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Summary. -- The interaction of a classical field with general tensorial 
character with a particle described by its trajectory is shown to lead in 
general to a Lorcntz-Dirac-typc equation, independently of the details 
of the interaction. The divergences of the theory are carefully analysed 
by a method we have proposed before, which is shown to be equivalent 
to other regularization schemes that have been used previously. We apply 
our results to several well-known interactions including linearizcd gravi- 
tation and symmetric electrodynamics with monopoles. 

l .  - Introduction. 

We s tudy  here the interact ion of a field with a general  tensorial  charac ter  

with a particle described b y  its t ra jec tory  Zis).  We consider a general  class of 

interact ions res t r ic ted only by  assuming tha t  the equat ion of mot ion for the  

part icle should be linear in the field and the der ivat ive  of the field. I f  we fur ther  

assume t h a t  the  coupled equations of mot ion are obta ined  f rom a Lagrangian  
we prove  t ha t  one is led to a Loren tz -Di rac - type  equat ion for the  t ra jectory,  

the  different interact ions have  only the effect of changing the numerical  coef- 
ficient in f ront  of the Abraham force and  the explicit  value of the  unobservable  

mass  renormal iza t ion  which we show is a lways a cut -of f -dependent  (divergent) 

qmmt i ty .  The same conclusion is reached if the current  of the field depends 
only on Z. We per form our s tudy  using only the equat ions of mot ion  and  

making  a careful s tudy  of the divergences of the theory,  which we show can 
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all be absorbed by  a mass  renormalizat ion.  As is well known,  the problem here 
is the divergence of the field on the world-line of the particles;  we t r ea t  this 
in sect. 2 b y  a regularizat ion technique we have  proposed previously  (x) which 
has a clear physical  in te rpre ta t ion  tha t  we discuss in detail. We call this tech- 
nique the double-zero-separa t ion  regularization. We show tha t  this double- 

zero separat ion justifies and  gives the physical  meaning  of the ~( analyt ic  con- 
t inuat ion ,> rcgularizat ion proposed b y  BA~UT and VILLAI~I~0EL ("~ since both  

techniques are shown to be equivalent .  In  sect. 3 we compare  the double-zero-  

separat ion me thod  with the  average procedure  proposed b y  TEITEZ]30I..~ (s), 

which consists in defining the field on the world-line as the l imit  of the  average 

of the field on a small  sphere with centre on the  part icle in the rest  system. 

One finds tha t  the average  me thod  only modifies the  nu_meric~l coefficient of 

a divergent  t e rm in the der ivat ive  of the field, and t ha t  this only modifies 
the unobscrvable  mass  renormalizat ion.  

In sect. 4 we introduce the Lagrangian  formal i sm and show tha t  the equa- 
t ion for the t ra jec to ry  is a lways a Loren tz -Dh ' ac - type  equation.  We also 
give explicit  formulae  for the numer ica l  coefficient of the Abraham force and 

for the mass  rcnormal izat ion counter term.  We app ly  then  our results to dif- 
ferent  cases studied previously in the l i terature  and  collect the results  in table I. 

The cases of linearized gravi ta t ion  and  of symmetr ic  e lectrodynamics  with 

magnet ic  charges t ha t  require some minor  modifications are t rea ted  in ap- 

pendices B and C. We have  t r ea ted  only the case of massless fields, bu t  the 

same techniques for handling the divergences can be used for massive  fields, 
since the singulari ty of the  re tarded  Green funct ion on the light-cone is un- 

changed. The same comment  applies to the electromagnet ic  interact ion in the 
presence of a given gravi ta t ional  field (4). 

2 . -  The regularization method and its relation to the analytic-continuation 
technique. 

The sys tem of coupled equat ions we s tudy  here is (the dot s tands  for de- 
r iva t ion  with respect  to the proper  t ime s) 

( l)  
f 

[] ~fr = 4 ~  ds 8~*)(x-- Z(s)) I1Z(~,(x) ---- ](~)(x), 

m,Z,ds) = ;.F~(Z(.~), Z(s), V<~,(z(8)), ~ W,~(z(s))) , 

(1) E. TIitAi'Et)uI: preprint K.U.L. (Leuvcn), to be published in Amer. Jouru. !'hys. 
(2) A. BAICUT: Phys. Rev. D, 10, 3335 (1974). 
(a) A. BARUT and D. VILLARRO~L: J. Phys. A, 8, 156 (1975). 
(4) A. BARIZT and D. VILLARICOEL: J. Phys. A, 8, 1537 {1975). 
(5) (7. TEITXLBOIM: Phys. Rev. D, 4, 345 (1971). 
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where (fl) stands for a collection of indices and lI~(m(s) for a product  of ~ ( s ) ,  
a product  of g~, (the metric tensor tha t  we take as g0o----~-l, g ,  : - -  ] ,  
i ---- 1, 2, 3), a mixed product  of gs,~ and Z~(8), or a sum of these three types,  
all with the correct  tensorial character  of the field ~o(m(x). For  classical electro- 
dynamics ~(~(x) is the electromagnetic potent ia l  A~(x), 112(~)(8) is Z.(8), and 
2F,-~ e(~A~(Z(8))--~,A~,(Z(s)))Z~(s). For  a tensor fiehl V(~)is UMx ) and 
II2(~)(s) can be taken as Z~(s)Z~(8), g~, or a sum of these two terms. ]~rom 
now on, We shall use the nota t ion r(~(s)----llZ(~(s). In  order to obtain the 
equat ion of mot ion for the t ra jectory,  we solve (1) for ~(~(x) in terms of Z(s), 
using the re ta rded  Green function Da(x) and we replace the field in (2), the 
resulting differential equat ion for Z(8) is the equat ion of motion of the particle. 
The difficulty with this program is, as is well known, tha t  the field V~(~(x) and 
its derivat ive ~o(~)(x) diverge on the t rajectory,  i.e. at  the point  x---Z(s). 
This is precisely the problem we shall solve here for the dase in which the force 
F~, is l inear in the field and its derivative, i.e. it  is of the form 

(3)  

+ b.(~,(Z(8), 2(8)) v(~)(z(.~))+ ~.(2(8), 2(8)) .  

