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ABSTRACT

We study the long-time decay of rotating turbulence in Bose–Einstein condensates (BECs). We consider the Gross–Pitaevskii equation in a
rotating frame of reference and review different formulations for the Hamiltonian of a rotating BEC. We discuss how the energy can be
decomposed and present a method to generate out-of-equilibrium initial conditions. We also present a method to generate finite-
temperature states of rotating BECs compatible with the Canonical or the Grand canonical ensembles. Finally, we integrate numerically
rotating BECs in cigar-shaped traps. A transition is found in the system dynamics as the rotation rate is increased, with a final state of the
decay of the turbulent flow compatible with an Abrikosov lattice in a finite-temperature thermalized state.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0123277

I. INTRODUCTION

When a quantum fluid is perturbed out of equilibrium with a
velocity above a certain critical threshold, the system spontaneously
develops topological defects that correspond to quantum vortices.
These vortices can interact nonlinearly, giving rise to the phenomenon
of quantum turbulence. This is the case in out-of-equilibrium
Bose–Einstein condensates (BECs)1,2 as well as in superfluid 4He and
3He-B. However, turbulence is classically expected to dissipate energy
efficiently, returning the system to a new equilibrium. In the quantum
case, it is unclear how these systems relax back to an equilibrium, and
what are the properties of the resulting state.

Turbulence is ubiquitous in nature, and BECs and superfluids are
no exception. There are several laboratory experiments of quantum
turbulence1–6 as well as theoretical and numerical studies.7–13 In most
cases, quantum turbulence resembles its classical counterpart. Finding
differences between them has become a key part to improve our
understanding of both systems as well as of out-of-equilibrium sys-
tems in general. In many cases, both quantum and classical turbulence
display Kolmogorov scaling EðkÞ � k�5=3 of the incompressible
kinetic energy spectrum, but the mechanisms behind this behavior are

believed to be drastically different. At large scales, vortex reconnection
in quantum turbulence transfers energy to smaller scales, just as in
classical turbulence. However, for scales smaller than the intervortex
distance, a cascade of Kelvin waves, negligible in most cases in classical
turbulence, is responsible for the transfer of energy toward smaller
scales, where it can be dissipated through phonon emission.8 Some
experiments in quantum turbulence14–18 observe a different scaling
known as Vinen turbulence (or “ultraquantum” regime). This regime
has no classical counterpart and is characterized by the decay of the
total vortex length as �t�1, compatible with a scaling of the isotropic
spectrum of the incompressible kinetic energy as EðkÞ � k�1. In this
regime, the presence of a non-condensed phase is believed to play a
crucial role. This behavior was, indeed, also reported in simulations
with counterflows.19,20 Nonetheless, more recent simulations of BECs
without a counterflow found the same spectral scaling for an initial
array of ordered vortices,20,21 in homogeneous superfluid turbulence,22

and in freely decaying rotating quantum turbulence in BECs.23

Although studies of turbulence in rotating BECs and superfluids
are very recent, equilibrium and near-equilibrium properties of rotat-
ing condensates have been studied in detail. When rotation is present,
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the quantum nature of the condensate results in a transition from a
state without vortices into one with ordered vortex lattices.24–26 In this
regime, the condensate displays global oscillation modes and waves
that do not have a classical counterpart.27–29 For even larger values of
the rotation rate, the system displays solutions that link its properties
with other problems in condensed matter physics, such as Landau lev-
els in magnetic systems or the quantum Hall effect.26 Rotating quan-
tum turbulence, thus, becomes an interesting problem, in which the
flow perturbs the system out of an equilibrium with no classical coun-
terpart.13,17,23 Recent numerical studies considered rotating turbulence
in BECs23 and in unitary Fermi gases.13 While the former study found
differences in the dissipation mechanism and phonon emission with
the non-rotating case, the latter reported differences in the dissipation
mechanisms between fermionic and bosonic superfluids. A detailed
comparison of the many possible regimes in this system with classical
turbulence is still missing. In classical turbulence, rotation induces
two important changes in the dynamics: the flow becomes quasi-
two-dimensional (2D), and a steeper-than-Kolmogorov spectrum
EðkÞ � k�2 develops at small scales.30–33 Inertial waves play a central
role in setting this spectrum and in the energy cascade rate, while in
finite domains, the flow at large scales also self-organizes into colum-
nar vortices with an inverse cascade of energy.34,35

