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We study decaying magnetohydrodynamics (MHD) turbulence stemming from the evolution of
the Taylor–Green flow generalized recently to MHD, with equal viscosity and magnetic
resistivity and up to equivalent grid resolutions of 20483 points. A pseudo-spectral code is used
in which the symmetries of the velocity and magnetic fields have been implemented, allowing
for sizable savings in both computer time and usage of memory at a given Reynolds number.
The flow is non-helical, and at initial time the kinetic and magnetic energies are taken to be
equal and concentrated in the large scales. After testing the validity of the method on grids of
5123 points, we analyze the data on the large grids up to Taylor Reynolds numbers of �2200.
We find that the global temporal evolution is accelerated in MHD, compared to the
corresponding neutral fluid case. We also observe an interval of time when such configurations
have quasi-constant total dissipation, time during which statistical properties are determined
after averaging over of the order of two turn-over times. A weak turbulence spectrum is
obtained which is also given in terms of its anisotropic components. Finally, we contrast the
development of small-scale eddies with two other initial conditions for the magnetic field and
briefly discuss the structures that develop, and which display a complex array of current and
vorticity sheets with clear rolling-up and folding.

Keywords: MHD; Turbulence; Alfvén waves; Universality; Symmetries; Current sheets folding

1. Introduction

Magnetic fields are present in many astrophysical and geophysical flows and are often
important energetically. Their origin – the dynamo problem, is ill-understood with
many different behaviors observed in nature; for example, the solar magnetic field
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evolves in time in a somewhat regular fashion, leading to the possibility of a prediction
of the amplitude and onset of the next cycle (Wang and Sheeley 2006), whereas the
terrestrial field has an erratic temporal behavior (Valet et al. 2005). The dynamo effect
had escaped experimental verification until recently, due to the difficulty of reaching a
sufficiently high magnetic Reynolds number for dynamo action to take place within a
turbulent flow at low magnetic Prandtl number as occurs in liquid metals used in the
laboratory; the study of such a field, as produced in the experiment, yields a wealth of
information close to the threshold for dynamo action (Monchaux et al. 2007). However,
the high-magnetic Reynolds number regime is still out of reach of the experimental
approach using fluids; yet, due to its nonlinearities, the full magnetohydrodynamics
(MHD) problem at high-kinetic and magnetic Reynolds number as encountered in the
sun, the solar-terrestrial environment or the interstellar medium, for example, is highly
complex with many multi-scale interactions.

It has been shown recently (Dar et al. 2001, Alexakis et al. 2005, Debliquy et al. 2005)
that such interactions are noticeably more non-local than in the fluid case, involving
widely separated scales. Moreover, several recent in situ observations in the magneto-
sphere and in the solar wind show the occurrence of highly energetic events due to the
reconnection of magnetic field lines (Hasegawa et al. 2004, Sundkvist et al. 2005, Nykyry
et al. 2006, Phan et al. 2006, Retinò et al. 2007), as well as rotational discontinuities
(Whang 2004). It thus becomes important to be able to study in detail the multi-scale
interactions in MHD, a pre-requisite to which is to have sufficient scale separation in the
fluid with high-kinetic and magnetic Reynolds numbers. In three spatial dimensions, this
represents a serious challenge from the numerical point of view, a challenge that will
necessitate all the power that the world-wide petascale effort is going to offer, and more.
There are many ways one can partially circumvent this difficulty, however; among them,
modeling plays a central role. Enforcing numerically the symmetries that a given flow
may have is one such way that we shall employ in this article. This allows for substantial
savings inmemory usage and in CPU time (although the Courant Friedrichs Lewy (CFL)
condition applies to the highReynolds number that will bemodeled this way). Using such
highly symmetrical fields – that are extensions to MHD of the Taylor–Green (TG) flow
studied first in the context of fluid turbulence (Brachet et al. 1983), we analyze the
properties of MHD turbulence for several configurations (see Lee et al. 2008 for more
details, and below) in a turbulent regime never explored before numerically in MHD in
the incompressible case at such high resolution (see Vahala et al. (2008), andKritsuk et al.
(2009) for the case of very high-resolution studies of compressibleMHD turbulence). The
next section gives a description of the initial conditions; the temporal behavior of the
insulating case (or IMTG hereafter) flow is given in section 3; spectral behavior and
structures are discussed in section 4, and finally section 5 gives the conclusion.

2. TG flows for MHD

The MHD equations for an incompressible flow of constant unit density with a velocity
v and magnetic induction b (in units of the Alfvén velocity) read

@v

@t
þ v � rv ¼ �rPþ j� bþ �"v; ð1Þ

@b

@t
¼ r � ðv� bÞ þ �"b; ð2Þ
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together with r � v¼ 0¼r � b; P is the pressure and j¼r� b the current density. In the

absence of viscosity � and resistivity �, the total energy ET¼hv
2/2þ b

2/2i¼EVþEM, the

total cross-correlation HC¼hv � bi, and the total magnetic helicity HM¼ha � bi

(where b¼r� a, with a the magnetic potential) are conserved in three-space

dimensions. The MHD equations can take a more symmetric form using the Elsässer

variables z�¼ v� b with HM and E�¼hjz
�
j
2/2i¼ET�HC as invariants. Ideal flows in

MHD have been studied numerically both in the two-dimensional case (see, e.g., Frisch

et al. 1983) and the three-dimensional case (Kerr and Brandenburg 1999, Lee et al.

