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Approximate representations of SU(2) ordered exponentials in the adiabatic 
and stochastic limits 

M. E. Brachet 
Ecole Normale Superieure, Paris, France 

H. M. Frieda) 
Physique Th€orique, Universite de Nice, 06034 Nice Cedex, France 

(Received 24 June 1986, accepted for publication 10 September 1986) 

Approximate representations for the SU(2) ordered exponential U(t IE) 
= (exp[iS~dt' u-E(t ') ])+ ,written as a functional of its input field E(t), are derived in the 

adiabatic (p< 1) and stochastic (p~ 1) limits, wherep== IdE Idt liE, E = EIE, 
E = + (E2) 1/2. An algorithm is set up for the adiabatic case, and fixed-point equations are 
obtained for situations of possible convergence. In the stochastic regime, "averaged" functions 
describing U(t IE) are derived which reproduce its slowly varying dependence oflarge 
magnitude while missing, or approximating, rapid oscillations of small magnitude. Several 
functional integrals, analytic and machine are carried out over these approximate forms, and 
their results compared with the same functional integrals over the exact U(t IE). 

I. INTRODUCTION 

Ordered exponentials are found in every branch of 
mathematical physics that deals with the causal time devel
opment of systems of more than one degree offreedom. Ana
lytic treatments have typically been restricted to perturba
tive expansions, although computer calculations are now 
quite capable of dealing with any specific strong-coupling 
(SC) situation. However, when the variables in question are 
operators-numerical functions appearing in ordered ex
ponentials and subsequently subjected to fluctuations as 
specified by an appropriate functional integral-the situa
tion is much less clear. What would be most useful for such 
situations is a semianalytic approximation to the ordered 
exponential, which could then be inserted under the desired 
functional integral and its evaluation performed by some rel
evant approximation such as stationary phase. Functional 
integration aside; there are many instances when one would 
like to know the qualitative form of an ordered exponential 
as a functional of its input, without having to resort to a 
detailed numerical integration for each choice of input. 

The purpose of this paper is to discuss and derive results, 
some of which have been previously quoted elsewhere,1 for 
two classes ofSC approximation to the ordered exponential 
solution of the differential equation 

au = ia.E(t) U(t), U(O) = 1, (1.1) 
at 

where the a/ denote 2 X 2 Pauli matrices, and the E/ (t) are 
real, input functions. The unitary solution to (1.1) is 

U(t) = (exp[i' dt' u-E(t ') ]) + 

== f i~ (' dt l' .• (' dtn (a·E(l 1) .• ·a·E(tn ))+, (1.2) 
n=O n. Jo Jo 

a) Permanent Address: Physics Department, Brown University, Provi
dence, Rhode Island 02912. 

where the symbol ( ) + denotes an ordering of the ti-depen
dent factors, with those containing later times standing to 
the left. 

Perhaps the most interesting applications are associated 
with the generalization to SU (N), obtained by replacing the 
a l of (1.1) by the N X N Hermitian matrices Al which form 
the defining representation ofSU (N). In principle, the anal
ysis of this paper could be extended from SU(2) to SU(N); 
however, the specific details appear quite complicated, and 
have not yet been carried through. Some work on the SU (2) 
SC adiabatic limit has already appeared in rather special 
contexts,2.4 which is here generalized in a nontrivial way; to 
the best of the author's knowledge, the material presented 
for the SC stochastic limit is new. Generalizations of the 
adiabatic limit to SU (N) are not difficult, and have been 
used in quite different contexts, for Navier-Stokes fluid 
flow,5 N = 3, and in one approach to QCD,6 for arbitrary N. 

The SC situation may be defined by the requirement 

S~dt' E(t ') > 1, E = + /Fl, in contrast to the weak-cou
pling, or perturbative regime for which one assumes the con
verse, S~ dt 'E (t ') < 1; in the latter case it is simple to derive a 
valid representation for In U in terms of an expansion in 
multiple integrals over ascending powers of E(t'). For the 
SC case, ~wo distinct limiting regions can be defined, one for 
which IdE Idt I is "small" (the adiabatic, or quasistatic lim
it), and the opposite ("stochastic") situation for which it is 
"large." Clearly, if E(t) =E(t)IE(t) did not depend on 
time, and were fixed in one direction, a choice of coordinate 
axes could be made so that only one of the al need appear, 
and the ordered exponential would become an ordinary ex
ponential involving that al' When E(t) varies with time, 
however, the problem becomes nontrivial, and naturally di
vides into these two quite different limits. By "large" or 
"small" one must mean the magnitude of IdE Idt I with re
spect to the only other relevant quantity of like dimension, 
E(t); and hence if one defines p(t) == IdE Idt liE, the SC 
adiabatic and stochastic limits are defined by p < 1 and p ~ 1, 
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FIG.!. Curves of (a) Fa, (b) cos Qo, and (c) cos Qo' cosq,; for the situation 
p = 0.1. (N.B. In all 18 figures, all curves plot the negative of every function 
indicated. Time increases from left to right.) 

respectively. The word "stochastic" is appropriate because 
such behavior of p is expected in situations where a subse
quent functional integration is performed with a "white
noise" Gaussian weighting; this will be fully discussed in 
Sec. IV. 

To simplify the initial analyses as much as possible, and 
because it is always possible to reduce the problem to an 
equation ofform (1.1) with a two-component E(t) vector, 
we first discuss both adiabatic and stochastic limits treating 
E as a vector in the (x, y) plane. The results of these investi
gations may be briefly summarized as follows, and will be 
described using the form of U which is convenient for nu
merical integration, U(t) = Fo(t) + iu·F(t). 

A. The adiabatic limit 

There exists here a sequence of corrections which can be 
written for (Fo' F j ), and which should approach the exact 
(that is, numerically integrated) solutions rapidly, if the 
first two approximations are at all representative. One can 
write an algorithm that can be used to generate successive 
approximations; and if (which we do not prove) conver
gence exists, then the solutions are given in terms of four 
simultaneous fixed-point equations. For brevity, we here 
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FIG. 2. Superpositions of (a) Fo and Fo, and of (b) F3 and F3 ; for p = 1. 

only mention the form of solutions to Fo = ! Tr [ U], with 
representations for F and all details reserved for the subse
quent text. 

