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Summary. - — The interaction of a classical field with general tensorial
character with a particle described by its trajectory is shown to lead in
general to a Lorentz-Dirac-type equation, independently of the details
of the interaction. The divergences of the theory are carefully analysed
by a method we have proposed before, which is shown to be equivalent
to other regularization schemes that have been used previously. We apply
our results to several well-known interactions including linearized gravi-
tation and symmetric electrodynamics with monopoles.

1. — Introduction.

We study here the interaction of a field with a general tensorial character
with a particle described by its trajectory Z(s). We consider a general clags of
interactions restricted only by assuming that the equation of motion for the
particle should be linear in the field and the derivative of the field. If we further
assume that the coupled equations of motion are obtained from a Lagrangian
we prove that one is led to a Lorentz-Dirac-type equation for the trajectory,
the different interactions have only the effect of changing the numerical coef-
ficient in front of the Abraham force and the explicit value of the unobservable
mass renormalization which we show is always a cut-off-dependent (divergent)
quantity. The same conclusion is reached if the current of the field depends
only on Z. We perform our study using only the equations of motion and
making a careful study of the divergences of the theory, which we show can
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all be absorbed by a mass renormalization. As is well known, the problem here
is the divergence of the field on the world-line of the particles; we treat this
in sect. 2 by a regularization technique we have proposed previously () which
has a clear physical interpretation that we discuss in detail. We call this tech-
nique the double-zero—separation regularization. We show that this double-
zero separation justifies and gives the physical meaning of the « analytic eon-
tinuation » regularization proposed by BARUT and VILLARROEL (24), since both
techniques are shown to be equivalent. In sect. 3 we compare the double-zero—
separation method with the average procedure proposed by TEITELBOIM (5),
which consists in defining the field on the world-line as the limit of the average
of the field on a small sphere with centre on the particle in the rest system.
One finds that the average method only modifies the numerical coefficient of
a divergent term in the derivative of the field, and that this only modifies
the unobservable mass renormalization.

In sect. 4 we introduce the Lagrangian formalism and show that the equa-
tion for the trajectory is always a Lorentz-Dirac-type equation. We also
give explicit formulae for the numerical coefficient of the Abraham foree and
for the mass renormalization counterterm. We apply then our results to dif-
ferent cases studied previously in the literature and collect the results in table I.
The cases of linearized gravitation and of symmetric electrodynamics with
magnetic charges that require some minor modifications are treated in ap-
pendices B and C. We have treated only the case of massless fields, but the
same techniques for handling the divergences can be used for massive fields,
since the singularity of the retarded Green function on the light-cone is un-
changed. The same comment applies to the electromagnetic interaction in the
presence of a given gravitational field (4).

2. — The regularization method and its relation to the analytic-continuation
technique.

The system of coupled equations we study here is (the dot stands for de-
rivation with respect to the proper time s)

(1) O yin(w) = 42A[ ds 39(0 — 7()) () = fiw2)
(2) ma Zuls) = AFW(2(9), 21s), o(2(5)), B yia(2(5)))

(1) E. Tirarecuri: preprint K.U.L. (Leuven), to be published in Amer. Jowrn. Phys.
(3) A. Barcr: Phys. Rev. D, 10, 3335 (1974).

(® A. Barur and D. VILLARROEL: J. Phys. 4, 8, 156 (1975).

(Y) A. Barvur and D. VILLARROEL: J. Phys. A, 8, 1537 (1975).

(®) C. TerteLBOoIM: Phys. Rev. D, 4, 345 (1971).



212 M. E. BRACHET and X. TIRAPEGUI

where (f) stands for a collection of indices and ITZp(s) for a product of Z (s),
a product of g., (the metric tensor that we take as gy =+ 1, ¢g;; = — 1,
i =1, 2, 3), a mixed product of g, and Z.(s), or a sum of these three types,
all with the correct tensorial character of the field 4 (2z). For classical electro-
dynamies w@(#) is the clectromagnetic potential Au(x), ITZ¢(s) is Zu(s), and
AP, = ¢(Buds(Z(5)) — 8w4”(Z(s)))Z”(s). For a tensor field wg is Uu(zr) and
ITZ(s) can be taken as Zu(s)Z,(s), guw, or a sum of these two terms. From
now on, we shall use the notation rg(s) = IIZ(s). In order to obtain the
equation of motion for the trajectory, we solve (1) for yy(x) in terms of Z(s),
using the retarded Green function D_{») and we replace the field in (2), the
resulting differential equation for Z(s) is the equation of motion of the particle.
The difficulty with this program is, as is well known, that the field yg(x) and
its derivative o,y (r) diverge on the trajectory, i.e. at the point 2 = Z(s).
This is precisely the problem we shall solve here for the case in which the force
I7, is linear in the field and its derivative, ¢.e. it is of the form

B)  Fu=aw®(Z(s), Z(s))dpe(Z(s))+
+ bu®(Z(s), Z(5)) w0 (Z(9)) -+ eulZ(s), Z(s)) -

The retarded Green function D, (x) solution of [l D (x) = d™(z) is given by
(B(z*) = 0, 2* << 0, B(z°) = 1, 2* > 0)

4) Dy() == 2 0(2)3(a%)

2n
and from (1) we obtain
&) Jol) = vip(a) + A da' Do — o) jnla)

where y5,(z) is a free field (U y"(z) = 0) corresponding to the initial con-
dition g(@® —— oo, x) > y5'(v). We write ypg(2) for the retarded field,
Po(@) = y5 (@) + pe(@), and from (4) and (5) we obtain

