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Linear hydrodynamic instability
of circular jets with thin shear layers

M. ABID *, M. BRACHET * and P. HUERRE **

ABSTRACT. — A new asymptotic expansion well adapted to the linear stability study of compressible jets
with thin shear layers is presented, The validity of the approximation is established by making numerical
comparisons with solutions of the full cylindrical Rayleigh equation. In particular helical modes are shown to
be asymptotically equivalent to three-dimensional disturbances of planar shear layers. When the Mach number
is zero Squire’s theorem is recovered in the limit of vanishing shear layer thickness, thereby establishing that
the axisymmetric mode is necessarily the most unstable. Finally the asymptotic expansion is shown to converge
on both the —o; and —o branches of the absolute convective transition that takes place when a small back
flow is added to the jet.

1. Introduction

The objective of this paper is to present an asymptotic approximation that is well
suited to study the linear stability characteristics of circular jets with velocity profile u(r)
and density profile p(r) varying significantly only inside a thin circular layer of radius R
and thickness 6. Thus we consider axisymmetric basic profiles of the form

(D u=u((r—R)/8),
) p=p((r—R)/0),

where r is the radial distance from the axis of the jet. The fast variable in the asymptotic
expansion is defined as £ =(r—R)/0, and the small parameter is the ratio of length scales
e=0/R.

The paper is organized as follows: in Section 2 the linear stability problem in cylindrical
geometry is demonstrated to be approximated at leading order in € by the usual Rayleigh
equation for planar shear layers. Section 3 is devoted to a numerical validation and
discussion of the results. The classical hyperbolic tangent velocity profile studied by
Michalke is used as a test problem, The linear stability characteristics of circular jets
with thin shear layers are shown to be well approximated by the eigenvalues of the
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corresponding planar problem for a wide range of values of €. Section 4 contains our
concluding remarks.

2. Asymptotic expansion

As discussed for instance by [Michalke, 1984), the cylindrical Rayleigh equation that
governs the linear instability of axisymmetric jets is given by

3) LP(r)=0,

where the L operator is defined as

2 2
@ L=§r~2+[%—2 ((f‘“ff))*(dpf’)] %—[az(l—Mz(u—c)ZP)+(?) ]

with the boundary conditions

(5) lim P()=lim L,(x /1—M?@—0o)?pr),
r—=0 r—o O

(6) lim P(r)=tim K, (x, /1-M*@u—c)pr),
. r—+0 r—=0

where I, and K, are the usual modified Bessel functions.

In the above formulation, the function P (¥) represents the pressure eigenfunction, u(r)
and p (r) respectively denote the mean velocity and density profiles, o is the wavenumber
of the disturbance in the basic flow direction, ® is the frequency and c=w/o 15 the
complex phase velocity. The integer m defines the azimuthal wavenumber and M the
Mach number.

The boundary conditions (5) and (6) are obtained by noting that both for r -0 and
r— oo the velocity and density profiles are constant and equation (3) reduces to the
Helmheoltz equation, the solutions of which are given by (5) and (6).

This eigenvalue problem with complex eigenfunctions P (r) can be formulated in two
classically distinct ways as shown for example by [Huerre & Monkewitz, 1990]. In the
spatial stability framework, the frequency of the perturbation @ and the azimuthal
wavenumber m are given real, i.e. the perburbation is harmonic in time, and the spatial
wavenumber o is a complex unknown, thus possibly giving rise to spatial growth. In the
temporal stability analysis, both components & and m of the wavenumber are given real,
i.e. the perturbation is spatially periodic, and the frequency « is complex, thus leading
to possible temporal growth.

Let us introduce the change of variables
(¢))] o= olg/E, m=p, R/, = Ogy/€.

This scaling is motivated by dimensional analysis: if U, denotes the centerline velocity,
we want to keep R and U, constant while letting £¢=60/R — 0. Wavenumber and frequency
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should scale as 8! and U,/0 respectively. The scaling for m is obtained by noting that
m/R should scale as a wavenumber component, in the same manner as d.