In the adiabatic limit, p = 0, one finds 

Fo(t) = cos Qo(t), Qo(t) = i'dt'E(t')' (1.3) 

For a constant magnitude E, Fo varies as a simple cosine, 
with frequency E /21T. Asp is increased from zero, butp~ 1, 
this essential form remains but is modulated by a smaller 
competing frequency; e.g., if we supposethatw = IdE /dt I is 
also independent of time, and is chosen such that p = w/ E 
=0.1, then the modulation will cause Fo to shrink to zero 
after five cycles or so, then increase again, and repeat the 
same pattern. Variations of E(t) and/or w(t) will change 
the details but not the overall behavior, as long as p ~ 1. 

Use of the algorithm discussed in the text leads to the 
first correction to (1.3) given by 

Fo(t) = [cos QoCt)] [cos( wi' dt 'Isin QoCt ') I) ], (1.4) 

again assuming, for simplicity, that wand E are constant. As 
pictured in Fig. 1, the numerically calculated Fo is compared 
with the approximations of ( 1. 3) and ( 1.4 ); and one can, in 
fact, see that (1.4) provides a bit too much modulation. If 
the procedure converges, the next approximation should 
modify that discrepancy, etc. We have not attempted further 
numerical work, and do not yet know whether the fixed
point equations written in Sec. II have solutions for certain 
E(t). 

B. The stochastic limit 

As p increases, the forms of the exact solutions change 
dramatically. For p-1, with constant w, E, the exact Fo is 
displayed in Fig. 2, and bears no resemblance to its form in 
the adiabatic limit. Asp is increased further, for p ~ 1 there is 
great simplification with Fo taking the form of small, rapid 
w-oscillations superimposed upon a cosine of larger magni-
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tude and much slower frequency - E 2/21TOJ. When E and OJ 

are themselves time-independent, the slowly varying behav
ior of Fo can become considerably more complicated than a 
simple cosine. 

Whatever physical properties are being described by 
these equations, it is surely the larger, slower oscillations
the "average" functional dependence-which should con
tain physically significant information, and not the smaller, 
faster oscillations riding on the "averaged" behavior. It is 
then a matter of some interest to be able to extract the "aver
aged" behavior of Fo in any stochastic situation where p ~ I; 
and such an "averaged" Fo(t) can be crudely represented by 
Fo(t) =cos(f~dt'E/p), a curve that misses all the rapid 
fluctuations offrequency OJ/21T and order of magnitude 1/p 
in Fo, but reproduces its slower-frequency and large-magni
tude behavior. (The phrase "of order" used in this paper 
means "of order relative to the slowly varying, averaged 
forms ofFo,3'" which are assumed to be correct when speci
fying the size of the small, rapidly fluctuating corrections. 
This is an operational definition of accuracy, not an absolute 
one.) Various forms of this "averaging," for the F; as well as 
Fo' are illustrated in the associated figures. In fact, one can 
construct a simple argument, using unitarity, to include the 
rapid fluctuations correct to order 1/ p; but the main thrust 
of our discussion in Sec. III is to derive simple forms for Fo, 
F; in the stochastic limit. Slightly more complicated forms 
are derived in the text for use with smaller values of p > 1, 
and they even bear a certain resemblance to the exact forms 
for p S 1. 

In Sec. IV we turn to the application of these "averaged" 
approximations in the stochastic limit generated by white
noise Gaussian (WNG) functional integration, by first com
paring the known result of exact WNG integration over U 
with the result ofWNG integration over Fo, which can also 
be done exactly (and has an amusing form reminiscent of a 
Heisenberg, nearest-neighbor, spin-spin interaction). To 
within a spurious phase factor, which can be easily under
stood and "renormalized" away, both expressions agree. 
Other more general examples offunctional integration over 
the adiabatic and stochastic approximations are also consid
ered, and are compared to numerical results performed on 
the Saclay eRA Y. 

A generalization of the stochastic-limit approximations 
to a three-dimensional input E(t) is written in Sec. V, and is 
presented there along with the relevant, associated figures. 
Finally, in the next section, a "fine tuning" of the first sto
chastic averaged functions is performed, resulting in curves 
that reproduce the exact numerical integrations in an un
canny way, including the small rapid oscillations correct to 
order 1/p. The last section is devoted to a very brief sum
mary, and the posing of some relevant questions for future 
study. 

II. AN ALGORITHM FOR THE ADIABATIC LIMIT 

In the extreme adiabatic limit p = 0, corresponding to 
iF: / dt = 0, all the complexity of the problem disappears. 
For, as noted above one can choose an arbitrary spatial axis 
to lie along the direction of E, and the ordered exponential 
becomes an ordinary exponential, so that U(t) ::::}cos G 
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+ ia'E sin G, with G(t) = S~dt' E(t'). The adiabatic algo
rithm which we now construct should involve forms close to 
this limiting case. 

Suppose that E(l) is a slowly varying unit vector, in the 
sense of very smallp; then it is reasonable to choose as a first 
guess for U(t) the same limiting form 

Uo(t) =exp[ia'Qo(t)], (2.1) 

where Qo(t) = E(l) and 

Qo(t) = IQo(t) 1= f dt' E(t '), E = + $. 

This is not correct, but it is unitary, and its deviation from 
the exact U can be expressed by a unitary V(t): if 
U(t) = Uo(t)· Vet) with Uo given by (2.1), then V must 
satisfy the exact differential equation 

av =i<F'(E-Qo dQo)v 
at dt 

or 

(2.3) 

We write (2.3) in theform EI = If (Qo,Qo;E), and note that 
while the first two rhs terms of (2.3) will cancel for the 
specific choice of Qo and Qo, the functional form of ( 2.3 ) will 
be useful later on. Under the initial condition V(O) = 1, the 
exact solution to (2.2) is 

(2.4) 

But if, in the p ~ I regime, the Uo of (2.1 ) is a reasonable first 
approximation to U, then a reasonable approximation to 
(2.4) should be given by 

VI (t) = e;a-q,(tl, 

where 

(2.5) 

ql(t) =EI(t), ql(t) = Iql(t)1 = f dt'IEI(t')I· 

(2.6) 

With this approximation, we have an "improved" estimate 
of U(t), 

(2.7) 

But the combination of (2.7) is unitary, and can be rewritten 
in a manifestly unitary form as 

(2.8) 

with 

QI (t) == IQI (t) I = arccos [cos Qo'cos ql 

- (Qo·q I) sin Qo·sin q I], 
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or 

and 

or 

QI (t) = [Qo sin Qo-cos ql + qj sin qj-COS Qo 

+ (q I X Qo) sin q I-sin Qo] (sin Q I ) - j, 

(2.10) 

where the quantities Q and Q are defined by the first lines of 
(2.9) and (2.10), respectively. 