The re tarded  Green funct ion DR(x ) solution of D D~(x)= 5c4)(x) is given by  
(O(x o) = o, xO < o, O(xO) = 1, x ~ > o) 

(4) D,~(x) =-_-- __10(x)3(x'-) 

and from (1) we obtain 

(5) v,r = :  w~(~,(x) § X f d ' x ' D ~ ( x - -  x')](~)(x'), 

where is a free field ([~ v2(l')(x) ~0~(x) = 0) corresponding to the initial con- 
. ( t a ) /~ l  dition ~(m(x ~ - > - - ~ ,  x)--~ .~(~)~j. We write ~r for the re tarded field, 

~)(~)(x) = ('~)'--' ~(~) ix) -~ y~(~(x), and from (4) and (5) we obtain 

(6) 

I f  the field ~v(~)(x) is required to satisfy supplementary  conditions, this of com'se 
induces corresponding constraints on j(al(x) (in electrodynamics to the condi- 
t ion ~,A,(x).---0 corresponds ~ , j ~ ( x ) ~  0) and consequently the re tarded so- 
lut ion (5) will satisfy the subsidiary conditions �9 ~l(~)(x) is chosen to satisfy 

them. 
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B y  a s t a n d a r d  ca lcula t ion  (~) we ob ta in  for  ~,,v2(~)(x), x ,+-Z(s), the  resul t  

. f  d (x--Z(s)),r~)(s) (:) a,,v,(~,(x) : : ~  ,1,~O(~~ ~ (~-~ Z-(,,,)); Z~(.,.) " 

We define now the  l inear oper'~tor I ac t ing  on the  func t ions  ](x, Z(s)) b y  

(s) ~i(x,z(~)) =:fd,~O(.~o- zo(,,)) ~((~_ z(~)),)i(x,z(,~)), 

in t e rm of which we can wri te  

(9) ,~,@(x) ---- 2)../](,)(x, Z(s) ) ,  

(lO) ~o<.,(.r.) = 2;.I&.)(x, z(,~)) 

with /j(x, Z(s)), j - - ( f l ) ,  i,(fl), defined as 

( n )  /r z(8)) - r<~)(.~) -:/ /Zr 

d ( x - - Z ( s ) ) ~ r ( ~ ( s )  

Our  purpose  is to  eva lua te  (9) and  (10) for  x -+ Z(so) to replace t h e m  in (2). 

We  r e m a r k  now t h a t  [~(Z(so), Z(s)) is a well-defined finite func t ion  for all s 

(i(~)(x, z(~)), because it does not de~)end o .  ~ a . d  i.(~)(~, Z(.~)) b~r o~ its 
explici t  express ion one can  c'flcula.te, see appendix) .  P u t t i n g  s = so q- v; and  

defining ];(v) b y  

(~3) h(z(,%), z(,~o + ~)) = L(*) , 

one checks t h a t  ]j(~) a nd  its der iva t ives  are  finite at  ~ - -  O. 
one has  (see appendix)  

(i,1) 

0 5 )  

(~6) 

More expl ic i t ly  

e]r :~ d 
]r : ,'(~,(~0) , a~ i:~o = d.~--."(~'('~~ ' 

~Z,.(~'o) r(,,(So) + Z,,(.~0)~Ey,. ~ r(~,(.%), 

a/,,<.~(~) :l ~ : . .  , _ _  
~T = 5Z,.(.%)r<~,(s0)-t- 2~(~o) d ~-o ,- dsorr  

d 2 1 ,~, ~ ,~ ~. 
-k Z,'(So) (~So rr176 + 5 Z~(s~ (so)Z,(so)r(a}(.%) �9 

(s) ~t~. BARUT: .Electrody~amics and Classical Theory o] Fields and Particles (London, 
1964). 



214 ~t. x .  B R A C I t E T  a n d  E.  T I R A P E G U I  

The regularization method we have proposed (~) consists in the following. 
One has to compute ~o<a)(x) and O,~<a)(x) for x - +  Z(so),  and consequently (8) 
for x--~-Z(so)  and /----/j, but,  as /+(x, Z(s ) )  remains finite for x-+Z(so), as we 
have just  seen, we can put  x ---- Z(so) there thus writing ] j (Z(so)) ,  Z(so + v)) = 

--= ]j(T), the divergence coming from the other terms in the integral (8) which 
we have to regularize. We have then (s---- so -+- 3) from (8) tha t  

(17) ~/,(~, z(.))l: +~, . ,  = f d 3 0 ( ~ -  zO<:o + 3 ) ) ~ ( ( ~ -  Z<~o + 3))3)t,(3)l:+z,..., �9 

One has 

(as) x ~  z~ + T)/=__,~(.> = -  ~g~ -!- 0 ( ~ ) ,  

and 

dt _.1 > 
~~ - ~ - V l ~ - ~ v ~  o 

(x -  z(s))..!~+,,,., = (z<,o)-  z<,o + ~))~= 3 .0 + o<~:,). 

We see then tha t  in the integral (17) the integrand contributes only for small 
z(~(3 2) -- 0, z ~ 0), and consequently from (18) we can replace 0(z ~  Z~ + z)) 
by  0(-- 3). The origin of the divergence of (17) is now clear, since ~(v ~) is not  
defined because the ~rgument of the b-function has a double zero at  z----0. 
We regularize this (Lfunction replacing (~(r 2) by  $(3 2 -  F2) and defining (17) 
as the limit F - ~  0. The physical interpretat ion of the regularization is clear 
when one remarks tha t  the effect of put t ing (~(z -~ -- F2) is to separate the double 

Z(s+ 

B 

z(%)l  . 

Z(s_: 

Fig. 1. - v~(So) = ~.~(so) ~ (1, 0), x" = Zl'(so)+ ~v;', [ x - -Z ( so )  [ ~ 7, z+ = s ~ - - s o ~  l A B  I 
[ A C I  = ,~. 
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zero in two simple zeros 4- ~], but  (x - -  Z(so § z))'-' = 0 has two simple zeros 
z• when x ~ Z(8o)~ and when x->Z(8o) these two zeros ~+ and v_ coalesce 
to zero. Put t ing  x~ ~ ZZ(so) § ~u,, u~Z~(So) -- O) and interpreting x -+ Z(So) 
as ~ -+ 0, that  is approaching the world-lirte in the orthogoual plane to ]aZ(So) 
(i.e. in some direction in the three-space of the rest system at proper time So, 
see fig. 1), one has that  the two zeros of (Z(8o)§ ~u--Z(8o § v) )~=  0 are 
v• ~ =[- ~1 § 0(~/~), thu,~ justifying our regularization. We have then from (17) 
tha t  

(20) 

and, using O(x) ---- ~- (1 § e(x)), we obtain (1) 

1 - 1 ~L(~) o 
(2:1) T]~(X, Z(8))lx~z(~o,= ~l~(O) 2 ~ § 0(~1). 