(6) yiolo) = 24[ds6(00 — 2°(5)) 8((0 — 2()*) rals)

If the field g () is required to satisfy supplementary conditions, this of course
induces corresponding constraints on jg () (in electrodynamics to the condi-
tion 0, A#(x) = 0 corresponds 9,j#(x) = 0) and consequently the retarded so-
lution (5) will satisfy the subsidiary conditions when w;g)(m) is chosen to satisfy
them.
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By a standard calculation (*) we obtain for c.ye (), © = Z(s), the result

Z(
(7) Spule) = 2}.fds 0(x°— Z°(s)) (S((m — Z(s))z) — E—~ 7 i ))1“:‘ -

We define now the linear operator I acting on the functions f(z, Z(s)) by

(8) If(@, Z(s)) = f dsO(w0 — 2°(5)) ( (2 — Z(s))") flay Z(5)) ,
in term of which we can write

(9) pea(x) = 24T 5 (w, Z(3)) ,
(10) o) = 2A T wa, Z(5))

with f(w, Z(s)), j = (), (), defined as

(11) f(B)(l’; Z(S)) = r@(8) — ”Z(ﬁ)(s) ’

¢ d (x—Z(s))ore(s)
(12) frar(®, Z(s)) = s Ea?:Z(?)))aZZ(s) .
Our purpose is to evaluate (9) and (10) for & —> Z(s,) Lo replace them in (2).
We remark now that f,(Z(s,), Z(s)) is a well-defined finite function for all s
(f(,;)(w, Z(s)), because it does not depend on x and fus(w, Z(s)) because of its
explicit expresslon one can calculate, see appondlx) Putting 8 = s + 7, and
defining f,(7) by

(13) F(Z(s), Z(so + 7)) = [i(7),

one checks that f(7) and its derivatives are finite at 7 = 0. More explicitly
one has (see appendix)

- of
10 o0 T, Lol iw»—-d‘—;rw)(-vo),

_ i
(15)  Foo0) = 5 2ol inon) + o) ()

. Ofvay(1) | 1. - 1
ge) BOD| G raten + B o et +
, 12 .
- Zilo) 2 r50) £ 5 Zlso) Bo(50) 2ol P -

ds;

(8) A. Barur: FElectrodynamics and Classical Theory of Fields and Particles (London,
1964).
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The regularization method we have proposed (1) consists in the following.
One has to compute ypg(x) and d,ye(x) for » — Z(s,), and consequently (8)
for © — Z(s,) and f=f,;, but, as f,(w, Z(s)) remains finite for z — Z(s,), as we
have just seen, we can put # = Z(s,) there thus writing 7,(Z(s,)), Z(s, -+ 7)) =
= }4(1), the divergence coming from the other terms in the integral (8) which
we have to regularize. We have then (s = s, 4 1) from (8) that

(17) If(w, Z(s))

rtey = f dv6(a® — 22, + 7)) 8((0— Z(so + 1)) 1)

£—>Z(s9) *
One has
. d: 1
(18)  XO— Z%s0+ Dlacsauy = —T2%s0) -+ 0(z%),  2%s) =— = —===>0
ds 1— o2
and
(19) (X — Z(9)2s e = (Z(80) — Z(so + 7))* = 72 + (2.

We see then that in the integral (17) the integrand contributes only for small
7(8(7?) == 0, v # 0), and consequently from (18) we can replace 6(z°— Z°s, -+ 7))
by 6(— 7). The origin of the divergence of (17) is now clear, since §(z?) is not
defined because the argument of the J-function has a double zero at 7 = 0.
We regularize this J-function replacing &(z%) by d(r2— %?) and defining (17)
as the limit # -> 0. The physical interpretation of the regularization is clear
when one remarks that the effect of putting d(z2 — #?) is to separate the double

Z(s4)

Z(s,)

Z(s.)

Fig. 1. — v(sy) = Zb(sy) == (1, 0), o = Z(sy) -+ qutt, | —Z(85)| = 1, T = 8. — 89~ |AB| =
= [AQ]| = 7.
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zero in two simple zeros + 7, but (¥ — Z(s, + 7))t = 0 has two simple zeros
7., when x 3£ Z(s,), and when x — Z(s,) these two zeros 7, and 7_ coalesce
to zero. Putting zt = Za(s,) + nut, b Zu(s,) = 0, and interpreting o — Z(s,)
as  — 0, that is approaching the world-line in the orthogonal plane to Zs(s,)
(i.e. in some direction in the three-space of the rest system at proper time s,,
see fig. 1), one has that the two zeros of (Z(s)) -+ nu— Z(s, + 7))2 = 0 are
T, = -k 5+ O(xn?), thus justifying our regularization. We have then from (17)
that

(20) I1(X, Z6)fssa,, = lim [A20(—7) 8(z— ) (2)

and, using 6(x) = (1 + &(«)), we obtain (1)

9 4o,

at LT=0

@3]

Lo [ -

(1) T, 200t 0=

Replacing (21) in (9) and (10) and using expression (14), (15) and (16) for fg
and fug, we obtain
y) d

(22) ?P(ﬂ)(z(so)) = ;;7'(ﬁ)(30) —2 d—so’r(ﬁ)(so) ’

)

