )  

An instability occurs when the Floquet exponent y vanishes. Differentiating eq. (3) with 
respect to s, we get 

which shows that auolas is a neutral mode. It corresponds to translational invariance in time 
of eq. (1). We differentiate (3) with respect to A, and find 

At the bifurcation, v(A,J = 0, using the fact that u’(Ao) = 0 for a saddle-node bifurcation 
gives 

In the vicinity of the bifurcation we write 

where 7 is a slow time scale, and 3 
eigenspace. For v = 0, we find from 

stands for corrections orthogonal to the generalized 
eqs. (5), (6) and (7) at the linear leading order 

a+ -= OJ’(AO),C , 
a7 

a P  - = o .  a.;. 

(1la> 

(1 lb )  
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Equations (lla), ( l l b )  represent a codimension-two singularity [lo]. One of the two zero- 
eigenvalues corresponds to the instability of the limit cycle amplitude. The other one comes 
from time translational invariance of eq. (1). Note that such situations always occur for any 
type of bifurcation of a limit cycle in an autonomous system [U]. In the case we have just 
treated the linear coupling between phase and amplitude is due to the linear variation of the 
limit cycle frequency with respect to its amplitude. 

For v f O ,  we have at  leading order in U, after averaging, 

Note that eq. (12b) is the usual normal form for a saddle-node bifurcation [lo] which gives 
the bifurcation diagram of fig. 1; the term linear in p has been eliminated by a translation, 
and vp is of higher order in v; the coefficients of p in (12a) and of p 2  in (12b) have been taken 
equal to unity with appropriate scalings of time and amplitude.Note that (12a) describes a 
renormalization of the frequency and is decoupled from (12b), it is thus usually ignored. This 
is no longer the case in space-dependent systems where the coupling between (12a) and (12b) 
will allow propagative behaviour (see below). 

In spatially extended systems we expect that, in the vicinity of the saddle-node 
bifurcation, intermittent bursts and laminar episodes occur erraticly in time as for systems 
with a small number of degrees of freedom, but also inhomogeneously in space. For q5 and p 
slowly varying in space, we write the perturbation v(x, z )  under the form 

(13) avo 
aA ~ ( x ,  t )  = vo(Ao, s + 7 ) )  + p ( ~ ,  7 ) -  + y ( s  + $+, p, X, 7 ,  V) 

and look for a gradient expansion of a+/& and ap/az. At leading order in the gradient 
expansion, the form of the evolution equations for q5 and ,c is determined by symmetry 
arguments: 

Translational invariance in time (autonomous systems), which implies that the 
evolution equations do not depend explicitly on q5. 

Space reflection symmetry, which implies that the number of x-derivatives of q5 and p is 
even. 

Fig. 1. 

I 

Fig. 2. 

Fig. 1. - The diagram of a saddle-node bifurcation. 
Fig. 2. - The diagram of a subcritical Hopf bifurcation. 
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We obtain at  leading order 

a+ 
a: - s 1 
-- 

a,$ 
-= v - ,$ + vz+ + (V+)2. a.: (14b) 

(Higher-order terms in (14a) can always be eliminated with a change of variables [lo].) Note 
that in these equations, the slow space and time scales are of order (VI- '  '; ,s is of order fi, 
whereas f is of order one; however, the expansion is valid since $ only contributes through 
its slow space-derivatives. 

We can compute easily equations similar to (14) when a small amplitude limit cycle 
undergoes a saddle-node bifurcation; this occurs for a subcritical Hopf bifurcation (see fig. 
2). The evolution equation for the perturbation complex amplitude Z reads [12] 

where ,U stands for the distance from criticality, and a, 9, c', E and 'J are real constants, with 
E > 0, y > 0. The solution 

Z,(t) = Ro exp [in, t ]  , 

with 

describes a spatially homogeneous limit cycle, which undergoes a saddle-node bifurcation for 
,uc = - ~ ~ 1 4 ' ~  and R: = ~ i 2 y  (see fig. 2). For >,uc the stability of the limit cycle with respect 
to inhomogeneous perturbations requires, E(? - 2dR3 + E - 2yRi < 0,  and thus for ,U+ 

+ P C ,  

z$-- < o  i 3 
In  the vicinity of the bifurcation we write 

Z(x ,  t )  = (Re + p) exp [i[Q, t + +(x, :)I1 , = 4uc -+ VIR, 

and get at  leading order from (15), 

a,$ a2+ 
- = v - ~ER,,s '  - zR,- -Re  (2)' + o(v) a: 3x2 

It follows from condition (16) that phase disturbances at  the saddle-node bifurcation 
propagates with a velocity vo, 
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We note also that eqs. (17) admit a family of exact propagating solutions #(x - c t ) ,  where q5’ 
has a tgh profile; however, these solutions are unstable. 

We have checked the propagative nature of the phase disturbances with a numerical 
integration of eq. (15) in the vicinity of the saddle-node bifurcation. We used a standard 
Fourier spectral method ‘with 512 modes and Runge-Kutta time stepping [13]. The initial 
data is made periodic when necessary by multiplication with (1 + cos (x/L))/2, where 2xL is 
the periodicity of the Fourier series, taken large enough not to affect the local dynamics. 
Figure 3 demonstrates the propagative behaviour of a small phase gradient disturbance. 
Note that the velocity calculated from (18) is 9.7, while the velocity measured on fig. 3 is 
10.4. This difference is a manifestation of dispersive effects (estimating the wave number of 
the initial perturbation k 2: 1/Z gives the right order of magnitude for the difference). Figure 
4 shows finite amplitude effects on nonlinear propagation. 

We have shown that second-order phase dynamics is a generic feature of autonomous 
systems near a saddle-node bifurcation of limit cycles. Let us note, however, that when the 

Fig. 3. - A plot of the temporal evolution of the phase gradient V+ = Im (VZ/Z) for a subcritical Hopf 
bifurcation a t  the saddle-node of limit cycles. Here a = 4.00, /3 = - 4.00, y = 1.02, 6= 4.00, E = 2.02, 
and p = - ~‘/(4y) (see eq. (15)), corresponding to a propagation a t  speed v = 9.72. The initial data was 
V$ = a/cosh2(x/l) with a = 0.02 and 1 = 1.47. Outputs are every t = 0.05, and the curves have been 
shifted upwards after each output. 

c 

s -  T 
D -  

-1072 X l0li 

Fig. 4. - Same as fig. 3, but with a = 1.02. Note that, although phase gradients still propagate, 
nonlinear effects are now visible. 
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limit cycle is due to an external forcing, the temporal phase is quenched, and therefore is not 
involved in the dynamics. In systems with space reflection symmetry, a gradient expansion 
in the vicinity of the saddle-node bifurcation gives 

In  this equation the slow time scale is of order (Y)-”~,  whereas the space scale is of order 
(Y) -”~ ,  and spatial disturbances have a diffusive behaviour. We expect that this occurs with 
coupled logistic mappings near the transition to intermittency [14], since the phase of a limit 
cycle is obviously quenched when a Poincare map is chosen. On the contrary, in autonomous 
systems, we predict a propagative behaviour for spatial disturbances, in the vicinity of an 
intermittent transition to chaos (l). 

* * x  
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(’) During the revision of this letter we became aware of ref. [15] where .propagating coherent 
oscillations>> are observed in a partial differential equation proposed as a model for spatio-temporal 
intermittency. 
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