But the same process can be repeated: instead of the Uo 
of (2.1) we now have the U I of (2.8), and can define a better 
approximation U2 = exp[iO'-Q2], with 

E2Ct) = if(QI'QI;E), 

q2 Ct) =E2 Ct), q2 Ct) = L dt'IE2Ct')I, 

Q2Ct) = Q(QI,%QI-q2)' Q2Ct) = Q(Qj,q2;Qj,q2)' 

Clearly, the process can be repeated an infinite number of 
times; and if it converges, can be represented by the fixed
point equations 

Q* = Q(Q*,q*;Q*-q*), 

Q * = Q(Q*,q*;Q *,q*), 

q* = ~(Q*,Q*;E), 

q* = L dt'lif(Q*,Q*;E)I, 

(2.11) 

where Q *, Q *, q*, q*, and E are functions of t, and the func
tional forms if, Q, and Q are given by (2.3), (2.9), and 
(2.10). 

For an arbitrary input E(t), there is probably little hope 
of finding or proving convergence; but for some suitably sim
ple input this might be possible. For our purposes, we note 
that if E (t) is chosen to be a vector of constant magnitude E 
rotating in the (x, y) plane with a constant angular frequen
cy OJ, then for p = OJ/ E - 0.1, U j is a better approximation to 
the exact U than is Uo, as illustrated in Fig. 1 where the first 
two approximations to Fo (t) are compared with the exact, or 
numerically integrated result. In fact, U I provides somewhat 
too much modulation, which should be removed by U2 , etc. 

Results equivalent to the U j correction to Uo have been 
discussed, in special contexts, in Refs. 2 and 3. To our knowl
edge, the algorithm for general Un' as well as the fixed-point 
equations (2.11), is new; however, these latter statements 
are probably too complicated to be of much practical use. 
Generalization to SU(N) is simple for Uo (Refs. 5 and 6), 
and while the general algorithm can be defined for arbitrary 
N, the more complicated statement of unitarity there will 
make this task much more tedious. 

III. THE STOCHASTIC LIMIT 

For p~ 1 we again choose for U(t) the m~nifestly 
unitary form, U(t) = exp[iO'-GCt)], with G = G'G, G 

+ j(F, and substitute into (1.1) to obtain 

it . G dG . G 
0'-E Ct) = df1 e''''U' 0'- - e - ,,.,U· 

o dt 
(3.1 ) 

18 J. Math. Phys., Vol. 28, No.1, January 1987 

or 

/'0. dG 1 (/'0. dG) E(t) = G- - -[ 1 - cos(2G)] G X-
dt 2 dt 

/'0. 
+ ~ sin(2G) dG , 

2 dt 
(3.2) 

which is equivalent to the pair of exact relations 

dG = G(t)-ECt), (3.3) 
dt 

/'0. 
dG =E[GXE+cotG(E-G(E.G))]. (3.4) 
dt 

With the initial conditions G(O) = 0, G(O) = E(O), the 
magnitude GCt) is completely determined by G. For simpli
city, we suppose that E lies in the (x,y) plane; the three
dimensional generalization is treated in Sec. V. 

Since G is a unit vector, it can be specified by two inde
pendent quantities which we c~oose ~ the following way. 
For R~l, we know that G(t)-E(f~dt'OJ), but as 
OJ = IE XdE Idt I increases from zero this cann9,1 be re
tained; rather, we suppose that the argument of E can be 
~ecifie1 by a phase change relative to S~OJdt ': 
E( t) -.E (S~OJ dt' - bCt)). It will be convenient to use a di
mensionless time variable, 1', given by dr = Edt, and so 
write thisyhase-shifted unit vector as J(S~dr' p - b(r)). 
But since E lies in the (x, y) plane, and G will have a z com
ponent for arbitrary p while remaining a unit vector, we 
choose the ansatz 

G ( 1') = cos ¢ ( r)E (f dr' p - b ( 1') ) + z sin ¢ ( 1'), 

(3.5) 
with ¢ (1') and b ( 1') the two independent functions needed to 
characterize G. Substitution of (3.5) into (3.4) yields the 
two independent equations 

db sin b 
- =p - tan ¢-cos b ----cot G, 
dr cos ¢ 

d¢ = sin b - sin ¢-cos b-cot G, 
dr 

(3.6) 

( 3.7) 

which, together with the initial conditions b (0) = ¢ (0) = 0 
and the relation 

G(r) = i7 dr'cosb(r')-cos¢(r'), (3.8 ) 

completely determine G. Equation (3.8) is obtained using 
the assumed variation ofE, for arbitrary w(t), E(l): 

with 

E (f p dr') = i cos(f p dr') +] sin(f p dr'). 