A1 d
(23) avl/’(ﬂ)(z(so)) = 77 [3 Z5(30) 76 (Se) 1 Z,,(.S'O) dT;OT(m(s”)] -

12

1 - d 5 d
— [3‘ Zy(80) T5y(80) + Z,(SO) (—ITO 7@ (80) + Zn(80) d—sgr(ﬁ)(so) +

1, -
+ §Za(so)éa(sn)ZV(so)T(B)(so)] .
The equation of motion of the particle is obtained now replacing (22) and (23)
in (2) with F, given by (3). One obtains

i, . .. Afl .. o 1
(24) mpLip(8y) = l“u"(ﬂ)(z(so)’ Z(so)) [E (; Ziy(80) 76)(80) = Zn(8o) d(_? "'(ﬂ)(so))_
4 o

2

L1 . d 2 d
— (5 2ot o) + 2ot 35 ren(s) & 2ot o (o)

- ';; Za(su)z“(so)zr(so) 7'(5)(80))] +

d

- 202 (Z(s), Z(30)) [% 76)(80) — A s, T(ﬂ)(so):l +

- AFu(Z(s0), Ziso), vip(Z(s0)), Douip(so) -
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We summarize now the different steps leading to (24) and we introduce
an abbreviated notation in order to compare with the analytie-continuation
method of ref. (?). From (2) we obtain using (9) and (10) that (z -> Z(s,))

(25) meZu(se) = 222,70 (Z(8,), Z(s,) )va(/,)(X Z(s)) +
-+ 2220,8(Z(s0)y Zi(80)) If (X, Z(3)) +
+ AP Z(30), 7 (80), ¥iB(Z(0)), B (2 (50))) =
=240 S hu(Z(s0), Ziso)) If:s(X, Z(s)) + AF:

)
F=18),9(8)

where hug = 0P, hugs = a9, and F} stands for (3) at the point s, with
ye replaced by 1p(ﬂ,. From (25) we obtam using (21) (i.e. using the regularization
method to compute If,(x, Z(s))), that

(26) mBZﬂ -So = 242 zhﬂJ J’ (5) f’

From (13) one has that

_ oFf. ._ 0 i
e O =i, 2, B = Z g, 26|

and consequently from (26) we obtain

(28) mBAI' T Z hlt: , Z('So)) f:‘(Z(So)y Z(so)) —

— A2 Zh,tu'(z 90 Z(So )aif( (30)7 Z(sl))l

\h
1§ =80

I llﬂm

which is then the equation of motion as given by the regularization method.
Let us see now the analytic-continuation method of Barut and Villarroel. One
can caleulate directly If,(z, Z(s)) from its definition (8) by a standard cal-
culation (¢) which gives

1

(29) If;(X, Z(s) = 2(30__7;'(19“)“7;&(8}‘) fi_(xa Z(sr))

where ¢, is the retarded proper time corresponding to & (called s_ in fig. 1),
i.e. s, is determined by (X — Z(sy))? = 0, X°> Z9%s,). Replacing (29) in (25),
we obtain (z — Z(s,)) that

(30) mBZu(so) =22 Zhﬂi(z(so)y Z(s,) !

) G A i) 5 o)+ AL
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One remarks that the retarded time corresponding to x = Z(sy) is s, == s,
so one puts s, == 8 in (30). The analytic-continuation method consists in
considering eq. (30) in the point z = Z(s, 4+ u), thus replacing in (30) s,
by s, - |- u everywhere except in s, which is put equal to s,, and taking at the
end the limit « — 0. One has then

(31)  maZy(so+ ) = A2 3 hus(Zifso + w), Z(so + u)) -

1 .
(~Z—(s§,—1— o G i fi(Z(so + ), Z(sy)) -+ AF2.

A simple calculation shows that

‘ 1 1
(32) —— - e e

(Z(so+w)— Z(s0)) Zials)) 1 (u3]6) Z(50)* Zials) - O(4)

1
=2 (1 + Ow?) .

Replacing (32) in (31) and doing there a transition of — u (see ref. (2), footnote 8),
one obtains

=

(33)  maZulse) = A2 X hus(Zso)y Z(30)) = (1 + O(u2) 1,(2(50), Z(so— w)) -+ AF3.

Expanding f,(Z(so), Z(s, — #)) around w = 0, and taking the limit u — 0,
one finally has
‘ . iz y
(34) mBZu(so) -= P Z hu_,,-(Z(So), A(so)) f,-(Z(So), Z(so)) -

. al j '
— 2 S huy(Z(so), Z(s0)) 57 1:(Z(s0), Z()| 4 A,

r_
§ =3¢

which is just eq. (28), thus showing the equivalence of our double-zero—sep-
aration method with the analytic-continuation technique of Barut and Vil-
lorroel.

3. — Calculation of v (Z(s,)) and 2,y (Z(s,)) by the average method.

The average method proposed by TEITELBOIM (°) consists in computing
the ficld on a sphere of radius # in the rest system of the particle at proper time
80, then making the average over the surface of the sphere and finally taking
the limit # — 0 in order to define the field at the point Z(s,) of the trajectory.
In a covariant langunage this involves computing wgs(z) and Ovpa(®) at the
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point wr = Zu(s,) + nu# with u? = yyur = — 1, urZ,(s,) = 0 (i.e. in the hyper-
plane orthogonal to ,(s,) == Zu(s,) at s,, see fig. 1), then doing the average
over the directions u# and finally taking the limit 5 — 0. The average of a
function f(u#) is calculated by the formuls (5)

35) )y = [aatw),

L
where £ (n) is the 2-dimensional surface that in the rest system at proper time s,
corresponds to the surface of the sphere of radius # centred at the origin. The
average (35) of the product of an odd number of u# vanishes (i.e. {urd =
= (u*wusy = 0) and for the product w*#u* a simple calculation gives

(36) {Upsy = ;«1; (Zu(so)za(so) - gua) -

This procedure (formulae (35) and (36)) we call symmetrical integration.