2008) including using adaptive mesh refinement (Grauer and Marliani 2000), but in this

article we concentrate on the dissipative case with a regular grid and using a fully

parallelized pseudo-spectral code written specifically to implement the symmetries of

the flow (see below). Note that no uniform magnetic field is included in these

computations, and there are no forcing terms either.
The simplest TG flow can be written as (Brachet et al. 1983)

vðx; y; zÞ ¼ v0 ðsin x cos y cos zÞêx � ðcosx sin y cos zÞêy
� �

; ð3Þ

the velocity component in the third direction, equal to zero initially, will grow with

time. As usual, the kinetic and magnetic Reynolds numbers are defined as

RV ¼ v0L
0
V=� and RM ¼ v0L

0
M=�;

with L0
V;M;T, respectively, the kinetic, magnetic and total integral scales

L0
x ¼ 2�E�1x

R
½ExðkÞ=k�dk with x¼V, M, T; Ex¼

R
Ex(k)dk are the kinetic, magnetic

and total energy, respectively, with ET¼EVþEM.
Similarly, one can evaluate Taylor Reynolds numbers R�V;M;T based on the kinetic,

magnetic and total Taylor scales defined, respectively, as

�V;M;T ¼ 2�

R
EV;M;TðkÞdkR
EV;M;TðkÞk2dk

� �1=2

; ð4Þ

these scales can be viewed as a measure of the curvature of the field lines. The flow

is computed in a cubic box of length 2� with minimum and maximum wavenumbers

kmin¼ 1 and kmax¼N/3, respectively, with N the number of points in each direction

and using a standard 2/3 deliasing rule. The TG vortex given above can be put in

correspondence with the von Kármán flow between two counter-rotating cylinders as

used in several laboratory experiments, including in the case of liquid metals

(Bourgoin et al. 2002). The feasibility of dynamo action was shown numerically

down to magnetic Prandtl number PM¼ �/�� 10�3 using the TG flow in the

kinematic regime in a combination of direct numerical simulations (DNS) and

modeling (Ponty et al. 2005, 2007a, 2008), and a dynamo was recently obtained

experimentally (Bourgoin et al. 2007, Monchaux et al. 2007) using that configuration

(see Nore et al. (1997) for an earlier numerical study at PM¼ 1). The TG flow has

also been used numerically to study sub-critical bifurcations in the dynamo regime

(see, e.g., Ponty et al. 2007b), the hysteresis cycle being linked with changes in the

velocity field associated with the Lorentz force.
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Generalizations of the TG flow to MHD were presented in Lee et al. (2008), where
the ideal (�¼ 0¼ �) case was studied with initially the magnetic field taken as

bIx ¼ b0 cos x sin y sin z ð5Þ

bIy ¼ b0 sin x cos y sin z ð6Þ

bIz ¼ �2b0 sinx sin y cos z; ð7Þ

the velocity-magnetic field global correlation HC� 0 for this MHD TG flow and
remains so at all times because of the imposed symmetries, although it has been known
for a long time that there may be strong local correlations corresponding to local
alignment of the velocity and magnetic field (Passot et al. 1990). The magnetic induction
bI is everywhere perpendicular to the walls (and therefore the current j¼r� b parallel
to the walls) of the so-called impermeable box defined as [0,�]3; the impermeable box
thus appears to be insulating, and this flow is henceforth being named Insulating
Magnetic TG (IMTG) flow.

An alternate initial conditions for the magnetic field, BA hereafter, is insulating as well:

bAx ¼ bA0 cos 2x sin 2y sin 2z; bAy ¼ �b
A
0 sin 2x cos 2y sin 2z; bAz ¼ 0;

with again zero total cross helicity. Finally, one can also construct a set of initial
conditions, labeled ‘‘conducting’’ (the current being perpendicular to the
impermeable box)

bCx ¼ bC0 sin2xcos2ycos2z; bCy ¼ bC0 cos2xsin2ycos2z; bCz ¼�2b
C
0 cos2xcos2ysin2z:

In this latter configuration (BC hereafter),HC is non-zero but very weak (less than 4% at
its maximum, in a dimensionless measure of correlation, relative to the total energy),
whereas the magnetic helicity is zero in all three configurations. The parameters v0, b0, b

A
0 ,

and bC0 are chosen so that at initial time, the kinetic and magnetic energies are equal with
ET¼ 0.25.

Within the periodic cube of length 2�, mirror symmetries about the planes x¼ 0,
x¼�, y¼ 0, y¼�, z¼ 0, and z¼� are present and will be enforced numerically,
together with rotational symmetries of angle N� about the axes (x, y, z)¼ (�/2, y,�/2)
and (x,�/2,�/2), and of angle N�/2 about the axis (�/2,�/2, z) for N2Z (see Brachet
et al. 1983 for more details). Note that the flow has several nulls (three components
equal to zero): the central point to the impermeable box N1¼ (�/2,�/2,�/2), and the
planes P1¼ (x, 0, 0), P2¼ (0, y, 0), and P3¼ (0, 0, z). Partial nulls (one or two
components equal to zero) also occur; they may be as well the sites of formation of
strong current sheets and thus of reconnection events.

3. Temporal behavior of the insulating TG flow (IMTG)

3.1. Is a symmetric run faithful to the full dynamics?

The numerical method we employ in this article is based on the assumption that the
implementation of the TG symmetries will not alter the overall evolution of the flow.
We show in figures 1 and 2 that this is indeed the case, at least at the grid resolution
employed for this test, using 5123 points. The data is taken at the peak of dissipation for
t¼ 5, once the turbulence is fully developed.

