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Abstract 

The three -dimensional stability of saturated two'dlmenslonal 

vortical states of planar mixing layers and jets Is studied by direct 

integration of the Navier-Stokes equations. Small--scale Instabilities 

are shown to exist for spanwise scales at which classical linear 

modes are stable. These modes grow on convective time scales. 

extract their energy from the mean flow. and persist to moderately 

low Reynolds numbers. Their growth rates are comparable to the 

most rapidly growing inviscid instability and to the growth rates of 

two-dimensional subharmonic (pairing) modes. The three--dimenslonal 

modes do not appear to saturate In quasi -steady states. Indeed. 

they seem to lead directly to chaos. Results are presented tor the 

resulting three-dimensional turbulent states. 
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1. Introduction 

Free shear flows like those of mixing layers and jets differ from 

wall-bounded flows In the sense that they are typically Inflexional and. 

hence. are subject to Invlscld Instabilities. Thus. It may be thought 

that the process of transition to turbulence In free-shear flows would 

be Inherently simple and amenable to analysis. Indeed. observations 

by Winant & Browand (1974). Brown & Roshko (1974). Wygnanskl et 

al (1979). Ho & Huang (1982). Hussain (1984). and others show the 

central role played by two-dimensional dynamical processes through 

transitional regimes In these flows. While three-dimensional small 

scales are observed (Mlksad 1972. Bernal et al 1979). they may not 

destroy the large-scale two-dimensional structure (Browand & Troutt 

1980> . In contrast. studies of wall-bounded flows have emphasized 

the central role of three-dimensional effects In their breakdown to 

turbulence. 

In this paper. we Investigate the nature of linear Instabilities of 

saturated nonlinear two-dimensional flow states that arise from the 

primary Invlscld Instability of free shear flows. It Is shown that these 

saturated two-dimensional states are subject to a class of strongly 

unstable three-dimensional modes that are present even at moderately 

low Reynolds numbers. It Is possible that these three-dimensional 

Instabilities can explain some of the Initial stages of three-dimensional 

transition In free-shear flows. We find that the two-or 

three-dimensional character of these free-shear flows depend crucially 

on Initial conditions as there Is a close competition between the 

various modes of Instability to be discussed below. 

The approach followed here Is similar to that used by Orszag & 

Patera (1980. 1981. 1985) In studies of secondary Instabilities In 

wall-bounded flows. The parallel laminar flow Is perturbed Initially by 

a finite-amplitude two-'dlmenslonal disturbance that Is allowed to evolve 

and to saturate In a quasi-steady state. The stability of this finite 

amplitude vortlcal state to both subharmonlc (pairing) two-dimensional 
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modes and smaller-scale three--dlmenslonal modes Is then studied by 

numerical solution of the full three--dimensional time-dependent 

Navier-Stokes equations. The character of the pairing instability was 

first explained theoretically by Keily (1.967> and numerically by Patnaik, 

Sherman & Corcos (i974) and Collins (1982) for stratified fiows and 

by Riley & Metcalfe ( 1980) and Plerrehumbert & Wid nail (1982) for 

unstratified flows: the present results confirm the strength of this kind 

of mode. 

Pierrehumbert & Widnall (1982) have made a study of the linear 

two- and three-'dimensional instabilities of a spatially periodic inviscid 

shear layer that is closely reiated to the present study. They 

consider the stability characteristics of the model family of 

two' dimensional vortex-'modified mixing layers with velocity fields 

u = sinh 7 / (cosh 7 - P cos x ) 

(1.1) 

w .- p sin x/(cosh z- p cos x ) 

(Stuart 1967> for 0 '" p<1+ and study subharmonic pairing instabilities 

and a new 'translative' three-dimensional instability. In contrast. we 

consider here both the linear and nonlinear stability characteristics of 

time-developing viscous shear layers. The three'-dimensional 

secondary instability studied here is both the analog of the translative 

instability and the generalization of the instability analyzed by Orszag 

& Patera for wall-bounded flows. 

Note that for p «1, the basic flow state (1. 1) is of the form 

tanh 7 X + pReleix:!( 7) J. This flow state is an 

stable perturbation of the mixing layer tanh z x. 
inviscidly neutrally 

At wavenumber 1, 

there are no primary two'-dimensionai instabilities that can compete 

with the subharmonic and secondary instabilities. In contrast. the 

results to be reported in Section 3 invoive unstable primary 

perturbations to the mixing layer. 
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2. Numerical Methods 

The Navler-Stokes equations are solved In the form 

.-4 

where W 

head. 