Let us compute now the field and its derivative, starting from for-
mulae (8), (9) and (10). We put x = Z(s,) + nu, s := 3, + 7, and define the
function (5, r) by

(37) Filmy Z()) = [(Z(85) -+ mu, Z(so + 7)) = Fi(n, ) -
We introduce now the function f;(n, 7) by the decomposition
(38) Fin, ©) = 10, 7) + fi(n, 7).

In sect. 2 we have called f,(z) the function f,(0, 7), i.c. we have (see for-
mula (13))

(39) FiZ(s0)y Z(so + 1)) = f,(0, ©) = fi(7) -

This function is finite and also its derivatives (see appendix). The values at
7 = 0 of the function and its first derivative, i.e. 7,(0, 0) and (8f,(0, 7)/07)
are given explieitly in formulae (14), (15) and (16).

We consider now the function f;(n, 1) defined by (38). From its definition
we see that it vanishes at n = 0, <.e.

=02

(40) f,0,7)=0.

For j=(p) the funetion fi (n, v) vanishes identically, since fon, T)=re(s+71)
is independent of 7, and consequently from (38) it follows that j('ﬂ)(n, 7)=0.
For f = »(8) the computation starting from (12) gives the following form (see
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appendix):
- 1
(41) fup(n, ) = ;lﬂﬂ)(ﬁ) + Evar(n, 7)
with
(42) bup(n) = 77“»[1 nua (5‘0) +7 (u A“( )) 4 0(7}3)] 7@ (o)

and kyg(#, 7) is regular in 5 and 7. One has from (40) and (42) that kys(0, 7)=0
and more precisely this function is of the form (remember the development
in % is in fact a development in nu# see (37))

(43) ko (1 7) == MUt kg (7) - MPurut B 0 (1) + O0p)
where the k‘v'(';m, _u,(T) are regular functions of 7, in particular ki'(';,ﬂl___un(O) are
finite. We can now proceed to the caloulation of If(w, Z(s)), where f will be f,.
From (8) and (37) we obtain, using 0(z) = (1 + &(»)), the expression
() Tf, 7) = [ aw o[(Z(s) + nu— Z(so + 0)*)fln, ) -

—{—%Jﬁre Z°(s) + nu® — Z°(s, + 7)) 0[(Z(30) + nu— Z(s + 1))2]f(n, 7)
Putting
(45) G = (w— Z(s))* = (Z(s0) + nu— Z(s0 + 7))?,

one has that the two roots v and z_ of the equation @ = 0 are (from now on
when we write Z, Z, Z, one must understand the value of these functions at
§ = 8)

(46) T.=+% n( +—nuaé“+rr( (ualie)t + o ZZ “f - uaZ“))+
+0(nt) = £+ O(?) .

One also has

(47) X°o— Z9(s)

3=8o+Ts = ZO(SO) + 77”’0_ ZO(SO + ’t)

emre =T 1(Z°(s0) F w9+ O(n?) .

But (Z°(s,) T u®) > 0 always, since the sign of the zero component of a light-
cone vector is a Lorentz invariant and in the rest system 2°(s)) = 1, u® = 0.
This means that e(Z°(s,) 4+ nu® — Z°(s, + 7.)) in (44) gets effectively replaced
by e(F n), since for n small the sign of (47) is that of (F 7). From (44) one ob-
tains then

f 1_’+ _’— 1_7»07_,_.
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where

(49) @, 1) = d—ds (@ — Z(s)) = —2(Z(s0) + 17— Z(30 + 0))aL(s0 + 1) ,

and |@'|, = |G'(y, 7.)|. Since I is a linear operator we have from (38) that
(50) Tfitn, v) = If,(0, 1) + Ify(n, ),

and for j = () one has If(n, ) = Ifi9(0, 7), because fi(n, 7) =0. Let us
caleulate now If;(0, 7) explicitly starting from (48) where we replace f(n, z) by
f:(0, 7). Using (see appendix)

1

oV T

77+ Uazun[ (UxZi%)2 + 16 ZaZ“ 4+ U“7“]+0( 2,
one obtains from (48) that
62 21700, 0) = (57 +  Ueo+ 00 G0, 1)+ 140, 1) + 06 +
101,
-%(%+1Uam+0(n)( 1:(0, ) + /50, —n) + O(n?) .
When 5 — 0 this gives

(53) 17,00, 7) = = (0, 0) —

1 . -
+ 1 UaZ#f4(0,0) .
0

The last term vanishes on symmetrical integration and one finally has

1 of(0, 1)

ot

L70,0—

(54) If,(0,7) = o

’
=0

which is exactly the result of the regularization method of sect. 1 (see (21)).
We calculate now If(n, v) for j = »(B). From (41) one has

., 1
(55) Ifyp(n, 7) = I;;lvm) + Tkyg(n, )

We show first that Iky,s(n, r) = 0. Using a short-hand notation we can write
(43) as

(56) . k(n, 7) = n(UkV(z) + quk(7) + 0(3?)
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with k¥(t) regular functions of 7. Using (51) and (56), one has that

n, . 1 L 1
(57) “"g, l” (37 + 4 Uit om)(nukm(ri) + 0l) = 5 uk(z,) + Ol

But k2(r) contains no u# and consequently (57) vanishes by symmetrical in-
tegration. This shows then using (48) with f = kugs(n, ©) that Tkws(y, 1) = 0
and consequently

. T 1
(58) If.p(n, T) — I;lwﬁ)(n) .