118 A. Pouquet et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
r
a
c
h
e
t
,
 
M
a
r
c
]
 
A
t
:
 
1
4
:
3
5
 
1
 
A
p
r
i
l
 
2
0
1
0



The first test we performed is to check the extent of the validity of the two exact laws

that can be written in MHD in terms of third-order structure functions (Politano and

Pouquet 1998) under several assumptions (isotropy, homogeneity, statistical stationar-

ity, high Reynolds number, and incompressibility). In dimension three, they read

h�vL ð�viÞ
2
i þ h�vL ð�biÞ

2
i � 2h�bL �vi �bii ¼ �

4

3
�T r; ð8Þ

�h�bL ð�biÞ
2
i � h�bL ð�viÞ

2
i þ 2h�vL �vi �bii ¼ �

4

3
�C r; ð9Þ

these laws can be written in a more compact form, using the Elsässer variables

z�¼ v� b, with associated energies E�:

h�z	L ðrÞ ½�z
�
i ðrÞ�

2
i ¼ �

4

3
��r; ð10Þ

P
D

F

(a) (b)

Figure 1. (a) Flux-law for the zþ¼ vþ b variable (equation (10)), compensated by ‘: the exact law appears as
a horizontal line. In these units, the dissipative length is ‘D� 0.13. (b) Probability distribution function (PDF)
of cos[v � b]. In both plots, the full DNS is drawn with a solid line and the symmetric run with diamonds, and
both computations are performed on grids of 5123 points; data for both figures is displayed near the peak of
dissipation, at t¼ 5 (see figures 3 and 4 below for temporal evolutions).

Figure 2. Visualization (VAPOR software, Clyne et al. 2007) of the current density inside the [0, �]3 box for
runs on grids of 5123 points; full DNS (a) and code with symmetries (b). There is also a strong current sheet
on the walls (not shown).
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where ��¼ �T� �C are the energy transfer rates of E�, and �T and �C the rates for total
energy and velocity–magnetic field correlation. These laws are nothing more than the
expression of conservation laws, i.e. the invariance of quadratic functionals of the fields
under the ideal MHD dynamical equations; as usual, �fi(r)¼ fi(xþ r)� fi(x) is the
difference for the ith-component fi of the field f and fL is its longitudinal component, i.e.,
the vector field projected on the direction r along which the difference is taken. The laws
in terms of the Elsässer fields show that the two invariants, E� or equivalently ET and
HC, are coupled; this leads to a double direct cascade towards small scale. In terms of
the velocity and magnetic field, it shows that the conservation of HC is on equal par
with that of total energy ET and that a priori two time scales can be expected to play a
role in MHD dynamics, associated with the two invariants which are known to provide
a partition of phase space (together with magnetic helicity), as shown in Stribling and
Matthaeus (1991).

We see in figure 1(a) that the flux law is verified on a small interval of scales,
representing the inertial range at that grid resolution of 5123 points, and that the full and
symmetric runs give identical results. Similarly, when comparing the probability
distribution functions (PDFs) of the alignment between the velocity and the magnetic
field, as measured by the cosine of the angle between the two vectors, again no distinction
can be made between the full and symmetric run: they both have a central peak
(corresponding to orthogonality of v and b) due to a persistence of initial conditions (not
shown), and a dynamical tendency toward alignment, as observed in many MHD flows
(see for a recent discussion, Matthaeus et al. 2008, Servidio et al. 2008). Finally, a three-
dimensional snapshot of the current density (figure 2) for the whole computational box at
the peak of dissipation shows that the same type of structures appear in configuration
space, with a predominance of sheets, some with strong curvature.

3.2. Energetics of the IMTG flow

We now describe the overall energetics of the IMTG initial condition given in equations
(5)–(7) in the presence of dissipation at high Reynolds number. At first, the ideal
behavior analyzed in Lee et al. (2008) is recovered with an exponential decay of small
scales corresponding to the formation of current and vorticity sheets, and a quasi
conservation of total energy, even though an exchange between the kinetic and
magnetic energy EV and EM is occurring as can be seen in figure 3; this exchange can be
related to an Alfvénic effect based on the large-scale magnetic field (recall that there is
no imposed uniform field in these runs). The energy ratio EM/EV is larger than unity at
all times for this flow; a similar evolution obtains for the alternate flow BA whereas, in
the case of the conducting flow BC, the ratio is smaller than unity after a short transient
(see table 1 for more details). When displaying the temporal evolution in log–log
coordinates for the total energy of the IMTG flow, an approximate power-law decay
can be observed for a short time, with an index clearly smaller than what a Kolmogorov
analysis would give: the energy decay in the Navier–Stokes case is expected to vary as
(t� t*)

�10/7 with t* a characteristic time of decay of the energy, of order unity here given
our initial conditions; however, in the case of the TG fluid flow, it has been found
(Brachet et al. 1983) that energy decay follows a (t� t*)

�2 power-law, a law that can be
recovered phenomenologically using an argument based on the fact that the integral
scale cannot grow in the TG flow used here because the initial conditions are centered
on the largest available scale (Cichowlas et al. 2005).
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Slower temporal behavior in MHD, compared to the pure fluid case, has been
observed by a number of authors (Hossain et al. 1995, Kinney et al. 1995, Galtier et al.
1997, 1999, Bigot et al. 2008). It can be attributed to the slowing-down of energy
transfer to small scales due to the interactions between waves and turbulent eddies as
modeled originally by Iroshnikov (1963) and Kraichnan (1965) (hereafter IK) under the
simplifying assumption of global isotropy (see Goldreich and Sridhar (1997), and Ng
and Bhattacharjee (1997), for a straightforward extension of that phenomenology to the
anisotropic case). This slowing-down can be understood when writing the MHD
equations in terms of the Elsässer variables z�¼ v� b: the nonlinearities involve the
products z� � rz�, but there are no self interactions (zþ zþ or z� z�). In MHD, following
the same phenomenology as Kolmogorov but taking into account the effect of Alfvén
waves, the temporal decay of energy can be shown to become, in three

(a) (b)

Figure 3. (a) Total (solid), kinetic (dot), and magnetic (dash) energies as a function of time for the IMTG
flow; equivalent grid of 20483 points, Taylor Reynolds number of R�
 2200; note the excess of magnetic
energy at all times, and the slow decay of the energy compared to the fluid case. (b) In log–log coordinates, the
total energy decay appears to follow a weak power law.