The operator L and the eigenfunction P can then be expanded as
(8 L=L,+0({g),
9 P&, £)=P,+ O (g).
At leading order in € one then obtains the following equation:
(m L,P,=0,

where the operator L, reads

_d [, (dude)y (dpldE) | d . a0 ae2p g2 2
(n Ly dE? |:2(u—co)+ > ]d& [0 (1 —M* (u—co)* p) + Bal,

and the boundary conditions (5) and (6), in the case m+0, reduce to

(12) lim Py(£)= lim P,(E)=0.

E— —a E— +ow
In the case m=0, (5) and (6) become

(13) im P,(E)=0 and lim Py(&)=1.

g0+ Lo -

Note that the boundary condition for & —» — oo should, strictly speaking, be applied at
k= —1/e. In the region £< —1/g, P, vanishes like exp [\/aﬁ (1—MZ(u—cy)*p)+ B3 &
and thus we can equivalently use equation (12).

At leading order in the asymptotic expansion, the equation described by the operator
L, is identical to the Rayleigh equation corresponding to a plane mixing layer [Djordjevic
et al., 1989] with a profile given by the jet profile expressed in the scaled variables. It is
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Fig. I. — A plot of the tanh velocity profile (equation (19) with R=1}):
dotted £=0.08, dashed £=0.04 and dotted dashed £=0.01.
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Fig. 2a. — Temporal growth rates w; versus wavenumber « for the m=0 axisymmetric mode of the constant
density, M=0, jet. Dotted £=0.08, dashed £=0.04, dotted dashed e=0.01. The solid curve is the leading
order asymptotic approximation.
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Fig. 2b. — Same as Figure 24 but frequency o, versus wave number <.

well known that for incompressible (M =0) mixing layers, in the case of temporal
instability, Squire’s theorem holds and equation (11) can be written:

(14) LP=o,

with

and

(16) a=(g+BH'?  o=(5+ B2 wo/op.
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Fig. 3a. — Spatical growth rate — oy versus frequency o for the same conditions as in Figure 2 ).
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Fig. 35. — Same as Figure 3 a) bul wavenumber o, versus frequency w.

This transformation shows that the most unstable mode is always two-dimensional.
Equation (11) thus implies that, in the limit of vanishing shear layer thickness for
incompressible jets, Squire’s theorem will be recovered, thereby establishing that the
axisymmetric jet mode, i.e. m=0, is then necessarily the most unstable. Note that in

general there is no known analogue of Squire’s theorem for axisymmetric jets [Batchelor
& Gill, 1962].

Let us close this section by indicating how the expansion could be continued to higher
orders. At order one we obtain:

an L,P,= —L,P,.
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Fig. 4a. — Temporal instability for variable density jets (equation (20) with R,=0.5): o, versus o, M =0,
m=0. Dotted &=0.08, dashed £=0.04, dotted dashed £=0.01. The solid line is the leading-order asymptotic
approximation.
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Fig. 4b. — Same as Figure 4 a but , versus .

The procedure to solve this equation is to use the solvability condition (Fredholm
alternative):

as) (L,P,, Pa>sf ¥ (L Py Py =0,

where the adjoint eigenfunction P} is defined by LY P}, =0 and L}, is the adjoint operator
of L,.
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Fig. 5a. — Spatial growth rate for constant density sonic M=1 jets: —u; versus .
Dotted £=0.08, dashed ¢=0.04 and dotted dashed £=0.01.
The solid line is the leading order asymptotic approximation.
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Fig. 5b. — Same as Figure 54 but «, versus w.

3. Numerical results

In this section the range of validity of the above approximation is examined for the
classical family of hyperbolic tangent velocity profiles first introduced by [Michalke,
1984

(19) u(r)={(Uy/2){1+ tanh (R—1)/20))}],
(20) po/p (N=Ry+(1 =Ry u(r)/Uy,
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Fig. 6a. — Temporal growth rate in the same conditions as Figure 24 for non axisymmetric modes. Dotted

m=13, ¢=0.08, dashed m=6, £=0.04, dotted dashed m=25, £=0.01. The solid line is the leading order
asymptolic approximation with i, =0.25.
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Fig. 6b. — Same as Figure 6 2 but o, versus o.

where Uy and p, are the centerline velocity and density, p,, is the density at r - + o0
and

(21) Ry=po/P -

In Figure 1 the velocity profile is represented for various values of 8/R.

