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SECONDARY INSTABILITY OF FREE SHEAR FLOWS
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Three-dimensional instabilities of saturat-
ed two-dimensional vortical states of planar
free shear flows are shown to exist for spanwise
scales much smaller than those at which classi-
cal linear modes are unstable. These modes grow
on convective time scales, extract their energy
from the mean flow, and persist to moderately
low Reynolds numbers. Their growth rates are
comparable to the most rapidly growing inviscid
instability and two-dimensional subharmonic
(pairing) modes. In contrast to two-dimensional
modes, the three-dimensional modes do not appear
to saturate in quasi-steady states; they seem to
lead directly to chaos.

We present here some new results on secondary instabilities of
vlpcous mixing layers and planar jets; details of the results given
lore are discussed by Brachet & Orszag (1983). The undisturbed velo-
¢ity profiles are assumed to be u = tamh (z/a) for a planar mixing
|ayer and u = sech (z/a) for a planar jet. Such free shear flows
{lffer from wall bounded flows in the sense that they have inflec-
{lonal points and hence are inviscidly unstable.

The central role of secondary three-dimensional instabilities
[ the transition to turbulence of wall bounded flows, such as plane
olseuille flow, has recently been established (Herbert 1983,
Orpzag 1983, Orszag & Patera 1980, 1983). With inflectional free
hear flows, one may expect that the transition process is basically
nimpler due to the possible dominance of the essentially two-
dimensional instabilities of the primary shear flow as well as the
Aubharmonic instabilities leading to vortex pairing. Indeed, a wide
variety of experimental results for free shear flows demonstrates
(ho central role played by two-dimensional processes (Miksad 1972,
Wernal et al 1979, Browand & Troutt 1980). On the other hand,
lorrehumbert & Widnall (1982) have shown that secondary three-
dimensional 'translative' instabilities are also potent in mixing
layerms.

We have invenstigated the two= and three-dimensional stability
of the two=dimensional, viscous, vortical flows that result from the
primary and palring dinstabilities of (ree wshear flows. We ude
methods mimilar to thowe used by Orsgag & Patera in studyling wall

hounded flows. The problem e studied by solving the Naviler~Htokes
anuabians an ancdnisial=valus Beoabler usina
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based on expanding the flow field in Fourier series in x and y and
in mapped Chebyshev polynomial expansions in z. The initial condi-
tions are constructed as a superposition of Orr-Sommerfeld eigen-
modes of the basic flow, which are also computed numerically by
spectral techniques. The results of purely two-dimensional studies
show the important role of the primary viscous instability and the
pairing modes, but there is no evidence of 'chaos' in the finite-
amplitude developing flow; the two dimensional flows appear to sa-
turate into ordered flow states (see Patnaik et al 1976). These sa-
turated two-dimensional states are unstable to infinitesimal three-
dimensional perturbations; it is these 'secondary' instabilities
that is the main focus of our work.

Our numerical studies demonstrate the following properties of
the secondary three-dimensional instabilities. First, they are
strong for spanwise scales at which the basic flow is linearlg
stable. At Reynolds number R, they persist to scales of order a/R
while the primary instability disappears if the scale of the mode is
smaller than order a (see Figure 1). Second, the secondary instabil-
ity is effective even for moderately low Reynolds numbers. Third,
its growth rate scales with the convective (not the dissipative)
parameters of the flow. Fourth, the instability seems to 1lead
directly to chaotic flows; at finite-amplitudes, there is no evi-
dence that the secondary instability saturates into ordered, laminar
flow states. Finally, the energetics of the instability is similar
to that of the secondary instability in wall-bounded shear flows;
the growing three-dimensional modes extract their energy from the
basic flow with the two-dimensional disturbance acting only as a ca-
talyst for this process. When the spatial scale of the disturbance
is too small, the instability is turned off because viscous dissipa-
tion becomes larger than the transfer from the basic flow into the
disturbance, the latter process being relatively independent of spa-
tial scale.

One main conclusion from our work is that transitional
processes may, in fact, be more complex for free-shear flows than
for non-inflectional flows (typical of wall-bounded situations).
With non-inflectional basic flows, the primary linear instabilities
grow on viscous time scales so they cannot compete with three-
dimensional secondary instabilities which grow on convective time
scales. However, for free shear flows, inviscid two-dimensional in-
stabilities exist that grow on convective time scales and, hence,
may compete effectively with the three-dimensional secondary insta-
bilities. With this competition, the evolution of free shear flows
in transitional regimes may well depend significantly on the past
history of the flow and on details of the environment in which the
flow occurs.
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"tqure 1. (a) A plot of the computed growth rate of the three-
dimensional secondary instability for a tanh-profile mixing layer
plotted as a function of spanwise wavenumber for various
Reynolds numbers R. The streamwise wavenumber is @& = 0.4 with
a = 1 in the mean velocity profile. Note that e instability
pergists up to gpanwise wavenumbers of order 1/3R*. (b) Same as
(a) , except that the plot is made for the sech-profile fjet with
a = 1 and streamwise wavenumber (Y = 1.5,