Table 1. Parameters of the runs described in this article.

Run RV R�M �kmax EM/EV �E2 �EI �E� �M/�V Smax
k S final

k

I1 800 110 1.9 2.7 19 7 2 5.7 1.5 1.15
I6 2.3� 104 2200 2.2 6 3 28 18 6.1 2.8 1.15
A2 1200 160 2.1 1.5 0.3 1.9 1.8 2.2 2.2 0.6
A6 2� 104 900 3 1.9 0.4 2.2 1.6 4.4 2.2 0.8
C2 1200 100 0.8 0.35a; 0.09 1.2 1.7 2b 2.1 0.55
C6 2� 104 900 2.8 0.65a 0.06 2.2 1.5 3b 2.8 1.6

The type of run (IMTG, BA or BC) is indicated respectively as I, A or C, with run ‘‘1’’ or ‘‘2’’ for computations at a grid
resolution of 1283 points, and runs labeled ‘‘6’’ on equivalent grids of 20483 points. All flows have equal kinetic and magnetic
energy EV¼EM¼ 0.125 at t¼ 0; viscosity for run I1 is 2� 10�3, for runs A2 and C2 , it is 10�3, and for runs I6, A6, and C6, it
is equal to 6.25� 10�5, with in all cases �¼ �. RV and R�M are, respectively, the Reynolds number at initial time and the
magnetic Taylor Reynolds number at the final time of the computation; � is the logarithmic decrement whose expression is
given in equation (12); it is evaluated here on the total energy spectrum; kmax is the maximum wavenumber, with N the linear
number of points in the grid (here, 128 or 2048). The ratio of magnetic to kinetic energy EM/EV is the maximum value reached
by this ratio as it evolves with time (excluding t¼ 0). The magnetic to kinetic modal ratio �Ex ¼ EMðkxÞ=EVðkxÞ is evaluated as
an average over of the order of two turn-over times after the peak of dissipation, with x¼ 2, I and � for wavenumbers
k ¼ 2; kIM and k�M, respectively, kI;�M being the magnetic integral and Taylor wavenumber (equation (4) for the associated
length scales). Similarly, �M/�V¼h jjj

2
i / h jxj2i is the maximum value attained by the ratio of magnetic to kinetic dissipation

over time (recall that �¼ �). Finally, Smax
k and S final

k are the skewness evaluated on the velocity field at the time of maximum
dissipation and the final time, respectively.
aNote that in the case of the BC runs, the ratio of total magnetic to kinetic energies are given at their minimum value in time
(this global ratio never goes above unity as time evolves).
bFor the BC enstrophies, the values are those at the first maximum after the initial time.
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dimensions 
(t� t*)
�5/6 under such assumptions. Note that a further slowing-down of

energy decay may stem from the presence of a strong large-scale field, as shown recently

in the context of anisotropic MHD (Bigot et al. 2008), with now a decay 
(t� t*)
�2/3.

However, the slowing-down observed here, with E(t)
 (t*� t)�0.3, is even more

important. The origin of this behavior is not known. It may be related to the strong

(relative) increase of magnetic energy, with EM/EV reaching a maximum 
4 at t¼ 2.5

and decreasing steadily thereafter to a value close to 1.5 at the end of the run; this may

entail a faster decay at later times that could only be observed at higher Reynolds

numbers, although this peak in the magnetic to kinetic energy ratio augments

monotonically with Reynolds number, from EM/EV
 2.5 for R�
 120 (see also table 1).

This slow decay could also be due to the local alignment between the velocity and

magnetic field although the total correlation remains weak in relative terms (less than

4%). Tendency toward alignment of the vector fields v and b is obtained in many

observational and numerical MHD flows as mentioned earlier (Matthaeus et al. 2008,

and references therein); it weakens the nonlinear terms responsible for the decay of

energy at high Reynolds number; indeed, slow decay can be observed in the presence of

strong and global correlations (Galtier et al. 1999). Another feature specific to the

IMTG flow is that, at t¼ 0, the magnetic field and the vorticity are identical

(and anti-parallel). Such is not the case for the other two flows studied in this article, for

which a faster decay is obtained with the total energy varying as (t� t*)
�1.05, although

still slower than for the pure fluid TG case. Obviously, higher resolutions would be

needed to clarify this point for the IMTG flow since it would allow for a larger temporal

range in the self-similar decay of the energy before the energy and thus the Reynolds

numbers drop too significantly.
When examining the temporal evolution of the maxima of the current (dash line) and

the vorticity (dotted line), given in figure 4(a), we observe that the first initial

exponential phase is ideal and corresponds to the thinning of current and vorticity

sheets due to large-scale shear; this phase is interrupted rather abruptly at t� 2.5 by

another phenomenon that now evolves more rapidly and corresponds to the quasi-

collision of two current sheets, pushed together by the contribution of the Lorentz force

to the magnetic pressure on either sides of the sheets (see also figure 9 in the next

section). This is still in the ideal non-dissipative phase and gives rise to a quasi

(a) (b)

Figure 4. (a) Maxima of the current (dash line) and vorticity (dotted line) as a function of time, with a slight
excess of the former. (b) Temporal evolution of dissipation (kinetic, dotted line, magnetic, dash line, and total,
solid line) as a function of time. Note the plateau first reached around t� 3.5 and lasting for a couple of eddy
turn-over times, and subsequent peaks likely associated with reconnection events of current sheets.
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rotational discontinuity (Lee et al. 2008) which is then arrested, around t� 2.65, by
dissipation setting in at the smallest scales. The dissipative phase in the sup norms can
be seen as somewhat chaotic but a characteristic feature emerges, that is that the ratio
of jjjmax/jxjmax remains approximately constant, including at the latest time of the
computation when roughly 28% of the energy has already been lost to dissipation. This
is somewhat reminiscent of the constancy of the cancellation exponent 	 in a turbulent
flow (Graham et al. 2005), where 	 measures by how much the change in sign of (say)
the magnetic field at a given scale varies with scale; it can be attributed to the fact that
in the self-similar decay of energy, as long as the Reynolds number remains sufficiently
large, the complexity of the flow (as measured for example by 	) remains approximately
the same even though the energy itself does decay, at an algebraic slow rate.