ICeplacing (21) in (9) and (10) and using expression (14), (15) and (16) for ](~) 
a.nd fi,a), we obtain 

2 (t 
(22) vr =-r(~,(So)->. (~8 ,,'(~)(8,,), vJ 

(23) 
~t [1 ~. d ] 

~,y~(~)(Z(so)) = ~ ~Z,(so)rr § 2,,(So) ~sor(a)(so) - -  

1 Z" . d �9 d ~ 
- -  2 ~3- Z~(so) rr + 2"(So) [1~ rr § Z~(so) ~ rla)(So) § 

1 ~ ~. 
+ ~2~(so)Z~(so)Z~(so)rr 

The equation of motion of the particle is obtained now replacing (22) and (23) 
in (2) with Ft, given by  (3). One obtains 

(2-J) I ~. Z d \ 
t)(8o) d~o r(fl)(~o) ~ - -  

1 ;:. .. d �9 d 2 
- ). ~ z~(8o)r(~)(So) § Z~(so)~s ~ r(a)(so) + Z v ( s o ) ~  r~,)(8o) § 

' )] t- g Z~Oo)~%%)~,,(,%)rr § 

+ 2b,la)(Z(So), 2;(So)) rr - -  2 7 -  r<a~(So)] + 
uso j 

+ aF,(Z(so), 2(80), ~',~,(z(so)), ~v~',~,(8o)). 
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We summarize now the different steps leading to (24) and we introduce 
un abbreviated notat ion in order to compare with the ~nalytic-continn~tion 
method  of ref. (2). F rom (2) we obtain using (9) and (~0) tha t  ( x - > Z ( s o ) )  

('.,5) ,,~2#(.~o) - 21~,,"~'(2(so), 2(,*0)) +]~+(X,  Z(s))  + 

- '  210-~,,(~)(2(So), 2(so)) i /(~,(x,  z(,~)) + 

+ t~(z(,~o), z(,~o), v,+(z(~~ +v(~,(z(~.))) : 
= =',i ~ _~" h,.(Z(So), 2(. ,o))It ,(X, Z(s)) + z~,," ~'o , 

,~i n where ha(a~ =: b/~), hav(#l = aSB), and I;~, stands for (3) at  the point  So with 
YJ(a) replaced by  ~vl~ ) . F rom (25) we obtain, using (21) (i.e. using the regula.riz~tion 

method to oomp~te ~!/x, Zr that 

( ~  1@],(~) ) . ,~ 
(~ m.Z,,(so) 242 ~ h , , ( 2 ,  21 1 ]~(0) 2 ~T ~-o = + z.f,, . 

i 

From (13) one has tha t  

(27) ],(0) =/~(z(,~o),~ z(.~o)), ~],(T) I, = /~(Z(so), z(~')),n , 
~T i~=o cJ8 is,=~. 

and consequently from (26) we obtain 

(~s) 
. .  ~,,2 ~ r~ 

= z(,~o))/~(z(~o), z(8o)) - ~ z , , ( S o ) :  ~-jXh,,,(z(8o),, ' ,  ~ , 

- -  ~ ~_ h , , , ( 2 ( . , o ) ,  2(8ol) ~/,(ZC,'o), Z(.,.')) + .... -t- ~ ' 7 ,  
1 

which is then the cquation of motion as given by  the rcgularization method.  
:Let us see now the analytic-continu,~tion method of Baru t  and Villarroel. One 

can cMculate directly If j(x,  Z(s)) from its definit ion (8) by  a s tandard cal- 

culation (~) which gives 

(29) 1 
r f , ( x ,  z(.~)) _ 2 ( , ~ - Z ( ~ ~ i  1,(~, z(~.)) , 

where s R is the re tarded proper  t ime corresponding to xa (called s_ in fig. 1), 

i.e. s R is determined by  ( X - -  Z(sa)) ~ = O, X ~ > Z~ ICeplacing (29) in (25), 

we obtain ( x -+  Z(s.)) tha t  

(30) 
1 

m,2,,(,~o) = 2 t  2 ~ h~,(2(so), 2(So)) 2(x  - z(sR)ixZj(~ l,(x, z(8.)) 4 I:F',: . 
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One remarks tha t  the re ta rded  t ime corresponding to x = Z(so) is % .... so, 
so one puts  s a == so i~l (30)�9 The analyt ic-cont inuat ion method  consists in 
considering eq. (30) in the point  x : Z(so + u), thus replacing in (30) So 
by  so ]- u everywhere except  in s R which is pu t  equal to ~%, and ta.king at  the 
end the limit u - >  0. One has then 

(31) m.2.(.~o + ~,) - ~.~ 5, h.~(Z(~o + ~,), 2(.,0 + ~)).  
i 

]. 
�9 z u), z(so)) + ~F~,: (z(so + ~} - z(so)bZ~(.~o) t~( (80 + 

A simple eMculation shows tha t  

1 ] 

1 
=- (1 + o ( ~ - ' 1 ) .  

ICeplacing (32) ia (31) and doing there a transit ion of -- u (see rcf. (~), footnote  8), 
one obtains 

(33) 
J 

Expanding  L-(Z(so), Z(so--u)) around u----0, and taking the limit 
one finMly has 

(34) mnZu(so) -= u ~ h,~,(Z(so), Z(so)) L(Z(so), Z(so)) --  

F 
- -  ~ ~ h,j(Z(~o), Z(so)) ~ h(Z(so), z(s')) 

] 8"=8o 

-->0~ 

+ ; .F~  o , 

which is just  eq. (28), thus showing the equivalence of our double-zero-sep- 
arat ion method with the analyt ic-continuat ion technique of Baru t  and Yil- 
lorroel. 

3. - Calculation of  ~p(~)(Z(so)) and O,,y,,~)(Z(so)) by the average method. 

The average method proposed by  TEITELBOIM (s) consists in computing 
the field on a sphere of radius ~ in the rest  system of the particle at  proper  t ime 
So, then  making the average over the surface of the sphere and finally taking 
the limit ~ -+ 0 in order  to define the field at  the point  Z(so) of the t ra jectory.  
In  a eovariant  language this involves computing y~(m(x) and 3~vA~)(x ) at  the 
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point x~, - - Z ~ ( s o )  - k  ~Tu ~ with u 2 ~-- u , u ,  - -  - -  1, u~Z~(So) : 0 (i.e. in the hyper- 
plane orthogonal to v~(s0):= Z~dso) at  so, see fig. 1), then doing the avera.ge 
over the directions ~ and finally taking the limit ~7--> 0. The average of a 
function ] ( u , )  is calculated by the formula if) 

1. f d2 a (35) <l(u~)> - 4 ~ o  l ( u . )  , 
qJ 

where X(~) is the 2-dimensional surface tha t  in the rest system at proper t ime so 
corresponds to the surface of the sphere of radius ~ centred at  the origin. The 
average (35) of the product of an odd number of u,  vanishes (i.e. (u,> = 
= ( u , u ~ u o > =  0) and for the product u ~ u  ~' a simple calculation gives 

(36) <u.u~> = 1 (2 , (So)2~(so)-  g,~).  