We use the same notation as in (56) to write (42) in the form
(59) 1(77) — nul“’ 4 n2u? [® L N3 ud I - 0(,74) .

On the other hand one has

1 1 .. 1 .. . 1
. a4 A’Ja—'z i 4 Z T‘“’/u 4
(60) = 772(1 nutZia—n (12Z Zaxg U /)) = 0(n),

and consequently

1 .y
(61) 5 bua(n) — % Ul + U210 — (U Za) UL +-

+

- (Ua [3) (U“Z‘x) Uzl(-z)_(il_é VAY /P :t_g [BE Za_) []L(l)) - 0(772) .

From (61) and (51) we obtain, after dropping terms containing an odd number
of U# which will vanish by symmetrical integration, that

(1/23) L)
6]

(62)

1 A
= (Uﬂl“”———)( 72 Z) wm) F

27 2

i

1
(U Za) UL | ¢ (U2 Za) VI + Of) -

S|

One can see from (62) that the finite terms cancel, and after replacing lf,l(},)ﬂ
and lﬁ;,m by their values which can be read from (42) one obtains in the limit
5n — 0 that

(/1) ba(n) 1

= 1 Ur Us guy Zars)(30) + O() -

63 T
(63) o 4

We can now use (48) to compute I(1/72)lys(n) remarking that there the second
term on the right-hand side of (48) vanishes, sinee (63) does not depend on 7.

15 -- Il Nuovo Cimenlo A.
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One has then (5 — 0)

1 1 . 1,
(64) I = lug(n) = 1_77 Ur Usgus Lis(8,) 1(6)(80) = 157 Zy(80) 7 (80)

= -‘17
where the last equality comes from symmetrical integration by means of (36).
From (55) and (64) we obtain (recalling that Ik.s(n, v) = 0) that

- 1
(65) Tf»(ﬁ)(% T) = — 1277 Z,,(so)r(g)(so) .

We can now give the final result for yy(x) and oy, 2 — Z(s,). From (9)
and using (50), (54) and the fact that f, (y, r) =0, we obtain

(66) pn(Z(50)) = 24Fp(0, 7) = 2 (%ﬂm(o, o fel) ) ,

which coincides with the result of the regularization method, since f,(0, v) =
= f,(v) (see (21) and (22)). For o,y (Z(s,)) we obtain from (10), (50), (54)
and (65) that

_a}wﬁ)(oa 7) |

i
or ) — gy Zy(80) Ta{ o) -

(67) Byw(g,(Z(so)) =4 (%fwm((% 0)—

=0

The first term in (67) is the result of the regularization method (see (23)), while
the second term coming from (65) is a new divergent contribution one obtains
in the average method. This new term just changes the numerical coefficient
of the first term of (23), and we shall see that this only affects the unobservable
mass renormalization. We can conclude then that the average method is equi-
valent to our double-zero—separation procedure of sect. 2. On the other hand,
the average method can be shown to be equivalent to the usual technique
using the energy-momentum tensor (?).

4. — Lagrangian formalism.

We shall derive here the equations of motion from the principle of stationary
action. In order to obtain eq. (1) one takes the interaction Lagrangian Ajg y®
and consequently the action is

€ e ,
(68) o = —meds + e A4 Oy 0P + in A4 jigy(@) () ,

() C. A. Lorez and C. TrrreLBOIM: Lett. Nuovo Cimenlo, 2, 225 (1971).
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where ¢ can have the value -+ 1 or — 1, depending on the different cases we
shall consider. The Buler-Lagrange equations for yg give (1) and to obtain
the equation of motion for the trajectory one has to use the modified Euler-
Lagrange equations (ref. (%), page 66)

¢cL dcL d ;
(69) &7 s 8 s [( - 7) A"] -

to take into account the supplementary condition Z2 =1, with L given by
(70) L=—m,- elp®(Z(s)) 11 Zp(s).

One obtains then from (69), using (d/ds)I1Zg == Z*([e2*) 12, since
11Z4(s) depends on s only through the functions Z(s), that

.. . . ol
(T1)  maZy - — ey [nz(f,,_q,, 7 O—{Zﬁ’_/ A,,(///(ﬂ)_/«

g
"\/ X

d ol1Z d oITZ , oIlZ
4 ()w(ﬁ)[ds ,\7‘“([1) //IA' dg - ,\A:ﬁ) + /;( (I[A(ﬁ)—Z‘ ,\/ (m)jl