It is clear that Eqs. (3.6 )-( 3.8) are very nonlinear, and 
it is difficult to have any intuitive feeling about their solu
tions in the large p limit. In order to obtain this intuition, one 
may machine-integrate these equations-or, equivalently, 
those that follow by substituting the ansatz U = Fo + iO'"F 
into (1.1), along with unitarity restriction F~ + F2 = l
and find for p ~ 1 a remarkable simplification. For simpli-
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city, we again for the moment consider OJ and E, and there
fore p, as constants, and watch the exact solutions for 
Fo = cos G change as p is increased through unity to large 
values. For p~ 1, one finds that a very rapid oscillation, of 
frequency OJ/21T and mangitude p -I, is superimposed upon a 
relatively, slowly varying oscillation, of frequency - E /21Tp 
and magnitude unity. The rapid oscillations should be irrele
vant to any physical property described by this system of 
equations, and it is therefore natural to phrase the question: 
is it possible to approximate U(t) = U(t IE) as a function of 
E so that, in the large p limit, one reproduces only the "aver
aged," or slowly varying behavior, and not the rapid fluctu
ations? The answer to this question is, indeed, yes; it is the 
point of this section, and we now outline the derivation of 
such "averaged" functions, to be denoted by Fo,i' 

Just the "experimental" knowledge that, for p~ 1, the 
output for, e.g., Fo consists of rapid oscillations superim
posed on a slowly varying function ofform - cos (El / p) is 
enough to suggest an argument that can be followed. For, 
from (3.8), this means that as far as the "averaged" behavior 
is concerned, the quantity J =- cos 8 ( 7) 'cos ¢ ( 7) can be 
treated as a constant. (This statement will be refined, in Sec. 
VI, when we discuss "fine tuning.") It will be useful to define 
the associated quantity H=-cos ¢·sin 8, so that cos2 ¢ = J2 
+ H2, and the exact equations (3.6)-(3.8) can be expressed 

as 

and 

J' = -pH + [1 -J2 ]cot G, 

H' = - sin ¢ + pJ - HJ cot G, 

G= iT d7' J(7'). 

(3.9) 

(3.10) 

(3.11 ) 

For the "averaged" behavior, J-const=-5(p), (3.9) 
may be replaced by 

H=((1 - 5 2 )/P)cot G, (3.12) 

with G=75. Just as G depends on the slowly varying time 
dependence, so must the "averaged" H of (3.12). Substitut
ing the latter into (3.10), with G = 75, yields an equation for 
an "averaged" sin ¢, 

(3.13 ) 

The form of (3.13) will be more complicated if p depends 
upon t, or 7, but for p~ 1 this extra dependence need not be 
important; this will be discussed in Sec. V. For the remainder 
of this derivation we shall continue to assume thatp is essen
tially constant; but we shall not hesitate to state our results 
for time-dependent p, where our final formulas continue to 
work in a satisfactory way. 

If our analysis leading to (3.13) is correct, sin ¢ should 
display an "averaged" behavior, with rapid oscillations 
superimposed on a constant background; and this is true, 
experimentally, as one can see in Fig. 3. One may note that 
there is a change of procedure used here, in the following 
sense. An exact (numerical) integration of (3.6)-(3.8) 
yields a value of G that never increases past 1T, while sin ¢ 
andJ are positive when the average G is increasing and nega
tive when it decreases (so that G can cover all points on the 
unit sphere). In contrast, our "averaged" G will increase 

19 J. Math. Phys., Vol. 28, No.1, January 1987 

(a) 

(b) 

(c) 

FIG. 3. Graphs of (a) sin <p, (b) J = cos <po cos D, and (c) a superposition of 
Fo and Fo; for p = 6, E = 10. 

without limit, so that sin G may become negative (just when 
the exact G was decreasing), while the averaged sin ¢ and J 
are replaced by positive constants. In this way we are able to 
represent the correct signs of all the (Fo,F;). This same fea
ture of always positive sin ¢ and J can occur in numerically 
integrated solutions of the exact equations (3.6)-(3.8) de
pending on the accuracy of the computation and the passage 
through the singular regions of cot G. For our purposes, 
both sin ¢ and J can be thought of as having an "averaged," 
constant value, even though in reality they oscillate about 
that value, and oscillate wildly near the regions G - n1T. In 
contrast, a plot of sin 8 displays an almost uniform density of 
points spread over the same intervals. 

We now use the "averaged" constancy of sin ¢, or of 
cos2 ¢ = J2 + H2, to determine the dependence of 5 on p. 
For, if the "averaged" value of (d /d7) (~COS2 ¢) is to van
ish, from (3.9) and (3.10) one finds another expression for 
the "averaged" H, 

0= - H sin ¢ + J [1 - (J2 + H2) ]cot G, 

or 

H = 5 sin ¢ cot(57). 

Comparing with (3.12) we obtain 

5 sin ¢ = (1 - 52 )/P' 

and finally, comparing (3.15) with (3.13) yields 

(1 - 52) / p = P5 2 [1 + (1 - 52) / p2], 

or 

(3.14) 

(3.15) 

(3.16 ) 

In obtaining (3.16) it has been supposed that 5> 0 and 
1 - 52> O. The slightly more complicated form of 5(p) used 
in Ref. 1 is exactly equivalent to (3.16). Limiting forms are 

5( P)p>1 -lip - lIp2 + ... 
and 

5( P)p<,l -1 - (p/2) + .... 
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(a) 

(b) 

v 
FIG. 4. Superpositions of (a) Fa and Fa, and (b) F3 and F3; for p = 6, 
E= 10. 

From (3.16) and (3.15), it follows that our "averaged" sin <p (b) 
is given by unity, which is certainly compatible with the 
curve of sin <p illustrated in Fig. 3. 

With these relations, our "averaged" solutions for Fo, F3 
are given by 

Po = cos G, 

P3 = sin G, 

where 

(3.17 ) 

(3.18 ) 

(3.19) 

is appropriate as a first generalization to time-dependent E 
and w. The accuracy of these expressions is quite good for 
p> 5, where errors, or deviations from the numerically inte
grated Fo, F3 are rarely worse than a few percent, and fre
quently much less. Even for p-l, where the analysis is cer
tainly not valid, one finds that these expressions for Fo and F3 
do tend to average out the then, nonrapid fluctuations of the 
machine integrated Fo, F3. Some typical outputs may be seen 
in Figs. 4-7, including several examples of t-dependent E 
and w. One finds, generally, that even if p has some oscilla
tion superimposed on a constant value~ 1, the "averages" 

(a) 

Ib) 

FIG. 5. Superpositions of (a) Fa and Fa, and (b) F3 and F3; for w = 60, 
E(t) = 10 + 5 sin(5t). 
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FIG. 6. Superpositions of (a) Fo and Fa. and (b) F3 and F3; for w = 60, 
E(t) = 10 + 5 sin(30t). 

given by (3.17)-(3.19) continue to be reasonably accurate. 
One must, of course, be careful about the errors that accu
mulate in numerical integrations; a typical such effect will be 
the appearance of a phase lag between Fo and Po, and 
between F3 and P3, which is a "at-effect," and may be de
creased by choosing a smaller integration step or a more 
accurate method of integration. 