This procedure (formulae (35) and (36)) we call symmetrical integration. 
Let  us compute now the field and its derivative, starting from for- 

mulae (8), (9) and (10). We put  x = Z(so) -4- ~u, s := so q- v, and define the 
function ]~(~, ~) by  

(37) h(~, z(s)) = h(Z(so) + ~ ,  Z(so + ,)) = ]@,  3). 

We introduce now the function ]j(~, 3) by the decomposition 

(38) ] @ ,  ~) = ],(0, ~) +/-~(v, , ) .  

In  sect. 2 we have called ]~(~) the function ]5(0, 3), i .e.  we have (see for- 
mula (13)) 

(39) / j (Z(so) ,  Z(so + r))  = ]j(O, z)  = ]~(~) . 

This function is finite and also its derivatives (see appendix). The values at  
v = 0 of the function and its first derivative, i.e. ]j(0, 0) and (2],(0, r)/~x)l~=o, 
are given explicitly in formulae (14}, (15) and (16). 

We consider now the function ]~(~, 3) defined by (38). From its definition 

we see tha t  it  vanishes at  ~/---- 0, i .e .  

(40) ]~(o, ~) = o .  

For  j=(f l )  the function ],'~,(~/, ~)vanishes identically, since ](o)(~, ~)----r(z,(so+~) 
! 

is independent  of 7, and consequently from (38) it  follows tha t  ](p)ff/, ~) = 0. 
For  ] = v(fl) the computation starting from (12) gives the following form (see 
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appendix) : 

(4J) 

with 

(42) 

1 

/,(~)(~]) ---- ~7u~[1 § ~u~Z~(.~o) § ~l~(u~2~(So)) '- § O(~a)] r(~)(so), 

and k~(~>(~ 7. v) is regular in ~ and v. One h~s from (40) and (42) tha t  k,(~(O, v )=0  
and more precisely this function is of the form (remember the development 
in ~/ is in fact "~ development in ~u~ see (37)) 

(43) k~(~)(V, ~) -- .~u" k (~),(~)~ (~) § ~., u" u ~ ~").+,.(#,~,~,o,~ § O(v~), 

]~(n) T w.here the "+.(m~,, ~,.( ) are regular functions of z, in particular ('~ k~(~)~ l,.(0 ) ~re 
finite. We can now proceed to the calculation of I](x, Z(s)), where / will be ]j. 
From (8) and (37) we obtain, using O(x) = �89 § e(x)), the expression 

(44) 

Put t ing 

(45) 

z](v, ~) = l-fd, ~[(Z(8o) + Vu-- Z(so + z))~]](,~, ~) -t- 
§ ~fd~4Z~ + V+, o -  Z~ + ~)) ~[(Z(+o) + n u -  z(,% + ~))"]/(n, z). 

G = ( ~ -  z(+))-" - (z(~0) + v u -  Z(~o + ~))~, 

one has tha t  the two roots v+ and z_ of the equation G = 0 are (from now on 
when we write Z, ~,  Z', one must  unders tand the value of these functions at  
8 ~ 80) 

(46) 

/ 
( 1 . o3  .. ] ~.\~ 

+ O(n') = • ~ + 0(~:) .  

One ~lso has 

(47) X ~  Z~ ---- ZO(so)+ ~lu o -  ZO(so § z)],=,~ = T  ~(2~ ~: u~ 0(~2) �9 

But  (Z~ :V u ~ > 0 always, since the sign of the zero component of a light- 
cone vector is a Lorentz invariant  and in the rest system Z~ ---- 1, u ~ ---- 0. 
This means tha t  s(Z~ + ~u ~  ZO(so + z~)) in (44) gets effectively replaced 
by  s(T ~), since for ~ small the sign of (47) is tha t  of (T ~). From (44) one ob- 
tains then 

1 li(r], T+ ) ](r/, S_)' ~ 1 (  ](r], "r_, ) ](r], T )~ 
(48) / h ~ ' ~ ) = ~ x ,  ]-G-'i~ + ~ - r - I  -+-~- - I G ' I ~  § W F ] '  
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where 

(49) 
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d (x_Z(,~))2 =--2(Z(s0) + 7u--Z(.~o+ ~))~2~(8o + , ) ,  

and ]G']~-- ]G'(~], ~• Since I is a linear operator we have from (38) tha t  

(50) #~(7, 3) = #~(o, 3) + #~(7, 3), 

and for j = (fl) one has I](a,(7 , 3 ) :  I](a,(O, 3), because ]('~,(7, 3 ) -  0. Let  us 
calculate now I]j(0, 3) explicitly start ing from (48) where we replace ](7, ~) by  
]j(0, v). Using (see appendix) 

(5~) IG ' [ •  -~u~g~,+,j (u~2~)~+Fd2~2~ +-6v~'~ +o(?~), 

one obtains from (48) tha t  

(52) 
(1 1 ) 

"~]~(0, 3) = ~ + -~ u~2~-~ 0(7) (1~(0, 7) + ]~(0,-7) + 0(7~)) + 

~- ~ + ~ v~2~+ 0(7) (-]~(o, 7) + ]~(o, - 7 )  + 0(72)) �9 

When 7 - >  0 this gives 

1 @(o, .) 1 v~2~]~(o, o) (53) s]~(o, 3) =: ~ ]~(0, o) 2 8. x~=o + ~ " 

The last term vanishes on symmetrical integration and one finally has 

J. 1 8]~(o, 3) .=o (54) #j(o, 3) = ~]~(o, o) 2 e~ ' 

which is exactly tile result of the regnlarization method of sect. 1 (see (21)). 
We calculate now I]~(7 , v) for j = v(fl). From (41) oIle has 

(55) I/~(a)(V, 3) = I V l~(a) + Ik~(~)( 7, 3) .  

We show first tha t  Ik~(a)(7, 3) = O. Using a short-hand notat ion we can write 
(43) as 

(56) k(7, T) = 7(UkC,)(~) + ~u2k(2)(3) + 0(7")) 
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with k")(v) regul~r functions of v. Using (51) and  (56), one has theft 

(57) k(r/'z"=) ( ] 1 ) la']~ :: ~ + ~ v~2=+ o(,~) (~uk,,,(v,_) + 1 
0(v~)) = 2-uk(~)(~_~ ) +  0(V). 