Figure 4(b) shows the total generalized enstrophy �T
¼hjxj2/2iþ hjjj2/2i (solid line)

proportional to energy dissipation since �¼ �, as a function of time, as well as its kinetic
(dots) and magnetic (dash) components. After an initial exponential growth, the IMTG
flow displays a sizable plateau during which the dissipation of energy remains quasi-
constant, and thus during which temporal averages can be performed in order to study
with greater accuracy the statistics of the flow such as its spectral behavior (see below).
Again, the small scales are dominated by the magnetic structures; also note the presence
of later maxima at t� 5 and t� 7, probably a sign of renewed reconnection events of
magnetic field lines; the second peak around t¼ 5 appears at this resolution but is
barely perceptible at lower Reynolds numbers.

This is corroborated by the examination of the ratio of magnetic to kinetic excitation
for several moments of the fields displayed in figure 5(a); these ratios are defined as

Rn ¼

R
k2nEMðkÞdkR
k2nEVðkÞdk

; ð11Þ

and can be related to the respective Sobolev norms. There is a systematic overshoot of
magnetic excitation, a well-known feature of turbulent flows, for example, often
observed in the solar wind for the energy ratio R0; it may possibly be due to the fact that

(a) (b)

Figure 5. (a) Temporal variation of the magnetic to kinetic ratios of the first three moments of the basic
fields (equation (11)) with n¼ 0, 1, 2 represented with a solid, dash, and dotted lines, respectively. All display
an excess of magnetic excitation, with an earlier peak for those moments involving derivatives and
corresponding to an abrupt acceleration in the development of small scales in that flow. (b) Temporal
variation as a function of Reynolds number (and thus grid resolution) of total dissipation for the IMTG flow
from a grid of 1283 points (long dash) to 20483 (dots) in lin–log coordinates; the inset in log–log coordinates
gives the first peak of dissipation as a function of RV; note the tendency for it to slowly decrease with
Reynolds number for the IMTG flow.
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turbulent magnetic resistivity is known to be less efficient than turbulent viscosity
(Pouquet et al. 1976), a phenomenon modeled through the use of second-order closures
of turbulence. Small-scale structures are dominated as well by magnetic excitation to a
somewhat lesser extent as n increases and with an earlier peak at t� 2.5 when the first
strong current structure has formed (Lee et al. 2008; figure 9). Furthermore, Rn! 1 as n
increases (and also as time elapses). This could be interpreted as being due to the fact
that, as we increase the weight of the small scales, these global averages get to be
dominated by a few localized events in space that tend to be similar in their physical
structure.

The variation of total dissipation with time of the IMTG flow is given in figure 5(b) in
lin–log coordinates for several Reynolds numbers. We observe that the initial phase
shows less dissipation when the viscosity is reduced (from 2� 10�3, long dash, to
6.25� 10�5, solid line), with runs on grids of 1283 points to 20483 points, and with two
different runs at the largest resolution. The inset gives, in log–log coordinates, the
variation with Reynolds number of the first temporal maximum of dissipation at the end
of the ideal phase; for this flow, there seems to be a steady (power-law) decrease of
dissipation, although constant energy dissipation is observed in MHD turbulence with
the BA,C flows, as well as in a full numerical simulation using a Beltrami flow (Mininni
and Pouquet 2007). The question of finite dissipation in the limit of infinite Reynolds
number in MHD will thus need further study at higher Reynolds number; indeed, one
difference in behavior between the IMTG and BA,C flows is the aforementioned
observation of a very slow decay of energy for IMTGwhen contrasted to the other flows.

4. Spectra and structures for the IMTG flow

4.1. Energy spectra

We show in figure 6(a) the total isotropic energy spectrum, compensated by k2 (top
curve), k5/3 (middle curve) and k3/2 (bottom curve), computed at t¼ 4 close to the first
peak of dissipation; these compensations correspond, respectively, to a weak turbulence
(WT) spectrum (Galtier et al. 2000, 2002, 2005), to a Kolmogorov (1941) spectrum

(a) (b)

Figure 6. Total energy spectra compensated by km, with m¼ 2, 5/3 or 3/2 (see labels) for the IMTG flow. (a)
instantaneous total energy near the maximum of dissipation. (b) Total energy spectra averaged in the plateau
of dissipation, t2 [3.5, 5]. Note that in the figure at right, the spectra are also averaged between adjacent shells
in order to get rid of the even–odd oscillations due to the specific structure of the TG configuration. A clear
k�2 spectrum emerges from this analysis for the total energy of the IMTG flow.
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(hereafter, K41), and to an IK spectrum. Issues relating to anisotropy are discussed
further below. The spectrum is instantaneous and it is computed for the run on a grid
corresponding to 20483 points. Although even at such a resolution, it may be hard to
discern spectral laws, the WT spectrum seems to be fulfilled better; figure 6(b) is the
same as figure 6(a), but now the data is averaged over the plateau of energy dissipation
discussed previously and over adjacent shells; a k�2 law emerges clearly when temporal
averaging is employed. Note that the kinetic and magnetic integral scales for the IMTG
flow I6 (see table 1) are, respectively, 1.61 and 1.95, the Taylor scales are 0.32 and 0.42
and the Kolmogorov dissipation scales 0.03 and 0.02. These values obtain from a
temporal averaging between t¼ 4.5 and t¼ 5, over 21 snapshots; we thus conclude that
the flow is well resolved since the dissipation scale is measurably larger than the grid
spacing, and that the inertial index for the total energy is a nonlinear effect, followed by
a sizable dissipation range. Further, we note that the Alfvén time is 3.3 times shorter
than the eddy turn-over time at the integral scale, and is almost 14 times smaller at the
Taylor scale, consistent with the fact that the spectra show no K41 behavior, the
transfer time of energy through nonlinear mode coupling being affected by Alfvén wave
propagation.