One easily checks that (71) is consistent with Z«Z, = 0, indeed the right-hand
side vanishes identically when contracted with Z« Introducing a variable 7'
which has the value 0 for the double-zero—separation method of sect. 2 and the

value 1 for the average method of sect. 3, we obtain from (23) and (67) that

(72) P (Z(s)) = A [(»1) 1)7 e - 7, Enz(m]_

Y

dz

;[ LI — By T + “,,_11m>' zazaz,,nm],

while ¢®(Z(s)) is given by (22). Replacing these expressions for p® and
dyyp'® in (71), we obtain the differential equation for the trajectory Z(s). We
shall now see that this equation is always the Lorentz-Dirac oquarion with
a different numerical constant in front of the Abraham force I', —= / atZ,
(a® = Z,Z*) which depends on the explicit expression of /7Z4. In order to
prove this we remark that in (71) when ¢, p® and ¢# are replaced the only
terms with third-order derivatives (i.c. containing Z) will come from the first
two terms in the second bracket of (72). These terms are multiplied by terms
containing only first derivatives and as Z*Z, = — a? the only third-order terms
that remain will be those carrying the free index p, i.e. containing Z;,, and
these will be only on the contractiong

(73) — el (——n7w>11/(ﬂ)/;,- ‘—11,4“” ¢ 1M<ﬂ>)

O lin (19“
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From (73) one can see that one has linearity in the third derivative, i.e. (73)
is of the form A*yZ, -} fu(Z,Z), where y is just a numerical dimensionless
eonstant and f some function containing only Z and Z. Moreover, for the
purpose of caleulating ¢ we can replace the second term in (73) by

OHA“” )
de( o7, ds A

since the difference contains only Z and Z. One has then

1 s d ollZ
(74) zw@:a{#me@@_&(,ymﬂiﬂ]

and this equation will explicitly determine y when the form of I7Z is known.
According to the remarks we have done we see that (71) is of the form

(75) Myl = A? ()’Zu + X%, Z) +;7- Yu(Z, Z)) .

Since a? = Z,Z* is the only scalar one can construct with Z and Z we have
that X, and Y, are of the form

(76) XuZ,Z) = Z, X \(a?) + Z, X,(a?),

(17) YuZ,2) = Z, Vy(a2) + Z, Yi(a?)

where X (a?), Y,(a?) are polynomial in a2 If we contract (75) with Zu we
obtain zero and consequently

(18) OZP(—WL%XWﬂ+%ﬁMﬂ-

We use now dimensional arguments (¢ = 1 here) and, recalling that y is a di-
mensionless number, we see that the dimensions of the different quantities
in (78) are [ya?] = [Xy(a?)] = L3 [n] = L, [¥,(a®)] = L. Since X,(a?) and
Y(a?) are polynomials in a? we conclude that X,(a%) = ya® and Y,(a?) = 0.
Replacing now (76) and (77) in (75) and using again a dimensional analysis,
we conclude that X,(a?) == 0 and VY,(a?) = § = dimensionless number. We
have then

(79) iyl — 22 Y (Zu - a2Z) +}z

Putting dm = 224/yn and defining the renormalized mass m =m,— dm, we can
write (79) as

(80) mZy, = By(Z, - a*Zy),
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where y i3 determined by (74). Equation (80) remains finite when 5 — 0 and
is just the Lorentz-Dirac equation as announced. We recall that (80) has to
be supplemented with the term AF) that corresponds to the boundary con-
dition at X° -»-- oo, since we are using retarded Green’s functions (see the
lines following eq. (5) and (3), (24) and (34)). The number § can be computed
explicitly, for this it is enough to collect from (71) with d,9'® and '@ replaced
all the divergent terms (i.e. with the factor 1/4) multiplying Z,. We have
(= means here equality of the factor multiplying Z,)

_ Vo TNy v v Qo ITZ®
(81) (52,,: & [(5 —I'- E)Aﬂ[’Z(ﬁ)]!é(m -+ d—s (][A(ﬁ) "a’—z—u)—

A

r’
w3 ( PaIT® 2{7.4@)] _
R/

Note that 17Z,(2112® [ Z+) is necessarily of the form «Z,, with @ a number,
and consequently the two last terms in (81) cancel and we have

1 )
(82) d =g (3 + g) TIZ®ITZ g .

p]

With our definition of ém a Jé << 0 means an interaction that increases the
mass of the bare particle. The analysis we have done shows in fact that the
mass renormalization dm is always divergent (it comes from the term in n=').

TaerLe I.

IIZ, Field e y 3

1 @ scalar 1 ¥ +%
+3

Zin Ay electromagnetic —1 z —3
—3

ZsZs Usp tensor 1 —3 +1
+%

$gxp Usp tensor —1 —1 Y
—%

Let us apply now our results to some well-known interactions. The values
of v and J are collected in table I which is to be compared with the corresponding
table of (3). In the last column of table I the first number corresponds to the
value of § in the double-zero—separation method (7' = 0) and the second
number to the value in the average method (T = 1).
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We remark that the equations of the gsealar field we treat here ean be con-
sidered as a weak-field approximation to the covariant scalar theory of grav-
itation (¢). In that approximation the quantity A(x)® at page 222 of (8) can
be replaced by one and the coupled equations for the field and the trajectory
reduce to ours. The case of linearized gravitation is postponed to appendix B,
since there the coupled equations for the field and the particle are not deduced
from a variational principle. Finally we consider in appendix C the case of
symmetric electrodynamics with magnetic monopoles, since there the oc-
currence of two trajectdries requires some slight modifications.

5. — Conclusions.

We have shown in this paper that the regularization method we have pro-
posed (1) (double-zero separation) with its intuitive interpretation is equivalent
to the «analytic continuation » regularization () for which no justification
was originally given.