,... ... 2 '* 
v Xw - \IT! + v 'V v 

'V .;. 0 

v x Is the vorticity and 71 

(2.1) 

(2.2) 

p + 112 y2 Is the pressure 

Periodic boundary conditions are applied In the streamwlse. x. and 

spanwlse. y. directions. 

... 4TT 
vex + C1 ' y, z, t) 

+ 
v (x,y,z,t), (2.3) 

+ 2rr/8,z,t) = V(x,y,z,t) 

while the flow is assumed quiescent (v.... U:t. U:t. constants) as z .... 

± 00 Note that the assumed periodicity length Is 471/ a to 

accommodate both the primary mode with x-wavenumb,," a and its 

subharmonlc with x-wavenumber 'f a+. 

+ Plerrehumbert & Wldnali (1982) point out that Floquet theory 

Implies that the Navler-Stokes equations linearized about a flow 

periodic mix admit solutions of the more general form v(x. y. z) ei'Yx 

v( x. y. z) where v Is periodic In x with the same periodicity as the 

basic flow and 'Y is arbitrary. However. Pierrehumbert & Wid nail 

consider only the subharmonlc and primary cases. The analysis. 

which has not yet been done for more general 'Y. may yield 

Important new results. Indeed. Busse (1979) pOints out the 

importance of these general 'Y modes in Benard convection. The 

present study is restricted to 'I' being a half-integer multiple of the 

primary wavenumber because our code Is fully nonlinear with the 

periodicity condition (2. 3) . 
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The assumption of periodicity In the streamwlse--x direction is 

unrealistic In a spatially growing mixing layer unless the modes being 

studied are localized In x and grow much more rapidly than the shear 

layer spreads. These latter approximations seem reasonably well 

justified for the three-dimensional modes studied here (see Sec. 3). 

However, future work using Inflow-outflow boundary conditions in x 

should clarify the role of non-parallel effects In free-shear flows. 

The dynamical equations are solved using pseudospeclral 

methods In which the flow variables are expanded in the series 

p 

'f.. I 
Im\ < iM In\ 

I 
p=o 

7 imax inSy u(m,n,p,t)e e 'J' (Z) 
p 

(2.4) 

where nand p are integers and m Is a half-Integer when pairing is 

allowed and a whole Integer If pairing Is excluded. Here Z = f( z) is 

a transformed z-coordinate satisfying Z 

choices of f( z) have been studied, viz. 

:!. 1 when 7 = :!. 

z tanh z 
E ( Izl<oo, IZ\ < 1) 

and 

Z 
z (Iz\<oo , \ z I < 1) 

Two 

(2.5) 

(2.6) 

where L Is a suitable scale factor. With these mappings, derivatives 

with respect to z are evaluated pseudospectrally using the relations 

... 
Z2) 

... 
Clv 1 (1 - Clv 
ClZ E az (2.7) 

... 
1 h-7 

... 
Clv Clv (2.8) 9'z E az 

for (2.5), (2.6), respectively. 

Time stepping Is done by a fractional step method in which the 

nonlinear terms are marched In time using a second-order 
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Adams-Bashforth scheme while pressure head and viscous effects are 

Imposed Implicitly using Crank-Nicolson differencing. 

This scheme Is globally second-order accurate In time. despite 

time splitting (Deville & Orszag 1983). because the various split 

operators commute In the case of quiescent boundary conditions at z 
:too, 

There Is one further technical detail regarding the numerical 

method that should be discussed here. 

like 

2 2 
- (m + n m g(z) 

Various Poisson equations. 