In the case of WT, it has been known for a long time that the flow becomes
anisotropic under the influence of a large-scale (uniform) magnetic field B0 – a
phenomenological description of the influence a large-scale magnetic field can have on
the anisotropic dependence of spectra (Goldreich and Sridhar 1997, Ng and
Bhattacharjee 1997) yields, by a simple generalization of the IK reasoning, to a k�2?
spectrum, as confirmed by theoretical developments (Galtier et al. 2000).

WT has been observed in the magnetosphere of Jupiter (Saur et al. 2002), and more
recently in a large numerical simulation (Mininni and Pouquet 2007); there are also
recent CLUSTER observations in the plasma sheet (Weygand et al. 2005) that strongly
favor a k�2 spectrum, for which a shock-related origin seems to be ruled out, contrary
to the case of the Solar Wind (Roberts and Goldstein 1987, Burlaga 1991). Numerous
numerical studies of two-dimensional MHD turbulence, which can be regarded as a
simple model of MHD turbulence in the presence of a strong magnetic field, have been
performed in the past, including in its intermittency properties (see, e.g., Sorriso-Valvo
et al. 2000). The extension of this work to the study of non-Gaussianity of weak MHD
turbulence is left for future work.

In the absence of a uniform field, the local mean field at large scale can play an
equivalent role as far as the small scales are concerned, provided there is sufficient scale
separation between the two, leading to a strong energetic difference between the largest
and smallest scales by several order of magnitudes. High-resolution runs provide, to
some extent, such a scale separation and we now analyze the flow in these terms
following the procedure developed previously (Mininni and Pouquet 2007) and
applying it to the magnetic energy spectrum: specifically, one averages the magnetic
field in a sphere of diameter the magnetic integral scale, and defines, locally, the
perpendicular and parallel dependence of structure functions with respect to that locally
averaged field. The result can be found in figure 7 with the second-order structure
function of the magnetic field displayed in terms of its perpendicular (solid line) and
parallel (dotted line) components, and both compensated by ‘ (i.e., corresponding to a
k�2?;k spectrum); these functions are plotted at t¼ 5, at the second peak of dissipation (see
figure 4). A convincing WT scaling again appears in the large scales for the energy, in
terms of l?, starting roughly at the magnetic Taylor scale (�M
 0.42), whereas the
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smallest scales follow a regular behavior as given by a Taylor expansion, again a
testimony of the fact that the flow is well resolved. The structure function in terms of its
variation with lk, regular again in the smallest scales, has a more chaotic behavior in the
large scales and does not seem to follow a clear power law. It should be noted that the
theory for weak MHD turbulence does not give any dependence on ‘k, which thus may
arise from higher-order developments. Considering the phenomenology proposed by
Goldreich and Sridhar (1995), of a scale-independent equilibrium between the
timescales for nonlinear eddy turn-over time and the Alfvén time, is a further step in
the description of such flows, a point that will be studied in the future (Lee et al. 2009).

Several other features in these plots are noticeable. First of all, the magnetic field is
dominated energetically at all scales by its parallel component, a feature likely
dependent on both the initial conditions and the intrinsic dynamics of the flow.
Furthermore, the ratio of the parallel to perpendicular structure function is somewhat
constant at large scale, and thus it appears that there is similar transfer at large scales
(scales larger than the magnetic Taylor scale) in the perpendicular and parallel
components of the energy spectrum; this confirms the finding of Mininni and Pouquet
(2007) where, due to initial conditions that are strongly isotropic, the large-scale
spectrum remains isotropic down to the magnetic Taylor scale, and only becomes
compatible with WT at scales smaller than �M.

4.2. Small-scale structures

The abrupt transition in the scaling behavior of the second-order structure function of
the magnetic field just discussed takes place close to the dissipation scale, and this can
be viewed as being indicative of the formation of sharp structures in configuration
space. We give in figure 8 a perspective volume rendering, zooming on different
structures of the IMTG flow at time t¼ 5. The opacity for the plots is such that only
features above a few r.m.s. value are displayed. Figure 8(a) is a current sheet which has

Figure 7. Perpendicular (solid line) and parallel (dotted line) components of the second-order structure
function of the magnetic field, compensated both by ‘; ? and k refer here, in the absence of an imposed
magnetic field, to the direction of a locally-averaged magnetic field, in a sphere of diameter the magnetic
integral scale. Note that the perpendicular structure function follows a law S2,?
 l over roughly a decade in
scales, corresponding to a WT regime (Galtier et al. 2000). Similar results are obtained for the velocity.
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formed a roll – the blue and purple lines indicate magnetic field lines which display the
formation of a cusp-like feature close to the core of the rolling current sheet; this roll is
roughly �/20 across, which seems typical when one examines other current sheets in the
computational box, with some variation in transverse size and with a length of the order
of the magnetic integral scale. In figure 8(b), the vorticity is plotted at the same time and
at the same location in space. This confirms earlier findings (Mininni and Pouquet
2007) of strong correlation between the velocity and magnetic field in the small scales
(as characterized by the behavior of vorticity and current), even though the global
correlation remains small (of the order of a few % as mentioned before); this implies
that, with weak nonlinear terms in such structures, they will survive for a time of the
order of an eddy turnover time or more, similar to the case of a fluid within which the
vortex filaments display a strong correlation between velocity and vorticity. Note that
the curl of the Elsässer variables, x�¼x� j, are also co-located, with a (local)
dominance of jx�j by 36%.