A physically reasonable way to define the field on the world-line consists
in doing an average over all possible spacelike directions (°), we have proved
that the double-zero—separation regularization is also equivalent to this pro-
cedure. Finally, we have shown that the structure of the equation of motion
for the trajectory is largely independent of the nature of the field and of the
interaction, in fact one always obtains a Lorentz-Dirac-type equation and only
the numerical coefficient of the Abraham force changes in the different cases.
Moreover, we prove that only a mass renormalization is needed to absorb all
the divergences.

* %k %k

The authors are grateful to Drs. J. C. Lt GurLLoU (Paris) and W. TROOST
(Leuven) for many interesting and useful discussions.

APPENDIX A

We show bricfly here how one obtains the results concerning ﬂ(m(n, 7)
used in the text. A dot means d/ds and we have by successive derivation of

Z2—1 that Z,Zr=0 and Z,Zs+ 2,75 —0. We put o = Zk(s,) + nU#,
Uy Uk =—1, UuZk(s,) =0, T =5—8,. We also write a? =Z,Z* and remind

(¢) J. L. Pierexpor and D. SprisEr: Ann. Soc. Sci. Bruwz., 86, 220 (1972).
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that all functions in the expansions are taken at s ==g,. One hag

o d = d r— Z(s v
(A1) fuar(n, 7) = (T;Fﬂﬁ)(??’ T) = ds g_z((:));agi)((j)) :

The expansions of the numerator and denominator of (A.l) are

(A2)  (x—Z(s)rwls) = (n U,——rZ,.—I;Z,,—— % Z,+ 0(#))-

o

A d _1_12( ! 072
7(ﬁ)TTdT'()r(ﬁ)(80) i Ed—sghm(so)—}- (),

‘ 1 —
A3) Gz

| =

[1 + qUados + ’7?; UnZo + %az + 2(UsZe)2 + O(yz) + O(pp) + 0(13)] .

From (A.1), (A.2) and (A.3) one checks immediately that f,s(0, 7) is finite
and that f,(n, 7) is not of the form (41) of sect. 3. The computation of the
term in 72 gives (42) and to calculate fus(0, 7) = fus(t) and its derivative
one just puts y = 0 in (A.1) and makes a Taylor expansion in 7, the results
are (15) and (16) of sect. 2.

APPENDIX B

The coupled equations of motion of linearized gravitation come from an
approximation scheme of Einstein field equations developed in (!). One has
(ref. (°), formula (47))

(B.1) m% [(Z,,— (1; vasZolB— 0) Zu) + wﬁzﬁ} = %maﬂlpwzaZB ,

while in the equation for the field the quantity 74 = ITZ is given by (ref. (%),
formula 62))

(B.2) vap = 2(gus— ZaZp) -

Equation (B.1) for the trajectory does not come from our Lagrangian of sect. 4,
and consequently we cannot apply the results of that section. But (B.1) is
linear in ypas and duypss and we can then use the analysis of sect. 2 and 3.
In fact, when one replaces ysp and 9,pap in (B.1), one is in the same situation

(®) P. Havas: Phys. Rev., 128, 1104 (1966).
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as in sect. 4, since (B.1) vanishes identically when contracted with Z#, and
we know repeating the same argument that this leads to a Lorentz-Dirac-type
equation (there is no dm in this case, since the constant C can be adjusted to
cancel the divergent term). In order to calculate the number v one just has

to look for the terms containing Z. In Ovpap these terms are
(B.3) (Ovpap)® = —2mG[} 'ZUV(gaB— 2724 25) —‘QZv(EaZﬂ - ZAZB)] .

When (B.3) is replaced in (B.1) the terms with Z will be the last term on the
left-hand side of (B.1) and the term on the right-hand side, and one obtains
for v the equation

(B.4) Gmy + 4Gm?® - — Gm*(5(1—2)),

which gives y =—7. From this example it is clear that one will obtain a
Lorentz-Dirac—type equation for more general gituations than the one con-
sidered in sect. 4, namely one needs that Z+F,=0 (see eq. (2)), which is a
consistency condition, and that eq. (75) hold with y a dimensionless number.
But (75) will always be true if for instance a,”®(Z, Z) is a function only of Z
as is the case here in (B.1). We remark here that the physical interpretation
of the Lorentz-Dirac equation for gravitation puts problems. Because of the
quadrupolar nature of the gravitational waves (due to the conservation of
energy-momentum) one ean expect that the radiation reaction must be dif-
ferent from the electromagnetic dipolar one (for a detailed discussion see (1),
page 993).

Arrenpix C

We study here the equations of symmetric electrodynamies, i.e. of the
interaction of an electric charge and a monopole (magnetic charge) with the
electromagnetic field. Let e+ be the completely antisymmetric tensor with
g"2 =1, then we define the dual By of an antisymmetrie tensor By, by
By = Y euwos B°. The coupled equations of motion for the system are (1)

8w = At = dme f ds 09 (z— Z(3)) Z,
(0.1) ~ ] .
8uFw = 4 = doit f ds 60 (z— ¥(s)) V7,
mBZM = 6]’7;“,(Z(8)) Z’ )
(0.2) e .
mpYe — el u(Y(s)) Y.