But  k(Z)(v) contains no uu and consequent ly  (57) vanishes by  symmetr ica l  in- 

tegrat ion.  This shows then using (48) with ] -k,,(e)(~/, ~) tha t  Ikv(e)(q7, ~ ) =  0 

and consequently 

(ss) I/,.(e)(V, 7) .... I I,.(o)(V) �9 2 

We use tile same nota t ion  as in (56) to write (42) in the form 

(59) I(~) = *lul ") + ~2u~ ~ ~7aual (3) + O(~fl) . 

On the other  hand  one has 

1,( (, ,:)) 
(6o) r~= o 1 - - ~ w ' Z ~ - - ~  '" 7a"Z~Z~a~z ~ U ,Z  -c' O(~), 

and consequently 

(61) _ t U l ( ~ ) +  U ~ . I ( O . ) _ ( U ~ 2 ~ ) U I ( , +  

- i - ~  U31(3)--(U Z a )  U 2 l  ( ~ ) -  2 c ' Z c , ~ - ~  U ~ U l  ~1) " 0 ( ~ ' ) .  

From (61) and (51) we obtain,  af ter  dropping terms containing an odd number  
of U~, which will vanish  b y  symmetr ica l  integrat ion,  t ha t  

(62) 
la' ! ,_.- - 2 ~  u"-g,,~)-~(xz,~Z~)uvl)=V 

] o*o _~ 

:i-- ; ( U <' Z~) UI (~) :t: ~ (U~'Zo,) U1 (" + 007) �9 
O O 

One can see f rom (62) t ha t  the finite te rms cancel, and af ter  replacing l (1) 5,(B)lt 
I (2~ by  their  values which can be read f rom (42) one obtains  in the l imit  a n d  vv(fl)ts a 

~7 -7 0 t h a t  

(63) (1M) t,,~,(n) 1 

We can now use (48) to comput, e I (1 /v  2) lv(~)(~/) r emark ing  t ha t  there  the second 
t e rm on the r ight -hand side of (48) vanishes,  since (63) does not  depend on z~. 

15  -- 11 N.um,o CDnent~) A. 
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One has then (~->  0) 

1 2 (64) I ]o l~(a~(~) =- 1 U~' U-~g~Z~(So) rr -- 12~ ~(s0) rr T~ ~ 

where the last equali ty comes from symmetrical  integration by  means of (36). 
:From (55) and (64) we obtain (recalling tha t  Ik~(a)(~], v) = 0) tha t  

(65) 1 []:'#)(~' ~:) ] 2~] 2,(%) r(#)(So) . 

We can now give the final result  for y;(a)(x) and ~y~(#), x -+ Z(so). 
and using (50), (54) and the fact tha t  ]('#j(~], ~) _= 0, we obtain 

(66) yJr ~](#)(0, 7) ) 
C~T ,w ~0 ' 

From (9) 

which coincides with the result of the regularization method,  since ]~(0, ~ ) -  
~-/~(r) (see (21) and (22)). For  ~yJ(#)(Z(so)) we obtain from (10), (50), (54) 
and (65) tha t  

T) i 
~=0 ~-J  z ~. Z~(~'o) r,e)(So) �9 ~T \ r l  

The first t e rm in (67) is the result  of the regularization method (see (23)), while 
the second te rm coming from (65) is a new divergent contribution one obtains 
in the average method.  This new te rm just  changes the numerical  coefficient 
of the first t e rm of (23), and we shall see tha t  this only affects the unobservable 
mass renormalization.  We can conclude then tha t  the average method is equi- 
w lent to our double-zero-separat ion procedure of sect. 2. On the other hand, 
the average method can be shown to be equivalent to the usual technique 
using the energy-momentum tensor (7). 

4. - Lagrangian formalism. 

We shall derive here the equations of motion from the 1)rinciple of s ta t ionary 

action. In  order to obtain eq. (1) one takes the interaction Lagrangian ;tj(#)yJ #) 

and consequently the action is 

4 �9 (68) .;d ~ - - m  ds + 8-~ d x ~ f ( o ) ~ ' y  (~) q- ~ d~xj(#)(x)y#3)(x), 

(7) C. A..LoP~,z and C. TEIT)ILBOIM: .Left. _Yuovo Cimenlo, 2, 225 (1971). 
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where s can have the value : 1 or --  1, depending on the different cases we 
shall consider. The Euler-La.grange equat ions for y~(n) give (1) and to obtain 

the equat ion  of motion for the t ra jec tory  one has to use the modified Euler- 
Lagrange equat ions (ref. ("), page 66) 

to take  into account  the supp lementa ry  con<lition Z 2 =  1, with L given by  

(70) L = --  m,  -i e2~o(~)(Z(s)) llZ(~)(s). 

()ne obtains  then from (69), using (d lds )HZ(~) - -Z  ~''~(c,lcZ ~ ~+'~)llZ(n~, 
l lZ(Ms) depends on s only through the functions Z(s), tha t  

(71) 

since 

r .: . . . (  aSTZ<,,>'l] 
m,2, ,  - ---~).G~0<~, []-lZ<~,.q,, - -  Z, --c<2~ - -  Z,'Z., 112<~)-- 2 .~ ~Z<, ]J " 

<.)[ d cllZm) ~... p, d oHZ@ .~ ~ / / Z ( n ) \ ]  

�9 Oi .~ l J  

One easily checks tha t  (71) is consistent with Z g ~ , =  0, indeed the r ight -hand 
side vanishes identically when contracted with Z, .  In t roduc ing  a variable T 

which has the value 0 for the double-zero-separa t ion  me thod  of sect. 2 and the 
wdue  1 for the average  method  of sect. 3, we obhdn from (23) and (67 ) tha t  

- -  Z,, ~s.,.IIZ<~) + Z,, ~ lI2(~) "- 2~,2,~Z,,IlZ(') , 

while .q/~)(Z(s)) is given by  (22). Replacing these expressions for ~f(~) and 
~y/~) in (71), we obtain the differential equat ion for the t ra jec tory  Z(s). We 
shall now see t ha t  this equat ion is alwa.ys tim Lorentz-Dirac  equat ion with 
a different numerical  cons tant  in f ront  of the Abraham force F ,  = Z.,,-:~'" ' a~Z~, ~; 
(a"- -Z~,Z  ~) which depends on the explicit  expression of [IZ(~). h i  order to 

prove  this we r cm ark  tha t  in (71) when G~0(~ ) and ~0(~ ) are replaced the only 

te rms with third-orde.r der ivat ives  (i.e. containing )~') will come from the first 

lwo te rms  in the second b racke t  of (72). These te rms are mult ipl ied by  terms 

containing only first der ivat ives  and as Z'~Z~---- --  a" the only third-order  te rms 

tha.t r emain  will be those carrying the free index /~, i.e. containing ZI,, and 
these will be only oa  the contract ions 