To understand how these flows relax back to an equilibrium as
turbulence decays, and the properties of the final states, a method to
generate equilibria at finite temperature is needed. BECs at zero tem-
perature can be modeled by the Gross–Pitaevskii equation (GPE),
which is a non-perturbative mean-field equation for a classical
field.36,37 Many extensions of this equation to consider systems at finite
temperature exist,37–41 in most cases involving some truncation or
coarse-graining of the system, together with a stochastic formulation
of the equation for the classical field. In the case of non-rotating quan-
tum turbulence, similar approaches have been used to study properties
of the thermalized system as the flow decayed.11,40

In this work, we consider freely decaying turbulence in rotating
BECs and study its decay for long times. First, we introduce the theo-
retical framework. We present the Gross–Pitaevskii equation in a
rotating frame, discuss the implications of the Madelung transforma-
tion that allows computation of the fluid velocity, and review different
formulations for the Hamiltonian of rotating BECs. We discuss how
the total energy in the system can be decomposed in the rotating case
as well as methods to generate out-of-equilibrium initial conditions at
zero temperature. Finally, we present a method for the computation of
finite-temperature thermalized states of rotating BECs using a
Ginzburg–Landau equation, compatible with Canonical or Grand
canonical equilibria. Second, we perform numerical studies of rotating
BECs in this theoretical framework. These studies are further separated
in two. We generate zero temperature initial states and integrate them
numerically [using the rotating Gross–Pitaevskii equation (RGPE)] to
study the free decay of turbulence in rotating cigar-shaped traps.
Relevant energy components and length scales, and their time evolu-
tion, are computed for different rotation speeds. From these quantities,
we show there is a transition in the system dynamics as the rotation
increases above a critical value. After that, we numerically generate
finite-temperature equilibria using the Ginzburg–Landau equation.
We compare them with the late time solutions of freely decaying tur-
bulence, finding similarities in the spatial distribution of vortices
between both systems. We also compare the compressible and

incompressible kinetic energy spectra of both systems. These compari-
sons indicate that the final state of the free decay of rotating turbulence
is compatible with an Abrikosov lattice in a finite-temperature ther-
malized state.

II. ROTATING BOSE–EINSTEIN CONDENSATES
A. The rotating Gross–Pitaevskii equation

We describe BECs using the Gross–Pitaevskii equation (GPE) in
a rotating frame of reference, with an angular rotation X ¼ Xbz in a
trapping harmonic potential VðxÞ. In the following, we call this equa-
tion the rotating Gross–Pitaevskii equation (RGPE). It describes the
evolution of a condensate of weakly interacting bosons of mass m
under the aforementioned conditions and is expressed as

i�h
@wðr; tÞ
@t

¼ � �h2r2

2m
þ gjwðr; tÞj2 þ VðrÞ � XJz

� �
wðr; tÞ; (1)

where g ¼ 4pa�h2=m, a is the s-wave scattering length,
Jz ¼ bz � ðr � pÞ is the angular momentum operator along the axis of
rotation, and p ¼ �i�h$ is the momentum operator. This equation
can be derived by applying the time-dependent constant-speed rota-
tion operator Rðt;XÞ to the GPE and by defining the rotated order
parameter (or “wave function”) as wðr; tÞ ¼ Rðt;XÞwðr0; tÞ, where
wðr0; tÞ is the order parameter in the non-rotated laboratory coordi-
nate system.

In the X¼ 0 case, the RGPE (or equivalently in this case, the
GPE in the non-rotating frame) can be mapped to the Euler equation
for an isentropic, compressible, and irrotational fluid with an extra
pressure term due to quantum effects (known as the quantum pres-
sure). This is done by means of the Madelung transformation,7

wðr0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðr0; tÞ=m

p
eiSðr0;tÞ; (2)

where qðr0; tÞ is the fluid mass density and Sðr0; tÞ is the phase of the
order parameter. Using the momentum density

jðr0; tÞ ¼ � i�h
2

w0�$0w0 � w0$0w0�
� �

; (3)

where w0 ¼ wðr0; tÞ and the velocity field is defined by
v0 ¼ jðr0; tÞ=qðr0; tÞ. With no w0 ¼ 0 topological defect lines present,
the fluid velocity can be written as v0 ¼ ð�h=mÞ$0Sðr0; tÞ and is irrota-
tional. On topological defects, the velocity circulation is quantized, so
that

Þ
Cv
0 � dl0 ¼ nC0 with n 2N and C0 ¼ h=m is the quantum of

circulation. When vortex lines are present, the phase S is multival-
ued.42 The vorticity x0 ¼ r0 � v0 of the flow corresponding to a sin-
gle quantum vortex line reads

x0 ¼ xðr0Þ ¼ nC0

ð
ds
dr0
ds

dð3Þ r0 � r0ðsÞ
� �

; (4)

where r0ðsÞ denotes the position of the w0 ¼ 0 centerline and s is the
arc length.