(19) Cr. W. MisNER, K. S. TuorNE and J. A. WHEELER: Gravitalion (San Francisco,
Cal., 1973).
(1) R. A. Braxpt and J. R. Privack: Phys. Rev. D, 15, 1798 (1977).
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These equations desceribe the interaction of the electric charge e with trajec-
tory Z(s), the magnetic charge ¢ with trajectory Y(s) and the electromagnetic
field. We introduce now the Cabibbo and Ferrari potentials (12) A, and 4, by

Ly = 0y Ap— Cr A p— Euvos ° A° ’
(0.3)

Wlll’ = au,Ap— ayliu + Euvoo c?A° y

and impose the Lorentz condition &,A4#= 5,44—0 so that eqs. (C.1) are
equivalent to

DA;‘ = 47!6J'ds 6(4)(1’ — Z(s)) Zu s
(C.4)

We note that the system of coupled equations satisfies duality invariance:
Fuy—>Fup, Fip—>—Fyy, 68 6——e, my— My, My—msz. We split now the
field into two parts as one always does when dealing with more than one par-
ticle. In order 1o do this we can write (C.3) in the form

(C.5) Py P+ P
with F§) and F ﬁf.j defined by
(0.6) FO = 3,4, — 8 Au, Fo = 3,4,— 8,4, .

We proceed now as usual computing the retarded solutions 4, and 4, from
(C.4) and replacing in (C.6) and then in (C.2) (of course the boundary condi-
tion K, has to be added, but we omit it). One obtains then

(C.7) mply = eFE(4(s)) 2 + eFD(2(s)) 27

(.7 iy Ve =eF3(Y(s)) Y? 4+ eF(V(s)) X7

We remark now that the second term on the right-hand side of (C.7) and (C.7')

is regular and defined on the trajootmy (it represents the field created by the

other particle), while the first term is the usual one with the divergences that

leads to the Abraham force. This is obvious for (C.7) and for (C.7') it follows

from duality invariance. These terms can be handled as we have done in the

text and thoy give a Lorentz -Dirac-type expression with y = 2 and 6 =
— (4 + T/6), so that, putting

1 T\ e? _ ., {L Tye

(**) N. CasiBeo and E. FERRARI: Nuove Cimento, 23, 1147 (1962).
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one obtains from (C.7) and (C.7’) (incorporating the boundary condition F'2)

Hy

(C.8) mlu = 3e(Zu+ a2Zy) L eFE(Z(s)) 27 -+ eFin(Z(s)) 27
(C.8") Yy = 28TV, + a2 ¥,) + eFO(T(s)) Y7 + b (X (s)) T,

where F') is the retarded field produced by the monopole and Fy) the retarded
field produced by the electric charge. These equations were previously obtained
in (). Tt has been pointed out that when they are considered for a heavy
fixed monopole in the nonrelativistic limit (and neglecting the Abraham force
in (C.8)) then angular-momentum conservation is violated for some set of
measure of initial conditions. As pointed out by TROOST (), the reason is
that the equation of motion is not defined on the corresponding trajectory
and he solved the situation giving the charge e a supplementary rotation degree
of freedom, but this means that the charge has some structure and is not
pointlike anymore. One can also argue that the conflicting trajectories are
to be defined as limit of trajectories corresponding to initial conditions infini-
tesimally near to the singular ones, this also eliminates the paradox.

(#3) F. RourvricH: Phys. Rev., 150, 1104 (1966).
(1) 'W. Troost: Solufion of a paradox concerning the motion of an electric and a magnetic
point charge, preprint K.U.L.-TF-78/006 (Leuven).

® RIASSUNTO (")

Si mostra che linterazione di un campo classico di carattere generale tensoriale con
una particella descritta dalla sua traicttoria porta in generale ad un’equazione del tipo
di Lorentz-Dirae, indipendentemente dai dettagli dell'interazione. Si analizzano atten-
tamente le divergenze della teoria per mezzo di un metodo che & stato proposto prece-
dentemente da noi, e che si mostra essere equivalente ad altri schemi di regolarizza-
zione che sono stati usati precedentemente. Si applicano i risultati a molte ben note
interazioni, comprendendo la gravitazione linearizzata e Delettrodinamica simmetrica
con monopoli.

(Y Traduzione a cura della Redazione.

O B3aMMOAEHCTBHHM KJACCHYSCKHX Noxedl # YaCTHIL.

Pe3siome (*). — ITokazwpiBaercs, YTO B3aMMOJEHCTBHE KJIACCHYECKOIrO MNOJIA, HMEIOLIETO
TeH30pHBIL XapaKTep, C YACTHMIEH, OMMCHIBAEMOM TPaeKTOPHEH, IPEBOIMT B OGmIeM
BUie X ypaBHeHmio Tuna JlopeHua-Jlupaka BHE 3aBHCHMOCTH OT XapakTepa B3auMo-
neHCTBAL. AHATM3MPYIOTCA PAcXOOMMOCTH 3TOH TEOPHM, MCIONB3Ys METOH, Npemio-
MEHHBI HAMHM paHee, KOTOpbIl SBIAeTCS SKBUBAICHTHBLIM JIPYTHM CXCMaM DETYJiApH-
3a0MA. Mbl IPHMEHSIEM HAIUM Pe3YJIbTAThl K HEKOTOPHIM XOPOIIO H3BECTHBIM B3aHMO-
OEHCTBUAM, BKIIIOMAS JIMHCAPH3OBAHHYK) IDABUTAIMI0 M CHMMETDHYHYIO 3JJIEKTPO-
IUHAMHKY C MOHOIOJISAMH.

(*) [epesedeno pedaryueil.