(73) ~ ,  ~ I I Z  ~) . t 3  
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From (73) one can see that one has linearity in the third derivative, i.e. (73) 

is of the form ~-yZ,-[-],(Z, Z), where 7 is just a numerical dimensionless 

constant and ] some function containing only Z and Z. Moreover, for the 

purpose of calculating 7 we can replace the second term in (73) by 

since the difference contains only Z and 2. One has then 

:e)." 1H~'~)HZ(~)Zu  - d ( d "Te'(~' ~l-l~(~''~] 

and this equat ion will explicitly determine y when the form of/-/~(~) is known. 
According to the remarks we have done we see tha t  (7]) is of the form 

(75) m,,2~ )3 (yZ~ * X , (~ ,  Z )~ -  1 _ .  ~: ) = L , ( Z ,  2 )  . 

Since a 2 =  Z ~ , Z  is the only scalar one can construct  with Z and 2 we have 
tha t  X~, and Y~, are of the form 

(76) X , (2 ,  2)  = 2~,X~(a 2) + 2~, X2(a2) ,  

(77) Y~(2, 2) = 2~ Y~(a 2) ~- 2~ Y2(a2),  

where X~(a~-), Y~(a ~) are polynomial  in a'-. If  we contract  (75) with 2 ,  we 

obtain zero and consequently 

- -  ~ (78) 0 = )J- - - y a 2 - ~  - X l ( a  ~) + 

We use now dimensional arguments (c - 1 here) and, recalling tha t  y is a di- 
mensionless number,  we see tha t  the dimensions of the different quantit ies 
in (78) are [ya -~] = [X~(a~)] = L -2, [~/] ----L, [Y~(a~)] ----L ~. Since X~(a ~) and 

Y~(a ~) are polynomials in a ~ we conclude tha t  X~(a ~) = ya  ~- and Y~(a ~) = O. 
]~eplacing now (76) and (77) in (75) and using again a dimensional analysis, 

we conclude tha t  X~(a ~) - - 0  and Y2(a"-)-~ (~ = dimensionless number.  We 

have then 

(79) m~Z~'" - ) , "y(Z~-] -  a ~ , )  ~- ).'~-- Z~, ~ "" . 

Put t ing  (~m-- ).~(~/~1 and defining the renormalized mass m = m. - -~m,  we can 

write (79) as 

(80) m2~,= ~ ~'" ). y(Z~, -1- a~2~), 



ON TIIE INTERACTION OF CLASSICAL FIELDS AND PARTICLES 225 

where y is de termined by  (74). Equa t ion  (80) remains  finite when ~/ -~ 0 and 

is just  the l~orentz-Dirac equat ion  as announced.  We recall t ha t  (80) has to 
be supt)lemeuted with the t e rm 2F~ tha t  corresponds to the boundary  con- 
dition a t  X ~ -->-- oo, since we are using re ta rded  Green 's  functions (see the 
lines following eq. (5) and  (3), (24) and (34)). The n u m b e r  d can be computed  
explicit ly,  for this it is enough to collect f rom (71) with ~ , ~ )  and  ~o~ ) replaced 

all the divergent  terms (i.e. with the factor  l/t/) mul t ip ly ing 2 , .  We have  
( - -  means here equal i ty  of the factor  mul t ip lying Z~) 

(81) 

- ; ~ o ; - ] j  �9 

Note t ha t  I12(~)(~llZ(e)/~,) is necessarily of the form a Z , ,  with a a number ,  
and consequent ly  the two last  t e rms  in (81) cancel and we have  

(82) ti - ~: ( I  + T)HZ<~)H2<~) . 

With our definit, ion of 5m a d < 0 means  an in teract ion tha t  increases the 

mass of the bare particle. The analysis we have  done shows in fact  tha t  the 

mass rermrmalizat ion dm is a lways divergent  (it comes f rom the t e rm in V-~). 

TABLE I .  

HZ(a ) V i e l d  e Y d 

1 9) s c a l a r  1 �89 +,x 

+~ 

Z ~  A~ e l e c t r o m a g n e t i c  - -  1 ~ - - � 8 9  

2 8 2 ~  lrafl t e n s o r  1 - -  ~- + 

+~ 

.,,t g~,r l;"~xa t e n s o r  - -  1 - -  .} - - � 8 9  

Let  us app ly  now our results  to some well-known interact ions.  The values 

of 7 and  ~ are collected in table  I which is to be compared  with the corresponding 

table  of (3). In  the last  colunm of table  I the first n u m b e r  corresponds to the  
value of ~5 in the double-zero-separa t ion  me thod  (T = 0) and the second 

number  to the value in the average  method  (T - -  1). 
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We remark  tha t  the equations of the scalar field we t rea t  here can be con- 
sidered as a weak-field approximation to the covariant  scalar theory  of grav- 
i ta t ion (8). In  tha t  approximat ion the quant i ty  A ( x )  3 at  page 222 of (8) can 
be replaced by  one and the coupled equations for the field and the t ra jec tory  
reduce to ours. The case of ]inearized gravi ta t ion is postponed to appendix B, 
since there  the coupled equations for the field and the particle are not  deduced 
from u variat ional  principle. Final ly  we consider in appendix C the case of 
symmetr ic  electrodynamics with magnetic monopoles~ since there  the oc- 
currence of two trajectories requires some slight modifications. 

5 .  - C o n c l u s i o n s .  

We have shown in this paper  tha t  the regularization method we have pro- 
posed (~) (double-zero separation) with its intui t ive in terpreta t ion is equivalent  
to the (~ analyt ic  continuation ~) regularization (2-4) for which no justification 

was originally given. 
A physically reasonable way to define the field on the world-line consists 

in doing ~n average over all possible spacelike directions (5), we have proved 
tha t  the double-zero-separat ion regularization is also equivalent  to this pro- 
ccdure. Finally,  we have shown tha t  the s t ructure  of the equat ion of motion 
for the t ra jec tory  is largely independent  of the na ture  of the field and of the 
interaction,  in fact  one always obtains a Lorentz-Dirac- type  equation and only 
the  numerical  coefficient of the Abraham force changes in the different cases. 
Moreover, we prove tha t  only a mass renormalization is needed to absorb all 

the divergences. 

* * *  

The authors are grateful  to Drs. J.  C. LE GUZLL0V (Paris) and W. TRO0ST 

(Leuven) for many  interesting and useful discussions. 