(2.9) 

are solved by expansion In the eigenfunctions of d2 ldz2 : 

Thus. if 

Then 

d 2 
dz 2 ek(z) = Akek(z) 

IT (z) 

p 

g(z) I gkek(z) 
k=O 

p 

I 
k=O A 2 2 k-(m +n ) 

(2.10) 

(2.11) 

We remark that this technique gives spectrally accurate solutions. 

despite the fact that the continuous version of the eigenvalue problem 

(2.10) has only a continuous. and hence singular. spectrum. Also. 

note that all the eigenvalues ).k are real and non-positive; for both 

mappings (2. 5) and (2. 6) • there are precisely three zero 

eigenvalues ).1. ).2. ).3. One of these zero eigenmodes. ). 1 . Is 

physical. viz. e1 (z) = 1. but the other two are highly oscillatory and 

unphysical. Indeed. since the spectral (Chebyshev) derivative of Tp 

(Z) vanishes except at Z = ::!:l. e2 (Z) = Tp (Z) Is a zero 

eigenfunction of d2 ldz2 ; Tp(Zj) = (-1) I at the Chebyshev collocation 

points Zj = cos 77;1 P. The third zero eigenmode oscillates and grows 
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roughly like z. When m = n = O. the Incompressibility constraint 

(2. 2) requires that this mode of the z-veloclty field vanish Identically 

so there Is no difficulty with the zero pressure eigenvalues ).1. ).2. 

).3. 

Comparisons of the behavior of linear Orr-Sommerfeld 

elgenmodes obtained using the mappings (2. 5) and ( 2. 6) show that 

(2. 6) gives a superior representation of these modes unless L Is fine 

tuned. which Is not convenient In the nonlinear dynamical runs. of-

Some representative results are given In Table 1. Notice that as a 

Increases. the optimal choice of map scale L decreases. Also. 

notice that the accuracy of the eigenvalue Is much more sensitive to 

L for the hyperbolic tangent mapping (2. 5) than for (2. 6) . 

The nonlinear time-dependent Navler-Stokes code has been 

tested for the generalized Taylor-Green vortex flow (2. 12) and for the 

behavior of linearized eigenfunctions. with satisfactory agreement being 

achieved with power series In t (Brachet et al 1983) and linear 

behavior. respectively. 

+ There Is one case In which It seems that the hyperbolic 

tangent mapping (2. 5) Is more convenient than the algebraic 

mapping ( 2.6) . This flow Is the generalized Taylor-Green vortex flow 

that develops from the Initial conditions 

uex.y.z.O) = sin x cos y/coSh2 z 

vex.y.z.O) =-cos x sin y/cosh2 z (2.12) 

w(x. y. z. 0) = 0 

The evolution of this flow seems best studied. either by power serle's 

or Initial value methods. using (2. 5) with L = 1. The time evolution 

of this free shear flow Is remarkably similar to that of the periodiC 

T aylor-Green vortex (Br achet et al 1983). 
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Table 1. Growth Rates (1m c) of the Orr-Sommerfeld Eigenfunctions 
for the M>xing Layer VO(Z) :c tAnh z t 

x-wevenwnber a 

I 
0.25 0.5 0.75 

Number of Chebyshev Polynomials (P+l) 

L 17 33 65 17 33 65 17 33 65 

Hyperbolic Map (2.5) 

0.5 1. 534 1. 375 1. 238 0.579 0.501 0.457 0.160 0.150 0.150 
1 0.959 0.820 0.746 0.383 0.360 0.351 0.141 0.138 0.137 

0.635 0.614 0.605 0.344 0.342 0.342 0.137 0.137 0.137 
0.612 0.598 0.597 0.324 0.342 0.342 0.041 0.136 0.137 
0.539 0.597 0.597 0.115 0.322 0.342 .s 0.045 0.136 

16 0.202 0.526 0.596 
. 

S S 0.321 S S 0.046 

Algebraic Map (2.6) 

0.5 0.699 0.588 0.599 0.345 0.346 0.342 0.131 0.138 0.137 

0.591 0.599 0.5Y7 0.344 0.342 0.342 0.137 0.137 0.137 

2 0.600 0.597 0.597 0.342 0.342 0.342 0.136 0.137 0.137 

4 0.597 0.597 0.597 0.325 O. 0.342 0.371 0.136 0.137 

8 0.542 0.597 0.597 0.009 0.322 0.342 S 0.043 0.136 

t Here the Reynolds number is l/v = 100 and the eigenvalue is the 

complex wave speed c for a temporal mode of the form 

For the most rapidly growing mode l>sted here, Re c O. 

S indicates that all modes are stable with the indicated parameter values 
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3. Results for Mlxins Layers 

In this Section. results are reported for the evolution of Initial 

velocity fields of the form 

+ A () iax+iBYj llvll z e (3.1) 

The laminar mean profile Is assumed to be the mixing layer profile 

UO(z) = tanh Z and "tij(Z) Is normalized so that maxIVlj(Z) I = 1. 