Analogous approximate expressions for F\,2 are easily 
written. One has, exactly, 

F\ = sin G [J cos L + H sin L ], 

F\ = sin G [J sin L - H cos L ], 

(3.20) 

(3.21 ) 

with L = f~ dt ' w (t '). Inserting the same "averaged" ap-

FIG. 7. Superpositions of (a) Fo and Fo, and (b) F3 and F3; for w = 60, 
E(t) = 10 + COS(t2). 
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FIG. 8. Superpositions of (a) F, andF\. and (b) Fo andFo• and (e) F2 and 
F2 ; for p = 6. E = 10. 

proximations for J, H, G as before, one finds 

F\ = $" sin (G + L), 

Fz = - $" cos ( G + L ), 

(3.22) 

(3.23 ) 

where G is again given by (3.19). For large p, $"- 1/ p, and 
these FI 2 - O( 1/ p), in contrast to our Fo 3 - O( 1 ). These 
FI •2 are' therefore small, and oscillate rapidly, and should 
have little physical importance in any specific problem. 
However, as seen in Fig. 8, Eqs. (3.22) and (3.23) do miss 
some of the slowly varying dependence of the exactFI 2' even 
if the dependence is itself on the order of 1/ p. In Sec: VI we 
will give a simple argument to correct the FI •2 above, so that 
they will be correct to 0 ( 1/ p ); and in the process, use the 
requirement of unitarity to "fine tune" our Fo,3 , giving them 
a rapid oscillation superimposed on their "averaged" values 
which is correct to O( 1/pz). Unitarity is, of course, approxi
mately satisfied by the FO,I.2.3 above, 

(F6 +F~) + (Fi +F~) = 1 + $"z=1 + (l/p2) + .... 
In Sec. VI we shall arrange to have this unitarity sum given 
by 1 + O( 1/p4) , and hence infer that the "fine-tuned" Fo.; 
are themselves correct to at least 0 ( 1/ p ). 

There is one qualification to the remarks of this section 
that must be noted, and that will be relevant to some of the 
functional integrals performed over our stochastic averaged 
forms. If the input E(t) can be split into two nonparallel 
parts of radically different magnitudes, then it is the large
magnitude input that controls the final output of U. For 
example, motion corresponding to the input E = lEI 

+ JE2 COS(lVt), withEI >Ez, is essentially adiabatic, regard
less of the value of lV. 

More generally if E (t) is given as the sum of two non
parallel pieces, E = EI (t) + Ez (t), with arbitrary time de
pendence but where the magnitude of one is much larger 
than the other, say EI >E2, then the prudent way to set up 
the calculation is to separate all the E] dependence into a 
unitary V, leaving a rotated Ez dependence, say E; in W: 
U= VW, where 

V= (exp[if dt' (J.EI(t')]) + . 

21 J. Math. Phys., Vol. 28, No.1, January 1987 

We assume that all the components of EI are of the same 
order of magnitude; anything much smaller is put into E 2• 

Then 

W = (exp[if dt' (J·E; (t') ]) + ' 

where 

O'"E; = V + (J·E2 V, E;2 = E~. 

When we calculate the p-value of E; we will find it of 
order (lVzIEz) and/or (EIEz); explicitly 

pZ(E;) = [( d!z + [E]XEJ Y - (d!2 Yl (E~ )-1. 

As long as EI X E2 =1= O--and this was assumed-there will be 
a piece ofthisp proportional to (E]/E2 ) > 1. It is then appro
priate to use the stochastic form for W, leading to the contri
bution 

G
w

- dt' __ 2 __ dt'O _2 , i' E i' (E2) 
o p(E;) 0 E] 

which will be a small correction to the G y if G y is adiabatic, 
or a contribution of the same form as Gy if Gv itself is sto
chastic. 

IV. STOCHASTIC FUNCTIONAL INTEGRATION 

One very nice check on our approximations is their abi
lity to reproduce the result of the one, nontrivial functional 
integration over an ordered exponential which can be per
formed analytically, that of WNG integration over the 
U(t IE) of ( 1.2). Indeed, one type of application of our re
sults should be to stochastic functional integration over 
weightings more complicated than Gaussian. In this section, 
we first show why the stochastic limit is appropriate to 
WNG integration, and then just how our approximate forms 
can reproduce the known, exact result 

N J d [E] exp [ - ;c f dt' E2 (t') ]U(t IE) = e-'c, 

(4.1 ) 
where N is a normalization constant defined by 

N-
I

= J d[E]exp[ -;cf dt 'E
2
(t')]' 

In (4.1) we denote by c a real, positive constant; and contin
ue to suppose that E lies in the (x, y) plane. 

We first remaind the reader of the derivation of (4.1). 
Imagine the interval (O,t) broken up into n subintervals, of 
width I::..t = t /n and labeled by an index i, so that the E(t') 
field in each subinterval is denoted by E;. Then, one defini
tion of the functional integral is 

(4.2) 

and the ordering of the brackets is such that terms with the 
larger value of i stand to the left. But each integral yields a 
result independent of i-that is, independent of (J-by the 
following argument. 

Because of the Gaussian weighting, each E; scales as 
(1::..t)-1/2; that is, in (4.2) replace each E; by F;lp;i (in
cluding the normalization, N; ..., N ; /I::..t), and for small I::..t 

M. E. Brachet and H. M. Fried 21 

Downloaded 02 Apr 2013 to 128.117.65.60. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



L 

expand each expUv'K! uoFi) so that (4.2) becomes 

!~~ iDIN; J d 2Fi e - FT/2C( 1 + iv'K! uoFi - ~t F~ + .. -). 
(4.3 ) 

in which we retain only the leading, nonzero dependence 

proportional to !::.t (the coefficient of v'K! vanishes by sym
metry). Each ith integral is the same; and it is trivial, yield
ing 

lim (1 - cAt)n = e - ct, (4.4 ) 
n- 00 

with At = t In. 
The essential part of this computation has been the ob

servation that, for WNG integration, each Ei scales as 
(At) -1/2. We now consider the same functional integration 
over our "averaged" forms. The first point to be settled is 
whether the stochastic limit is valid, and for this we must 
estimate the size ofp2 = (dE /dt)2/E2. But, upon breaking 
up the interval (O,t) into subintervals, any p2(t) would be 
replaced by 

p~ = (Ei - E i + I )2/E;(At)2. 