AP P ENDI X A 

We show briefly here how one obtains the  results concerning ],(~(~, T) 
used in the  tex t .  A dot means d/ds and we have by  successive derivat ion of 

~ - - - - 1  tha t  Z ~ Z ~ = O  and Z ~ Z ~ Z ~ ' = O .  We put  x ~ . . . _ g ~ ( s o ) - ~ U ~ ,  
Ul, Us  . . . .  1,  Ul, Z"(So) = O, v = S - - S o .  We also write a 2 = Z ~ Z  ~ and remind 

(s) J. L. PIETEKPOL and D. S['~ISER: A n n .  Soc. Sci .  B r u x . ,  86, 220 (1972). 
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tha t  q.ll functions in ttle expansions are t aken  at  s =- So. One has 

( A . 1 )  
d - d ( x - -  Z(s) )~r(~)(s)  

]~(~,(V, ~) = ~F , , , , (V ,  ~) = ~ (~__ Z ( s ) ) ~ Z ~ ( s )  " 

The expansions of tile numera tor  and denominator  of (A.1) are 

(A.2) 

(A.3) 

r; T2 "" ) ( x -  Z(s)) ,r(~,(s)  = ~ V,--~Z,---~Z,-- ~ Z, + 0(~') �9 

d v 2 (F" 
�9 r(~, + ~ dTor(~,(s9) + ,' 2 ds~ 

1 

( x -  z(s))~2~(s) - 

] - T [ 1 +  

- --r(~)(So) + O(r~)), 

nu~2~+ ~ ~,Sz~ + ~a~ + V~(U~2~): + O(~T~) § 0(~) + 0(~) . 

From (A.I), (A.2) and (A.3) one checks immediately tha t  ]~(~)(O, v) is finite 
and tha t  ]~(~}(~/, z) is not  of the  form (41) of sect. 3. The computat ion of the 
t e rm in z-2 gives (42) and to calculate ]~r z)-=]~(~}(z) and its derivat ive 
one just  puts  ,1 = 0 in (A.1) and makes a Taylor  expansion in T, the results 
~re (15) and (16) of sect. 2. 

A P P E ~ N D I X  ]3 

The coupled equations of mot ion of l inearized gravi ta t ion come from an 
approximat ion scheme of Einstein field equations developed in (9). One has 
(ref. (9), formula (,17)) 

(S.]) 

while in the  equat ion for the  field the  quan t i ty  r(a) =/ /2{al  is given by (ref. (8), 
formula 62)) 

(B.2) 

Equat ion  (B.1) for tile t r a jec to ry  does not  come from our  Lagrangian of sect. 4, 
and consequent ly  we cannot  apply  the  results of t h a t  section. But  (B.1) is 
l inear in y)~ and a ~ , ~  and we can then  use the  analysis of sect. 2 and 3. 
In  fact ,  when one replaces ~ and 0uF~ in (B.1), one is in the  same si tuation 

(9) P. tIAvAS: Phys�9 Rev., 128, 1104 (1966)�9 
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as in sect. 4, since (B.1) vanishes identicall  F when contracted with Z!', and 
we know repeat ing the  same argument  tha t  this leads to a Loren tz -Dirac- typc  
equat ion (there is no (~m in this casc~ since the  constant  C can be adjusted to 
cancel the  divergent  term). In  order  to calculate the  number  7 one just  has 
to look for the  terms containing Z. In  3,yJ~ these terms are 

When (B.3) is replaced in (B.1) the terms with Z will be the last t e rm on the 
lef t -hand side of (B.1) and the t e rm on the  r ight-hand side, and one obtains 
for  7 the  equat ion 

(B.4) Gm"- 7 ~- 4 a m  2 = - -  Gm'~(�89 (1 - -  2)) ,  

which gives 7 = - - ~ -  From this example it is clear tha t  one will obtain a 
Loren tz -Di rac - type  equat ion for more general  si tuations than  the  one con- 
sidered in sect. 4, namely one needs tha t  Z~F~--= 0 (see eq. (2))~ which is 
consistency condition, and tha t  eq. (75) hold with. y..a dimensionless number.  
Bu t  (75) will always be t rue  if for instance a,,'(~)(Z, Z )  is a funct ion only of ], 
as is the  case here  in (B.1). ~Te remark  here t h a t  the  physical in terpre ta t ion  
of the  Lorentz-Dirac equat ion for gravi ta t ion puts  problems. Because of the  
quadrupolar  na ture  of the  gravi tat ional  waves (due to the conservat ion of 
energy-momentum) one can expect  t ha t  the  radiat ion react ion must  be dif- 
ferent  f rom the  electromagnetic  dipolar one (for a detailed discussion see (1o), 
page 993). 

APPENDIX 

We s tudy here the  equations of symmetr ic  elcctrodynamics,  i .e. of the  
interact ion of ~n electric charge and a monopole (magnetic charge) with the  
electromagnetic  field. Le t  e, 'q" be the completely ant isymmetr ic  tensor  with 
~o123= 1, then  we define the dual B~  of an ant i symmetr ic  tensor  B,~ by  
B~v =-�89 Q". The coupled equations of motion for the  system arc (1~) 

(0.1) 

(c.2) 
roB2. = e ~ v ( z ( s ) )  ~ ,  , 

(lo) CH. W. MIs.~E~, K. S. T~()~.'~E and J. A. WHEELER: Gravitation (San Francisco, 
Cal., 1973). 
(11) R. A. BRA~'DT and J. R. PRL~IACK: Phys.  Rev. D, 15, 1798 (1977). 
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These equations describe the interact ion of the electric charge e wflh trajec- 
to ry  Z(s), the  magnet ic  charge ~ with t ra jec tory  Y(s) and the  electromag_netic 
field. We int roduce now the Cabibbo and Ferrar i  potentials  (~:) A,  and A~, by 

(c.3) 
{~:~., ~A~,-- ?,~Aa--ea~o~qA ~ , 

1 ~  ~sWA,,-- ~ A .  + e~,~ ~ A  ~ , 

and impose the Lorentz  con(lition OuAs,--~uA~'==O so 1,hat eqs. (C.1) arc 
equivalent  1:o 

"ds ~(,,(x-- Z(s)) Z,,, 
((14) 

- ~ 5(")(x-- L_.As = 4z~ ds ~'(s)) ]~,. 
d 

We note  tha t  the system of coupled equations satisfies dual i ty  invarianee:  
Fu,-).Fu,., F u , - ~ - - ~ , ~ ,  e--~e, e - ~ - - e ,  m , - ~ m , ,  m , - ~ m ~ .  We split now the  
field into two ])arts as one always does when dealing with more lhan  one par- 
ticle. In  order to do this we can write (C.3) in the form 

(C.5) F~v P~) ~- F(7) 

with ~(~) and /r defined by - * '  #v pv 

(c.6) 
. - -  H v  ~ 1 2 1 ,  ~ . 