The Initial functions "tl)( z) are normally chosen as the most unstable 

eigenfunctions of the linear Orr-Sommerfeld equation with the 

wavenumbers given In (3.1). * In this representation. A10 is the 

amplitude of the primary two-dimensional component. A 1/2. 0 Is the 

amplitude of Its subharmonic or pairing mode. and All Is the 

amplitude of the primary three-dimensional wave. In all cases. the 

initial conditions are chosen so that A1I2.0 All. A 1 0; typically. 

A10 = 0.25. Also. the momentum thickness Reynolds number for 

the undisturbed flow Is R = l/v. 

In the absence of subharmonlc and three--dlmensional 

perturbations (A1/2. 0 = All = 0). the two-dimensionally perturbed 

flow quickly saturates to a quaSi-steady state. In Figure 1. a plot Is 

given of the time evolution of the two-dimensional disturbance energy 

E1Q(!) for various Initial amplitudes A10. 

* The Reynolds numbers of the flows discussed below. while 

modest. are much greater than that of the onset of linear Instability 

(Rcrit ... 4). so that even the linear modes are effectively Inviscid. 

In this case. damped modes may lie only In the continuous spectrum 

(Drazln & Reid 198f) and so are singular. Whenever (3. 1) calls for 

such a singular contribution to the Initial condition (3. 1). we choose 

instead the flow component wnm Ii w10 of the primary mode (with 

unm and vnm determined by Incompressibility). 
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24 48 t 72 Y6 

Figure 1. 

A plot of ElO(t) vs t for runs with Als.O = All = 0 and AlO 
0.5. 0.25. O. 125. 0.01. Here the Reynolds number is R = 400. 

UO(z) = tanh z. the spectral cutoffs in (2.4) are M = 8. N = 1. P 
32. (resolution 8 x x 32 with no pairing modes). the 

x-wavenumber is a = 0.4. and the time step is At = 0.02. Note 
that the flow saturates into a vortical state nearly independent of the 
initial perturbation. Before such saturation occurs. the perturbation 
grows linearly like an Orr-Sommerfeld eigenfunction. 
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2 
f dz (Zit) I rnn 

p 

I p=o 
(Z) p 

(3.2) 

(3.3) 

and u Is defined by (2.4). It Is apparent that E10 saturates Into a 

finite-amplitude vortical state on a time scale of order 10; Indeed. 

the mean flow tanh z Is Inviscidly unstable to the perturbation A 10 

with maximum growth rate roughly 0.2 when a "'0.44. [The range of 

invlscidly unstable wavenumbers for the tanh z profile is 0 < a < 1. 

Also. note that if we used a length scale in which the wavelength of 

the perturbation is of order unity (rather than our unity in which the 

shear layer thickness is order 1). saturation of ElO would occur on 

a time scale of order 1. ) In Fig. 2. a plot is given of an 

instantaneous spanwise vorticity distribution in the developed 

two-dimensional flow. 

Comparison of the energy evolution plotted In Figs. 3( a) and 

3( b) shows that the Initial phase of the subharmonlc perturbation can 

affect Its growth rate but not the eventual growth and saturation of 

the subharmonic. The present calculations differ from those of Riley 

& Metcalfe ( 1980) and Patnalk et al (1976) In that the Initial 

disturbances are chosen to be computationally Infinitesimal In our runs 

In contrast to their finite-amplitude Initial perturbations. (Also Patnalk 

et al study stratified flows). While phase does affect the Initial 

subharmonlc growth rate. the perturbation eventually achieves its 

optimal growth rate during our long time runs. We conclude that the 

'vortex shreddy' process found by Patnalk et al Is a finite amplitude 

effect. not reproducable in the present long-time runs. 

The saturated two-dimensional flow state discussed above can 

be unstable to subharmonlc perturbations, A 1/2.0 In (3. 1). for 

suitable a (Kelly 1967). In Figure 3. we plot the evolution of the 
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'IT 

z 

-'IT 
o x 

Figure 2. 

A contour plot of spanwlse <y> vorticity contours for the 
saturated flow state of the mixing layer at R = 400. The vortex 
prominent In this plot Is nearly stationary. 



269 

ElO 

-1 

-3 T 

-5 

loglnE 

-7 

-9 

-11 

-13 1 -15 I 
0 24 48 t 72 96 

Figure 3. 