The Ei dependence is of O( 1 ); but because Ei scales as 
(At)-I12, p;-O(1/At) and is large. Hence the stochastic 
limit most certainly is relevant, and we consider the func
tional integrals of our "averaged" forms in the limit of very 
large p, fJ -->Fo + i0"3F3' Fa = cos G, F3 = sin G. One then 
requires 

N J d[E]exp [ -;ci'dt'E2
(t')]e±iG, (4.5) 

which upon writing G=f~dt '(E /p) and breaking up the in
tegration region into subintervals, generates 

n J 2 1· IT N. d 2E. -Ll.tE,12c ±iLl.tEilpi 1m I lee , 
n-oo i= 1 

( 4.6) 
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--

FIG. 9. A comparison of the re
sult of functional integration 
over the exact U(t IE) with sever
al approximations, for r- 1 

= 100, Em = 10, ilt = 0.005. 
The labeling of the curves is A 
= exact, numerical; B = renor
malized (Up); C= (lIp); D 
= full 5(P); E = renormalized, 

fuIl5(p); F = renormalized adi
abatic; G = adiabatic. 

where Pi = + [(Ei - Ei+ 1)2] If
2/Ei At. Again rescaling 

Ei' we now find in each subinterval both an integral over the 
magnitude Fi and a nontrivial angular dependence. Integra
tion over each magnitude is trivial, leaving 

_ de 1 + lCu.t - . 1 1217 ( • A ) I 

21T 0 I isini(e;l2)i 
(4.7) 

The integral of (4.7) can be done exactly; with q 
± cAt, it is 

1 2iq 1 [(1_(1+q2)lf
2

_ iq ) 
+ 1T(1 +q2)lf2 n 1 + (1 +q2)lf2_iq 

X ( 1 + (1 + q2) 1/2)] . 
1 - (1 + q2)lf2 

As At --> 0, the argument of the log becomes ± 
erating for the complete functional integral 

lim IT (1 - cAt ± 2icAt In(~)) , 
n-oo i~ I 1T cAt 

which can be written as 

e - cte ± (2ict /l7)ln(2IcLl.t) I 
Ll.t-O· 

2i/cAt, gen-

(4.8 ) 

(4.9) 

Comparison with (4.1) shows that a spurious phase has 
appeared; but one that can be understood, and removed, by 
the following argument. In every subinterval's integration, 
our "averaged" forms have made a small error, which is 
(fortunately) imaginary, and which must be removed "by 
hand." Instead of calculating (4.5) as we have done, we 
must add the proviso that we keep only the real part of every 
subinterval's contribution; and in this way, by not retaining 
and compounding the small error generated by our "aver
aged" forms, we can reproduce (4.1). We expect this ten
dency towards a spurious phase factor to show up in more 
complicated functional integrals, or in functional integrals 
that are Gaussian but not precisely in the white-noise limit, 
and it will be necessary to remove such spurious dependence. 
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This can be done most simply by replacing the functional 
integral over e ± iG, which we call (e ± iG), by the quantity 
[I (e ± iG) 12] 1/2, a computation we henceforth label "renor
malized." 

More general, non-WNG weightings may be treated by 
calculating Gaussian fluctuations with correlation function 
given by 

ll.ij (tl - t2 ) = (Ei (tl )Ej (t2» = oij (EmI2r)e -1/\ - t211r, 

where r is a correlation time, and Em an appropriate magni
tude. The limit r- I

--+ 00 for Em = 1 is the WNG case, 
ll.ij --+OijO(t1 - t2 ), while the opposite limit, r-I--+O is effec
tively the adiabatic limit. (This last remark would be )trictly 
trueifp were defined as IdEldt liE 2 rather than as IdE Idt II 
E; in practice there seems to be little difference.) 

We illustrate in Figs. 9 and 10 calculations in the WNG 
region (r- I = 100) over a variety of different possible ap
proximations, and note that here the best agreement with the 
exact functional integration is given by first performing the 
large-p approximation of 5, 5( p) -lip, and then perform
ing the functional integration. Why this is true-rather than 
using the exact 5( p) and letting the natural, large-p fluctu
ations automatically induce the effective large-p form of s
is a reflection of the comments made at the end of Sec. III. In 
the numerical computations there are many su~cessive 
choices of Ei that correspond to large variations of E, but of 
small magnitude, superimposed on a perpendicular compo
nent oflarge magnitude and slow variation; and these fluctu
ations are to be interpreted as adiabatic contributions of 
small, effective p. When the full5( p) is used, such small-p 
contributions are incorrectly taken into account. However, 
with the large-p form of 5,5 - lip, the corresponding contri
butions to (tr U) are small for small p, since such exponen
tiated terms are rapidly damped away. Using the large-p 
form of 5( p) suppresses such incorrect, effectively small-p 
behavior; and, as one can see from Figs. 9 and 10, provides 
fairly reasonable approximations to the exact result. 
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FIG. 10. The same comparisons, with 
the same labeling as in Fig. 9, using 
r- I = IOO,Em = l,dt=O.OOS. 

v. THREE-DIMENSIONAL INPUT 

We here consider the generalization of the material of 
Sec. III to three-dimensional input E(t), which requires a 
generalization to time-dependentp. It will be appropriate to 
comment, firstly, on the derivation given in that section for a 
time-dependent p, and then to extend the analysis to three 
dimensions. 