We proceed now as usual computing the re tarded solutions A~ and _~, from 
(C.4) and replacing in (C.6) and then  in (C.2) (of course the boundary  condi- 
t ion F~/',. has to be added,  bu t  we omit  it). One obtains then  

((;.7) 

(c,.7') 

m tV (~) ~ f~v (~) ~'v �9 , z ~  = e F ~ ( z ( s ) ) z  + e F ~ ( z ( s ) ) z ,  

Fs , , ( [  (s)) + e~ s~(Y(s)) 17~ 

We remark  now tha t  the second te rm on the  r ight-hand side of (C.7) and (C.7') 
is regular  and defined on tile t r a jec to ry  (it represents  the  field created by  tile 
o ther  particle), whilc the first t e rm is the  usual one with the  divergences tha t  
leads to  the  Abraham force. This is obvious for (C.7) and for (C.7') it follows 
from dual i ty  invariance. These terms can be handled as we have done in the  
t e x t  and they  give a Loren tz -Di rac - type  expression with y = :~ and 6 = 
= - - ( ~  + T/6), so tha t ,  pu t t ing  

(12) N. CAm~BO and E. FnmCARI: iVuovo Cimento, 23, 1147 (1962). 
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one o b t a i n s  f rom (C.7) a n d  (C.7') ( i n c o r p o r a t i n g  t h e  b o u n d a r y  c o n d i t i o n  /~,~,) 

I - (~ - )  n v ~ n  r~ v (C.8) m2u : ~e~('Z'u+ a~Zv) -7 e~,, , , (Z(s))Z + e~m,(Z(s))Z , 

~v(~ t h e  r e t a r d e d  w h e r e  F i~ is t h e  re ta , rded  field p r o d u c e d  b y  t h e  m o n o p o l e  ~nd _ ~  
f ie ld  p r o d u c e d  b y  t h e  e l ec t r i c  cha rge .  These  e q u a t i o n s  were  p r e v i o u s l y  o b t a i n e d  
in (~3). I t  has  b e e n  p o i n t e d  o u t  t h a t  when  t h e y  a r e  c ons ide r e d  for  a h e a v y  
f ixed  m o n o p o l e  in  t h e  n o n r e l a t i v i s t i c  l i m i t  ( and  n e g l e c t i n g  t h e  Abrah ,~m force  
in  (C.8)) t h e n  a n g u l a r - m o m e n t u m  c o n s e r v a t i o n  is v i o l a t e d  for  some  se t  of 
m e ~ s u r e  of i n i t i a l  c o n d i t i o n s .  As p o i n t e d  ou t  b y  T z o o s ~  (~), t h e  r e a s o n  is 
t h a t  t h e  e q u u t i o n  of m o t i o n  is n o t  def ined  on t h e  c o r r e s p o n d i n g  t r a j e c t o r y  
�9 ~nd  he  so lved  t h e  s i t u a t i o n  g i v i n g  t h e  cha rge  e a s u p p l e m e n t a r y  r o t a t i o n  deg ree  
of  f r e e d o m ,  b u t  t h i s  m e a n s  t h a t  t h e  cha rge  has  some  s t r u c t u r e  a n d  is n o t  
p o i n t l i k e  ~ n y m o r e .  One can  also t~rgue t h a t  t h e  conf l ic t ing  t r a j e c t o r i e s  a r e  
t o  b e  de f ined  as  l i m i t  of t r a j e c t o r i e s  c o r r e s p o n d i n g  t o  i n i t i a l  c ond i t i ons  inf in i -  
t e s i m a l l y  n e a r  to  t h e  s i n g u l a r  ones ,  t h i s  a lso  e l i m i n a t e s  t h e  p a r a d o x .  

(~3) F.  RO][RLIC~i: Phys. t~ev., 150, 1104 (1966). 
(~a) W. TI~OOST: Solution o] a paradox concerning the motion o] an electric and a magnetic 
point charge, prcprint  K.U.L.-TF-78/006 (Leuven). 

�9 R I A S S U N T O  (*) 

Si mostra ehe l ' interazionc di un campo elassieo di carat tere generale tensoriale con 
una part icel la descri t ta dalla sun t ra ie t tor ia  por ta  in generale ad un'equazione del t ipo 
di Lorentz-Dirac, indipendentemente dai  det tagl i  dell ' interazione. Si analizzano atten- 
t~mente le divergenze della teoria per mezzo di un metodo ehe ~ stato proposto prece- 
dentcmente d~ noi, e ehe si mostra essere equivMente ad altr i  sehemi di regolarizza- 
zione ehe sono s tat i  usati  precedentemente.  Si applieano i r isul tat i  a molte ben note 
interazioni, eomprendendo la gravitazione linearizzat~ e l 'e let t rodinamica silnmetrica 
con monopoli. 

(*) Traduzione a cura della Redazione. 

O B3aHMo~eHs KJIaCCHtleCKHX ll0.rleH H tlaCTHH. 

Pe3toMe (*). - -  IIoKa3i, iBaeTcn, tiTO B3aBMojIe~CTBHe KJIaCCH~ecKoro noJIn, rlMeJOtlIero 
Te~I3opHI, I~ xapaKTep, c ~IaCTnlleIt, OllrlCl, iBaeMo~ TpaeKToprle~, np~IBO~r~T B 06[IleM 
Brt/~e K ypaBHeHl4~O Ti4na JlopeHua-~HpaKa B~Ie 3aBI4CrlMOCTH OT xapaKTepa B3aHMO- 
~le~CTBEt~I. AHaYlrI3HpylOTC~I pacxo~irlMOCXa 3TO~ Teopnn, ncnoJIb3yn MeTO~I, npe~no- 
XeHItbI~ HaMH paHee, KOTOpbI~ ~BYI~IeTC~I 3KBI4BaJIeHTHbIM ~pyl'I4M CxeMaM pery,q~ipH- 
3atom. Mbi ilpviMeKaeM rtalIIH pe3yJIbTaTl, I K HeKOTOpI, IM xopomo H3BeCTHbIM B3aItMO- 
~e~CTBI4~tM, BI<IIIO~ia~I fflI4Heapi430BaHtfytO FpaBHTaILHIO It CHMMeTpHtIHyIO 3IIeKTpO- 
~HIIaMHKy C MOHOIIOYI~IMH. 

(*) Hepeeec)eno pec)amlueft. 