Plots of the evolution of E10Ct) and the two-dimensional 
pairing mode energy E .... OCt) as functions of time. Here A = 400. 
UOCz) = tanh z. A10 = 0.25. A.,. 0 = 3 x 10 - 4. M = 8. N = l. 
P = 32. C resolution 16 x 1 x 32 with pairln,ll modes) a = 0.5 and 
/)t = O. 02. C a) and C b) differ by a 90 phase shift of Initial 
subharmonlc perturbation. 
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subharmonlc perturbation energies E112. 0 (1) as well as the primary 

two-dimensional energy El0IU. Here we choose al0 =- 0.25 and 

41/2.0 = 3 lC 10-4. In Figure 3(a). the primary and subharmonlc 

perturbation vorticity are Initially In phase; In Figure 3( b) they are 

Initially out of phase. This subharmonlc Instability of the saturated 

two-dimensional vortlcal states Is Invlscld In character as Its srowth 

rate asymptotes to a finite limit as R Increases. The srowth rate 

0112.0 -0.2 for a = 0.8. These srowth rates are not significantly 

larser than the linear Invlscld srowth rates of Orr-Sommerfeld modes; 

however. pairing perturbations are slsnlflcant because the nonlinear 

saturation of the two-dimensional Orr-Sommerfeld modes allows the 

palrlns modes to achieve finite amplitudes at later times. The 

evolution of the spanwlse vorticity distribution during pairing Instability 

Is revealed by the contour plots given In Fig. 4. The energetics of 

the pairing Instability Is revealing. Energetic transfers to and from 

the pairing mode may be decomposed as 

dEl 

- °1 = YM + Y2- D + Yv 
2,0 

(3.4) 

where ')1M Involves the nonlinear Interaction of the pairing mode with 

the mean flow. "2-0 Involves the nonlinear Interaction of the pairing 

mode and all other two-dimensional modes. and "v the viscous 

dissipation of pairing energy. Here"M and "2-0 Involve sums over 

nonlinear terms In the Navler-Stokes equations but are unaffected by 

pressure; "v Is proportional to the enstrophy In the pairing mode. 

In Fig. 5. a plot Is given of these transfer terms as a function of 

time. It appears that the pairing mode extracts most of Its energy 

from the mean flow and grows no faster than In the. absense of the 

two-dimensional primary component. The Important conclusions are 

that the presence of the saturated two-dimensional primary does not 

turn off the pairing mode and that the growth rate of this latter mode 

Is of order that observed In the primary two-dimensional Instability. 

These results Imply that even a small pairing perturbation will quickly 

achieve finite amplitude after the primary mode saturates. 

While these conclusions are In substantial agreement with those 



271 

z 

-2rr 

z 

-2n 

z 

o x 4n /a 

Figure 4. 

Spanwlse vorticity contours at t = 48. 72. 96 during a 
vortex pairing run with A = 200. VO(z) = tanh z. Al0 = 0.25. Alt. 
o = 3 x 10-5 . M = 16. N = 1. P = 32. (resolution 32 x 1 x 32) 
a = 0.43. 6t = 0.01. 
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Figure 5. 

A plot of the components ')1M. ')12-0. ')IV [see (3.4)] of 
the growth rate 0 It. 0 of pairing mode amplitude as functions of 
time for the same run as in Figure 4. 
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obtained by Kelly (1967> usln8 perturbation theory. they differ In some 

Important respects. First. we observe nothln8 very special about the 

'resonant' wavenumber (I 0.44 of maximum linear growth 

presumably because our study Is a temporal. not sp atlal. stability 

analysis. Second. we do not find that the growth rate of the pairing 

mode Is significantly enhanced by the finite-amplitude primary mode 

(Plerrehumbert & Wldnall 1982). On the contrary. the growth rate of 

the palrln8 mode at 112(1 =. 0.22 seems to be sll8htly less when the 

primary achleyes finite amplitude than for the parallel shear flow. 

The saturated two-dimensional flow Is also subject to 

three-dimensional Instabilities. While the laminar mean flow Is 

'nylscldly unstable only for a2 + p2 <; 1. the finite-amplitude 

two-dimensional flow can be unstable for lar8e p at hl8h R. In F18. 