In figure 8(c), a zoom in the current is shown, at a different location, with a small-
scale wave-like structure in the sheet; this time with a characteristic scale rather like
�/50, still well-resolved numerically. These results confirm the instability, at high
Reynolds number, of vorticity, and current sheets that form into rolls; it also shows,
possibly for the first time in DNS of MHD, a small-scale undulating structure likely
linked to a Kelvin–Helmoltz instability, but at a slightly different scale than the rolls on
the left. Such Kelvin–Helmoltz instabilities have been observed in the magnetosphere
(see, e.g., Hasegawa et al. 2004, Nykyri et al. 2006) in a much more complex physical
settings than what is being studied here, with compressibility, boundary, and plasma
kinetic effects, in particular. The occurrence of a Kelvin–Helmoltz instability of current
sheets has been widely studied in the presence of an imposed shear (see, e.g., Knoll 2002,
2003), but it has being obtained only recently numerically in three dimensions in a fully
turbulent incompressible MHD flow. Recent results using the piecewise parabolic
method for supersonic MHD turbulence also show curved current sheets, in a series of
studies performed in the context of modeling the interstellar medium (Kritsuk
et al. 2009).

One of the issue concerning the development of structures in a turbulent flow is to
what degree the relevant vector fields are aligned; indeed, the nonlinearities in the MHD

Figure 8. Perspective volume rendering of a zoom on the intensity of the current (a), the vorticity (b) and
another sub-volume for the current (c), all taken near peak of dissipation for the IMTG flow on a grid of
20483 points, with a Taylor Reynolds number of 
2200. Note the curved vorticity and current sheets that are
highly correlated spatially, and the sharp rolling-up of field lines in the current sheet. In (c), it is shown that
the Kelvin–Helmoltz instability of the current sheet (in a different sub-volume of the flow) can occur with
different wavelengths. Bubbles in the current are also observed at times (not shown).
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equations can be written in term of the Lamb vector v�x, the Lorentz force j� b, and
Ohm’s law v� b. It can be shown that the primitive equations lead to an enhancement
of the alignment between such vectors when they involve invariants such as the kinetic
helicity (in the pure fluid case) or the cross-correlation between the velocity and
magnetic field; such a local (as opposed to global) spatial alignment between the
velocity and magnetic field is clearly observed both in the solar wind (using Ulysses
data) and in DNS (Matthaeus et al. 2008, Servidio et al. 2008). In the case of the flows
studied in this article, alignment obtains again, but with also a peak in the PDF at
orthogonality of vectors, a feature directly linked to the chosen initial conditions.
However, a more detailed analysis reveals that the Lorentz force retains its full strength
in all our TG runs (particularly so for the BA flows), in sharp contrast with the results of
Servidio et al. (2008); moreover, the IMTG and BA flows both show a tendency toward
Alfvénic alignment (v jj b) while retaining a peak at orthogonality due to initial
conditions (see figure 2a), whereas the BC flow displays a rather flat PDF, in contrast to
the other two flows. Such alignment properties are not likely due to the enforcement of
symmetries: figure 2(a) gives the same data for the symmetric run (solid line) and the
full DNS (circles) on a resolution of 5123 grid points, with no discernable discrepancy.

4.3. Comparative behavior of the three initial conditions

We have emphasized the properties of the IMTG flow until now. In this section, we
want to examine briefly the development of small-scale turbulence for the other two
types of initial conditions that we have written in section 2 for a symmetric TG MHD
code; table 1 summarizes several of the features of such flows, for the lowest to the
highest Reynolds numbers.

One possible way to monitor the development of small scales is to examine the
temporal development of the logarithmic decrement. The isotropic total energy
spectrum ET (k, t) defined in the usual manner by averaging in spherical shells of width
�k¼ 1 can be fitted with the following functional form (Sulem et al. 1983)

ETðk; tÞ ¼
1

2

Z jkjþ1
jkj

ð½vðk; tÞ�2 þ ½bðk; tÞ�2Þ d3k ¼ CðtÞk�nðtÞe�2�ðtÞk: ð12Þ

The so-called logarithmic decrement � is a measure of the smallest scale reached by the
flow at a given time and can be compared to the grid resolution 3/N (taking aliasing
into account); this criterion thus allows for measuring the accuracy of the computation
at any given time, comparing � and 3/N. The analysis of the temporal evolution of � was
performed in the ideal (non dissipative) case both in two dimensions (Frisch et al. 1983)
and in three dimensions (Lee et al. 2008). In the latter case, it is found to decay
exponentially �(t)¼ �0e

�t/
i, with two different values of 
i corresponding to two
different ideal instabilities: first, a classical thinning of current and vorticity sheets
occurs, due to the large-scale effect of shear; this phase is followed by a faster near-
collision of two near-by current sheets, due to a favorable magnetic pressure gradient
associated with the Lorentz force. The computation in the ideal case has to be stopped
once �
 3/N; but in the dissipative case, the run can be continued for long times
provided the viscous and resistive terms are strong enough to arrest the process of
formation of features at scales smaller than 3/N.
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In this context, we now examine the temporal behavior of the logarithmic decrement

in the dissipative case (figure 9). This evolution was studied for the IMTG flow in the

non-dissipative case (Lee et al. 2008) and showed a substantial acceleration of the

decrease in � for t� 2.65, an evolution that is also observed here (solid line). Both in

the ideal and dissipative case, this acceleration can be attributed to a change in the

strong current structures: whereas before tc
 2.65 the decrease of � corresponds to the

thinning of current sheets, around tc, the distance between the two strong current sheets

in the flow becomes the smallest length scale of the problem, and decreases fast because

of the magnetic pressure due to the Lorentz force (Lee et al. 2008). The other two flows

do not have this feature and the decrease of the logarithmic decrement in these cases is

the usual thinning process of sheets. For all three flows, once dissipation sets in, the

decrease in � is stopped, close to but at a scale slightly larger than the minimum scale

resolved by the code, with �kmax� 2. Similarly, only for the IMTG flow is this

substantial acceleration of the development of small scales discernible in the evolution

of the normalized third-order moment of the velocity and magnetic field derivatives