The cylindrical equations (3), (4), (5) and (6), and the planar equations (10), (11) and
(12) for the Rayleigh stability problems are solved numerically by using a shooting
method in the complex « or w plane. In order to obtain eigenvalues that are inviscid
limits of corresponding viscous solutions of the Orr-Sommerfeld equation, we deform
the integration path in the upper half complex r or £ plane in the usual appropriate way
as described in [Drazin & Reid, 1981]. In this manner one avoids the singularity associated
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Fig. 7a. — Spatial growth rate — o, versus @ in the same conditions as in Figure 6a.
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Fig. 7. — Same as Figure 7a but o, versus .

with the critical point. Qur codes were validated by checking against the values published
in the literature.

As a first numerical test we have compared the solution of the complete cylindrical
Rayleigh equation at m=0, M =0, and constant density with that of leading order in
the asymptotic expansion. The results are displayed in Figure 2 for the temporal case
and Figure 3 for the spatial problem. Note that the overall features of the plots are
already in qualitative agreement for ¢ =0.08 but the quantitative values are quite different.
At £=0.04 the quantitative agreement is already much better. At €=0.01 the curves arc
indistinguishable.

In order to further test the asymptotic expansion, we checked that the quantitative
agreement with the exact results remains very good when the density is non constant
(Fig. 4) or when the Mach number is non zero (Fig. 5).

To check the asymptotic expansion for non axisymmetric disturbances we have kept
B, constant by changing the azimuthal wave number together with & (see equation (7)).
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Fig. 8a4. — Spatial growth rate versus frequency for the two branches —eo and —o; at R,=1.15 before the
absolute convective tramsition (M =0, m=0, p=cte). Dotted £=0.08, dashed £=0.04 and dotted dashed
£=0.01. The solid line is the leading order asymptotic approximation.
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Fig. 85. — Same as Figure 84 but at R, = 1.335, after the absolute convective transition.

The results are shown in Figures 6 and 7 for the temporal and spatial case respectively.
The agreement is again seen to be very good.

It is well known that linear flow instabilities can have a convective or absolute
character, the spatial stability theory being well suited in the former case and the temporal
theory in the latter. In a given flow that depends on some parameters, branch switching
in spatial stability calculations can be used effectively as an indication of a qualitative
change of the instability from convective to absolute [Huerre & Monkewitz, 1990]. As a
last test of the asymptotic expansion presented in this paper we have checked that it was
converging on both branches that are interchanged at the transition obtained when some
amount of back flow is added to the velocity of the jet. Replacing equation (19) by

(22) u(r)=(Uo/2)[1+R, tanh (R—r)/(29))},

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, VOL. 12, N* 5, 1993



INSTABILITY OF CIRCULAR JETS 693

where R, denotes the velocity ratio (Uy— U )/(Us+U,) with U being the outer flow
free stream velocity, one obtains a profile that reduces, in the asymptotic approximation
defined by equation (7), to the free shear layer profile studied in [Huerre & Monkewitz,
1985]. This profile is known to undergo an absolute convective transition at R,=1.315.
The convergence of the cylindrical Rayleigh soiutions to both free shear layer branches
—o; and —o is shown in the convective case in Figure 8 4 and in the absolute case in
Figure 8 b.

4, Conclusion

The simplified asymptotic linear stability theory that we have derived has been numeri-
cally shown to work well quantitatively in simple test cases at values of £ in excess of
1072, For the temporal instability of zero Mach number jets the asymptotic expansion
establishes that the most unstable mode is axisymmetric in the limit of vanishing shear
layer thickness, Furthermore when a little back flow is added to the mean jet velocity
profile, the asymptotic expansion is shown to work well before and after the absolute
convective transition.

Finally let us remark that there is an intuitive physical interpretation of the form of
our leading order linear operator L,. Indeed when one makes the change of variable
E=(r—R)/8 when 0/R — 0, the & coordinate of the central axis of the circular jet goes to
minus infinity. From the point of view of the £ coordinate the curvature of the shear
layer vanishes. One is thus effectively dealing in this asymptotic approximation with a
plane shear layer.
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