6. we plot the eYolutlon of three-dimensional disturbance ener8Y 

L (3.5) 
m 

for runs with Initial conditions (3. 1) with A 10 = O. 25. A 112. 0 = O. 

All = 10 -6 with (I = 0.4. 2 P 8. For these parameter 

yalues. the mean flow tanh z Is both Ylscously and Inylscldly stable at 

these three dimensional scales. Neyertheless. the saturated 

two-dimensional disturbed flow Is stron81y unstable at these scales. 

with disturbances 8rowln8 at rou8hly the same rate as the Inylscld 

two-dimensional primary Instability. Since the two-dimensional modes 

saturate. the three-dimensional modes can achleye finite amplitudes 

on conyectlye time scales and thereby modify sl8nlflcantly the later 

eyolutlon of the flow. 

The 8rowln8 three-dimensional wave Is localized In space on 

top of the two-dimensional vortex motion. In F18. 7. a plot Is 81Yen 

of contours of the spanwlse (three-dimensional> perturbation Yeloclty 

y(x. O. z. t) • as well as a wind plot of the finite amplitude 

two-dimensional flow (u(x.O.z.t) .w(x.O.z.t>. The structure of this 

three-dimensional mode Is not dissimilar to that found In wall-bounded 

flow (see Orsza8 & Patera 1983 for a detailed discussion of these 

latter modes). 
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Figure 6. 

A plot of the evolution of the three-dimensional disturbance 
energy E3-0(t) vs t for runs with R = 400. UO(z) = tanh z. M = 8. 
N = 4. P = 32 (resolution 8 x 4 x 32) a = 0.4. lot = 0.02. AlO 
= 0.25. All = 10 -6. and P = 2. 4. 6. 8 
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Figure 7. 

Contour plot of the perturbation three-dimensional yelocity 
component y(x. O. z. t). In the plane y = 0 superimposed on a wind 
(yector) plot of the finite amplitude Yortex flow (U(X.0.7.t>. 
w(x.O.z.t» whose Yortlclty contours are plotted In Figure 2. Here R 

200. II = 0.8. IJ = 0.8. Uo(z) = tanh z. M N = P = 32 
(resolution 32 x 32 x 32 with no pairing modes) and the contours 
are plotted at t = 24. 
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In Fig. 8. a plot of th& average three-dimensional growth rate 

03-0 vs. Il is given for various R when (J = 0.4. It is apparent 

from the results plotted in Fig. 8 that. as R Increases. 0 3- 0 

approaches a finite limit for fixed Il (so the secondary Instability 

discussed Is Invlscid in character) and that the instability turns off for 

Il ) Il crit -l/:VA· 

The cutoff Ilcrlt is due to viscous damping as nonlinear 

transfers vary little with Il. This point Is established in Fig. 10 

where we plot the contributions to the growth rate 03-D' 

dE 
1 3-D 

'YM + 'Y 2- D + (3.6) 2E3_D ---err- - °3-D 'Yv 

where 'YM involves the nonlinear Interaction of the three-dimensional 

and mean flows. ')I2-D the interaction of the three-dimensional and 

two-dimensional disturbances. and ')Iv the viscous dissipation ot 

three-dimensional energy. It Is apparent from Fig. lOa that. for 11 < 

< Il crlt' 'Yv' 'Y2-0 ( ('YM so the three-dimensional modes derives 

Its energy from the mean flow with the two-dimensional disturbance 

acting as a catalyst for this transfer. 

On the other hand. the results plotted In Fig. lOb show that 

when Il - Il crit' ')Iv is quite significant. The three-dimensional 

instability seems to be turned off at large cross-stream wavenumber 11 

by increasing dissipation rather than by any significant qualitative 

change in nonlinear transfers from the mean and two-dimensional 

components. 

The flows that develop from the three-dimensional secondary 

Instability do not saturate In ordered states like those of the primary 

two-dimensional and pairing Instabilities. Instead, the 

three-dimensional modes seem to lead to chaos and. finally, 

turbulence. in Figs. 11, contour plots of spanwlse vorticity and wind 

plots In three-dimensional mixing layer runs (at resoiutlon M = N = P 

= 32) are given at t = 36 after the three-dimensional fluctuations 
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0.2 

15 

-0.05 

Figure 8. 

A plot of the computed three-dimensional growth rate 03-0 
(see C 3.6)) as a function of spanwlse wavenumber P for various 
Reynolds numbers for UOCz) = tanh z. Here a = 0.4. 
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Figure 9. 