(figure 10). Note that these moments systematically reach higher values than in the pure

fluid case, and that one finds for all three flows higher values of the velocity skewness

compared to its magnetic counterpart. Note also that the development of small scales

appears more rapid for the BA,C flows, since they reach their plateau in � at an earlier

time (�2) than for the IMTG flow.
The three types of runs studied here have almost identical initial conditions, from an

ideal point of view: same energy, same equipartition at t¼ 0 between kinetic and

magnetic energy, same zero magnetic helicity, same weak correlation between the

velocity and the magnetic field (0 to 4% in relative terms). They also have the same type

of structures in the current and vorticity, with sheets and rolls. Their global behavior

appear similar, and the acceleration of the decrease of � for the IMTG flow appears like

a geometrical effect of the juxtaposition of two current sheets with the right pressure

gradient that pushes them together. However, these three initial conditions do differ in

Figure 9. Temporal evolution of the logarithmic decrement � (see equation (12) in units of maximal
wavenumber kmax for runs I6 (solid line), A6 (dash line) and C6 (dotted line), showing that each run is well
resolved. See table 1 for the nomenclature of the runs. The plot shows an abrupt event for t� 2.5 for the I6
flow (earlier for the magnetic skewness), also observed in the ideal phase and associated with a rotational
(quasi)-discontinuity due to the collision of two current sheets.
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some aspects of their dynamics. For example, for the IMTG runs, the magnetic to
kinetic energy and enstrophy ratios are all larger than unity, particularly so at k¼ 2
(and the length scales built on the velocity are smaller than those build on the magnetic
field). For the BA runs, the kinetic and magnetic variables are close to being in balance,
whereas in the BC case it is now the kinetic quantities that dominate. The strongest
difference between the three flows is the dynamics of the low-k modes, whereas, for all
runs, there is an excess of magnetic energy for k � kMI , with kMI the magnetic integral
wavenumber (table 1). These issues are being examined further in another article (Lee
et al. 2009): these differences of behavior can be linked to different energy spectra that
result from the intrinsic dynamics of the flow, with the IMTG flow following a WT
dynamics (Galtier et al. 2000, 2002), and the BA and BC flows following, at the peak of
dissipation, a K41 and an IK laws, respectively.

5. Discussion and conclusion

In this article, we have implemented numerically the symmetries of the TG flow
generalized to MHD and have thus been able to study the dynamics of MHD
turbulence at higher Reynolds number than what can be reached until now in a full
DNS computation. We checked that no spurious error develops when using such codes,
and we have explored the properties of three types of initial conditions, stressing the
evolution in one particular case, the IMTG flow. We show that this flow develops an
energy spectrum, ET (k)
 k�2, which is in agreement with the prediction of weak MHD
turbulence, the spectrum being obtained as well for ETðk?Þ 
 k�2? . More detailed
analysis of the other two sets of initial conditions that follow the symmetries of the TG
flow can be found in Lee et al. (2009).

In the study of MHD turbulence and of the dynamo problem, the TG flow has
proved quite useful. Other methods to progress in our understanding of MHD
turbulence is to resort to modeling. Andrew Soward (1972) pioneered this in developing
an Eulerian–Lagrangian approach to the kinematic dynamo (see also Soward and
Roberts (2008), for a recent analysis). Other models can be derived and used

(a) (b)

Figure 10. (a) Temporal evolution of the skewness, i.e., the normalized third-order moment of the velocity
field, all flows computed on an equivalent grid of 20483 points, for runs I6 (solid line), A6 (dash line), and C6
(dotted line) (table 1). (b) Skewness built on the magnetic field for the same three runs. Both plots show an
abrupt event for t� 2.5 for the IMTG flow for which the peak occurs earlier for the magnetic skewness, a fact
linked to the near-collision of two current sheets leading to a quasi rotational discontinuity.
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(see, e.g., Kraichnan and Nagarajan 1967, Pouquet et al. 1976, Yoshizawa 1990, Holm
2002a, 2002b, Yoshida and Arimitsu 2007, Graham et al. 2009), including numerical
(see e.g. Meneguzzi et al. 1996). Using both the implementation of symmetries together
with such models may prove a fruitful approach to explore parameter space (Pouquet et
al. 2009). For example, it has been known for a long time that the amount of correlation
between the velocity and the magnetic field modifies the spectral indices of the Elsässer
variables (and hence of the other energy spectra), with a steeper slope for the dominant
mode (see Grappin et al. (1983), in the context of isotropic turbulent closures, Galtier et
al. (2000), for a WT anisotropic theory, Politano et al. (1989), for the numerical
confirmation of such a model in the two-dimensional isotropic case, and for the three-
dimensional case, Politano et al. (1995)). A small amount of correlation alters the
energy spectrum only slightly, making data analysis difficult.

Among the other parameters of potential importance in the study of magnetohy-
drodynamic turbulence is the magnetic Prandtl number �/�, the presence of sizable global
(as opposed to local) correlation between the velocity and the magnetic field, the ratio of
magnetic to kinetic energy, and the effect of an externally imposed uniform magnetic
field. Compressibility, rotation, and stratification are other external agents of imposed
anisotropies, and important for plasma experiments. The presence of small-scale kinetic
effects such as a Hall current or pressure anisotropies may also alter the dynamics of
MHD flows. Using imposed symmetries to enhance the numerically attainable Reynolds
number at a given cost may be a promising venue in some of these cases.
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