The passage from the exact equations (3.9)-(3.11) to 
our approximate, "averaged" forms was performed assum
ing a constant p, and using the "experimental" properties 
that J and sin ¢ are given by rapid oscillations superimposed 
upon a constant background. If p = P (t), one must first de
termine if the same properties of "averaged" constancy of J 
and sin ¢ still exist, before an analysis of the same type can be 
given. The experimental answer, obtained for a variety of 
choices of the t dependence of p (but always insisting on 
p ~ 1) is that the angular integrations represented, e.g., by 
Fig. 11, are only slightly modified; experimentally, J and 
sin ¢ may still be represented as constant quantities on 
which are superimposed rapid oscillations. This being the 
case, it does make sense to apply the same form of argument 
as was used to arrive at (3.12); but the form of (3.13) will 
now be complicated by the appearance of an extra term pro
portional to 

dp [ (1 - 52) + K as] cot G. 
dt p2 p ap 

The result is that (3.13) and (3.15) no longer yield an alge
braic equation for 5(p), but rather, with specific input dpl 
dt, a differential equation for 5(p). The complication is de
cidedly nontrivial. Fortunately, if 5 still falls off as p in
creases, for p ~ 1 these terms should not have any important 
effect. More precisely, even if a time-dependent p (but, al
ways, p ~ 1) adds small and rapid oscillations to our "aver
aged" forms, which need not agree with the small and rapid 
oscillations of the numerically integrated functions, the 
slowly varying behavior of the "averaged" forms still repro-
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(a) 

(b) 

/ 
I 

(c) 

FIG. 11. Graphs of (a) sin.p, (b) Fo, and (c) J = cos.p cos 8; for E = 10, 
p(t) = 30 + 30Icos(6Ot) I. 

duces that of the exact solutions. This can be clearly seen, 
even after the "fine-tuning" of Sec. VI, in Fig. 12, where anw 
containing rapid oscillations inserted into our essentially 
constant (or slowly varyinbg) w-analysis produces a curve 
whose small and rapid oscillations do not match the exact 
ones, but whose "averaged" shape continues to reproduce 
that of the exact curves. 

We emphasize that we have not attempted a careful 
study of this quite complicated point; but we are convinced 
that, for p ~ 1, the specifically time-dependent effects of pare 
not important in developing the "averaged" forms in any 
way other than the elementary generalizations we have 
made, 

UJt-+ f dt' w(t '), G = 7S(p) -+ f dt' E(t ')S(p(t '»), 

in writing our finalformulas (3.17)-(3.24). To substantiate 
this claim, we point to the superimposed curves of Fo and Fo 
of Figs. 5, 6, 7, and 12 made for a variety of choices of p ( t) , 
and using only the Fo of (3.17). 

In treating the problem of three-dimensional input 
E (t), it is always possible to perform a transformation on the 
basic equation (1.1) to yield a similar equation for a related 
quantity in which there appears a two-dimensional input 
if (1). For, if one defines another unitary quantity V 
= e - U/2)1J(t)a,. U, where fJ(t) is a function to be determined, 

then the matrix V will satisfy 

a;; ={ulifl+U2if2+U3[E3- ~])v, (5.1) 

24 J. Math. Phys., Vol. 28, No.1, January 1987 

(b) 

FIG. 12. Superpositions of (a) Fo and Fo, and (b) F3 and F3; for (j) = 60, 
V= 20,ET = 10, andEL = 5. 

with fJ(O) = 0, V(O) = 1, and 

if I =.EI cos fJ + E2 sin fJ, (5.2a) 

g" 2 =.E2 cos fJ - EI sin fJ. (5.2b) 

If choose !fJ(t) = S~dt' E 3(t '), then the problem has been 
reduced to one of two-dimensional input. 

Writing the exact solutions for Vin the form V = Yo 
+ ieT'Y, and comparing U = Fo + iCT'F with the solution 

obtained from U = exp [ ju 3 ( fJ 12)] V, one has the exact 
statements 

Fo = Yo cos(fJ 12) - Y 3 sin (fJ 12), 

F3 = Yo sin(fJ 12) + Y 3 cos(fJ 12), 

F, = Y I cos(fJ 12) + Y 2 sin(fJ 12), 

F2 = Y 2 cos(fJ /2) - Y I sin(fJ 12). 

(5.3a) 

(5.3b) 

(5.3c) 

( 5.3d) 
In order to write approximate, "averaged" expressions 

for the lhs of equations (5.3), we now apply the technique of 
Sec. III, writing, e.g., 

Fo = Yo cos(fJ 12) - Y 3 sin(fJ 12), (5.4) 

and similarly for the other lines of (5.3). Here the Yare 
constructed in terms of a p( g" 1,2) of the two-dimensional 
prob~m. Clearly~ g" = (g"i + g"~)1/2= (Ei +E~)I/2, 
and g" I = g" 1/g", g" 2 = g" 2/g". 

The description is simplest using cylindrical coordi
nates; if we choose EI = ET cos(wt), E2 = ET sin(wt), 
E3 = EL cos( vt), then g" I = ET cos(wt - fJ), g" 2 

= ET sin(wt - fJ). For simplicity, suppose again that EL 
and E T' as well as wand v, are all constants; then one imme
diately calculates 
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FIG. 13. Fine detail of the curves of Fig. 12, starting from t = 0. 

(5.5) 

exhibiting an explicitly time-dependentp, which will be used 
to calculate the Yo,;. We again insist on the requirement 

(a) 

(b) 

FIG. 14. Superpositions of (a) Fo and Fo, and (b) F, and F,; for w = 60, 
v = 60, ET = 10, and EL = 5. 

25 J. Math. Phys., Vol. 28, No.1, January 1987 

(b) 

FIG. 15. Superpositions of <a) Fo and Fo, and (b) F, and F,; for w = 60, 
v= 90, ET = 10, andEL = 5. 

p~ I, which condition governs the possible choices of (j), 
EL,ET • 

Just how well the Fo and F3 reproduce the numerically 
integrated exact solutions can be seen from the examples of 
Figs. 12-15. For (j) significantly larger or smaller than v, the 
agreement is superb. For (j) - v the agreement is less pleasing; 
but much of the discrepancy here seems to be tied up with the 
"in phase" errors made during the numerical computations. 
For example, a slowly forming phase lag gradually appear
ing between Fo and Fo, for (j) = v, is definitely diminished by 
using a finer time step in the numerical equations; however, 
we have not succeeded in completely removing this phase 
lag. This difficulty aside, which we believe is tied up with the 
deails of the numerical integration, it is difficult to be any
thing but enthusiatic over the quality of the results given by 
these "averaged" forms, using a three-dimensional input. 
Again, one finds that generalizations to time-dependent 
E L , E T , continue to be well represented by Eqs. (5.4), using 
in the computation of Yo.; the elementary generalizations of 
Sec. III for time-dependent E,{j). 