A plot of the computed pairing growth rate 0'1,0 and 
three-dimensional growth rate 03-0 as a function of a at A = 400, II 
= 0.8 with UO(z) = tanh z. (Note that the wavenumber of the pairing 
mode is 'I a) 
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Figure 10. 

A plot of the components 'I'M. '1'2-0. 'I'v [see (3.6) 1 of 
the three dimensional growth rate 03-0 as functions of time for 
A=400. a = 0.4. A10 = 0.25. All = 10 -6. (a) p = 4 Cb) P = 6 
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Figure 11. 

(a) Contour plot of spanwlse vorticity In the plane y = 0 
at t = 36 for the run described In the caption to Figure 7. (b) 
Contours of spanwlse velocity v and wind plot of (u. w) vector field In 
the plane y = 0 at t = 36. 
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become comparable to the two-dimensional amplitudes. The order 

apparent In Fig. 7 Is partially obliterated by the three' dimensional 

excitations apparent In Fig. 11. but two-dimensional structure Is still 

significant. 

The nature of the competition between two' dimensional pairing 

and three'"dlmenslonal Instability Is further illustrated by the results 

plotted In Figs. 12. 13. In both figures. results of runs with R = 
400. a = 0.4. IJ = 0.2 are plotted. In Fig. 12. the initial 

conditions are chosen so that the pairing mode perturbation Is much 

larger than that of the three -dimensional perturbation: It seems that 

the pairing process slightly Inhibits the three-dimensional instability. 

In Fig. 13. the evolution of the Instat:lliities are plotted when the 

initial three-dimensional perturbation is much larger than the pairing 

mode. In this case. it seems that the pairing instability is nearly 

unaffected by the three-dimensional instability before finite amplitudes 

are reached: when the three-dimensional mode becomes finite 

amplitude. the flow is chaotic so a higher resolution 

three-dimensional code should be used to study the energetiCS. 

5. Discussion 

The principal result of this paper Is the demonstration that 

small- scale three- dimensional Instabilities like those previously studied 

by Ors7ag & Patera (1980.1981.1982). Plerrehumbert & Wldnall (1982) 

exist In viscous free shear flows and that these instabilities persist to 

moderately low Reynolds number. It Is possible that these modes are 

responsible for the Initial development of three dimensionality In these 

shear flows. The dynamics of the three- dimensional Instability Is 

qualitatively the same as that of the three- dimensional Instabilities 

studied by us In wall-'bounded shear flows. In particular. the 

instability does not appear to be similar to the Gortler instability in 

curved channels. as the instability has significant streamwlse variation 

along the two-dimensional eddy. While the instability shares some 

features of a classical inflectional instability. Including phase locking 

with the primary vortex. inflectional Instability is preferentially 
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Figure 12. 

vs t for a 
= 8. N = 
lC 10-3 . 
dominates 

A plot of the evolution of the energies E10. E's. O. E3-D 
run with R = 400. UO(z) = tanh z. a = 0.4. P = 0.2. M 
4. P = 32. and Initial conditions A10 = 0.25. A's.O = 4 
All 3.3 lC 10-5 The subharmonlc pairing mode 
the three-dimensional mode. 
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Figure 13. 

24 48 t 72 90 

Same as Figure 12, except that the Initial conditions are 
Al0 0.25, = 3 x 10 -6, All = 10-3 . The 
three-dimensional mode initially dominates the pairing mode. 
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two--dimensional but the present instability is not. 

11 seems that the mechanics of transition in the free shear 

flows studied here may. in a sense. be rather more complicated than 

in the case of wail-bounded shear flows. in the latter case. linear 

instabiiities are often viscously driven and. therefore. weak. so they 

can not be directly responsible for the rapid distortions characteristic 

of transition. On the other hand. free shear flows are subject to a 

variety of inviscid instabilities so there may be many paths to 

turbulence. The choice of which path Is taken In any individual flow 

may depend on the results of competition between priamry. 

subharmonic. and three- dimensional Instabilities. ail of which are 

convectively driven and. therefore. strong with comparable growth 

rates. Thus. it may be that the evolution of free- shear flows in 

transitional regimes may depend significantly on the past history of 

the flow. including the mechanism of its generation and the external 

environment in which the flow is embedded. 
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