VI. FINE TUNING 

Of all the qualitative agreements between the exact solu
tions and our "averaged" functions, only the agreement 
between F 1,2 and F1,2 is less than satisfactory, because the 
F1,2 of Sec. III miss the low-frequency behavior clearly visi
ble in the F 1,2; this is illustrated in Fig. 8. As a practical 
matter, it is not important because the F 1•2 are of order lip 
and are small; but as a matter of principle one would like to 
be able to extract all the correct, slowly varying behavior. 

The trouble resides in our neglect of the small, rapid 
oscillations of J and H, in Sec. III, because those neglected 
fast oscillations could themselves be combined with similar 
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(a) 

(bi 

(e) WMNVVvVVWVVW 
FIG. 16. Superpositions of (a) FI andF;, and (b) FoandFo; (e) F2 andF;; 

for w = 60, E = 10. 

oscillations appearing in the definition of the F 1,2' in (3.20) 
and (3.21), to generate terms independent of the rapid oscil
lations. To see this, denote by Sand Ho our previous choices 
of the constant and slowly varying J and H dependence, re
spectively; and then suppose that J and H shall each have a 
rapidly oscillating part of form 

J = S + S [cos L + sin L cot G ], (6.1 a) 

H = H 0 + S [sin L - cos L cot G ] . ( 6.1 b) 
Imagine that there are constants, or slowly varying 

functions, a, p, y, 8 multiplying each of the sin L, cos L 
terms in (6.1); and then imagine substituting (6.1) into the 
defining equations for F 1,2' to reproduce the F1,2 of (3.22) 

FIG. 17. Detail of the first shoulder of the superposition of Fo and F~; for 
w=60,E= 10. 
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(a) 

(b) 

FIG. 18. Detail of the first shoulder for the superpositions of (a) Fo and F ~, 
and (b) F3 and F;; for w = 60, E(t) = 10 + 5 sin(5t). 

and (3.23) plus a part that has only a slowly varying time 
dependence. We denote by F;,2 these new, improved func
tions, and find that we must choose a = p = y = 8 = 1, and 
then obtain 

F; =S[sin(G+L) +sinG], 

Fi = -S[cos(G+L) -cosG]. 

(6.2a) 

(6.2b) 

The agreement between (6.2) and the exact F 1,2 is so good 
that on the scale used in Fig. 16 there is no visible difference 
at all between them. Only when the scale is enlarged to show 
effects of order 1/ p2 can one see superpositions of two 
curves. 

These new values of J and H, given by (6.1 ), can now be 
used to define new F ~,3' which themselves are correct to 
order 1/ p. But it is much easier to use an argument suggested 
by unitarity, which requires 

F~2+F:/+F;2+Fi2= 1 +OO/p4) (6.3) 

if the new, "averaged" functions are to be correct to order 
(1/p). For if we write 

(6.4 ) 

and substitute into (6.3), using the F ;,2 of (6.2) one obtains 
the relation 

8Fo cos G + 8F3 sin G + S 2 [1 + sin G sin (G + L) 

- cos G cos(G + L)] = O. (6.5) 

Rewriting the "1" coefficient of S, in (6.5) as sin2 G 
+ cos2 G, and equating the coefficients of sin G and cos G, 

generates 

8Fo= +S2(cos(G+L) -cos G), 

8F3 = - C(sin(G + L) + sin G). 

(6.6a) 

(6.6b) 

The agreement between the F~,3' given by (6.6) and 
(6.4) is extremely good, as displayed in Figs. 17 and 18. 
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From this construction we infer that these F ~,3 are correct to 
order lIp2, while the F;,2 are correct to order lip. Again, 
this "fine tuning" is probably irrelevant in any given phys
ical application, but it is pleasing to be able to improve the 
accuracy of our "averaged" curves in such a simple way. 

VII. SUMMARY AND FURTHER QUESTIONS 

In this paper we have suggested some methods for the 
approximate estimation of SU (2) ordered exponentials in 
the SC limits, adiabatic and stochastic, and have compared 
the results to exact or machine statements when certain 
functional integrals are carried out using our approximate 
forms. Our derivations have been mainly intuitive; but there 
can be no argument raised against the results which those 
derivations provide, which nicely match the numerically in
tegrated functions representing the exact ordered exponen
tial in both the adiabatic and stochastic limits. As such, we 
expect that these approximations will be immediately useful 
in a variety of physical problems, whose dynamical content 
can be expressed, approximated, or modeled in terms of 
SU (2) ordered exponentials. 

There are three main areas in which the analyses of this 
paper raise questions that are surely deserving of futher at
tention. 

(1) Are there possible choices of E(t) for which the 
fixed-point equations (3.1) have a nontrivial solution? 

(2) A thorough analysis should be made of the general
ization to time-dependent p(t). Would the result of this in
vestigation show that the Fo,1 are insensitive to the time de
pendence of p, as suggested by all of our examples; or will 
there be certain situations, certain forms for p(t) ~ 1, for 
which our results are invalid? 

(3) Can our results be extended to SU (N), N> 2? 
It is not difficult to write the leading term of the adiaba-
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tic approximation for the case of SU (N), but its corrections 
will surely be more complicated because of the more cum
bersome statement of unitarity. 5 In the stochastic limit, on 
the other hand, the situation seems less well-defined, and the 
methods of Sec. III would appear to be hazardous and uncer
tain. In principle, the same techniques can be used; in prac
tice, the greater number of functions Fo,;, 1 <J<.N 2 

- 1, 
makes for a certain amount of confusion. Surely, the much 
greater number of physical problems that involve SU(N), 
rather than SU (2), would make this a study of paramount 
interest. 
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