When X 6¼ 0, an analogous mapping can be used in the rotating
frame. The rotating Euler equation (with the extra quantum pressure
term, but this time also with Coriolis and centrifugal forces) is
obtained by defining the velocity in the rotating frame as
v0rot ¼ ð�h=mÞ$0Sðr0; tÞ �X� r0 ¼ v0 �X� r0, where v0 is the
velocity in the non-rotating frame. This is consistent with a classical
rotation, and for X¼ 0, we recover the previous case. However, the
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velocity in the rotating frame cannot be obtained directly as the
gradient of the phase in a Madelung transformation applied to
wðr; tÞ. Indeed, if a Madelung transformation of the form
wðr; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðr; tÞ=m

p
eiSðr;tÞ is used, and a continuity equation

@q=@t þ $ � j ¼ 0 is derived from Eq. (1), it follows that

jðr; tÞ ¼ � i�h
2
ðw�$w� w$w�Þ � qX� r: (5)

Thus, associating jðr; tÞ ¼ qvrot, we have again vrot ¼ ð�h=mÞ$Sðr; tÞ
�X� r ¼ v�X� r, now in terms of the r coordinate. In other
words, q and q0, and v and v0, are the same fields just passively rotated.
Note also that all these relations follow from the fact that the velocity
of the superfluid must be irrotational everywhere except for topologi-
cal defects, and, thus, the solid body rotation can only be mimicked by
the quantum flow by generating an array of quantum vortices. We will
discuss this next in the context of the Hamiltonian of these systems.

The Hamiltonian H 0
0 corresponding to a condensate of weakly

interacting bosons described by GPE (i.e., in the non-rotating case) is

H 0
0 w0;w0�
� �

¼
ð
d3r0

�h2

2m
j$0w0j2 þ g

2
jw0j4 þ Vðr0Þjw0j2

� �
; (6)

where the asterisk denotes the complex conjugate. Using the
Madelung transformation and the relations jw0j2 ¼ q0=m and
�h2j$0w0j2=ð2mÞ ¼ q0jv0j2=2þ �h2j$0

ffiffiffiffi
q0
p
j2=ð2m2Þ, we can decompose

the energy of our system into fluid-like energy components as7

Ek ¼
1
2
hq0jv0j2i; (7)

Eq ¼
�h2

2m2
hj$0

ffiffiffiffi
q0

p
j2i; (8)

Ep ¼
g

2m2
hq02i; (9)

EV ¼
1
m
hV 0q0i; (10)

where the brackets denote volume average (note that, strictly speaking,
these are mean energy densities). Here, Ek is the flow kinetic energy,
Eq is the quantum energy, Ep is the internal (or potential) energy, and
EV is the potential energy associated with the trap. By means of the
Helmholtz decomposition, we can further decompose7

ffiffiffiffi
q0
p

v0
� �

¼ ð
ffiffiffiffi
q0
p

v0ÞðcÞ þ ð
ffiffiffiffi
q0
p

v0ÞðiÞ, where the superindices c and i denote,
respectively, the compressible (irrotational) and incompressible (sole-
noidal) vector field components [i.e., such that $� ð

ffiffiffiffi
q0
p

v0ÞðcÞ ¼ 0
and $ � ð

ffiffiffiffi
q0
p

v0ÞðiÞ ¼ 0, respectively]. With this decomposition, the
kinetic energy Ek can be further separated into the compressible EðcÞk
and incompressible EðiÞk kinetic energies, as often done in the study of
classical compressible flows.43 With these definitions, Parseval’s iden-
tity allows us to define wave number power spectra for all energies.7,10

Rotation changes the Hamiltonian, adding in the rotating frame
a term

H rot ¼ �X �
ð
d3r w�ðr � pÞw: (11)

This term lets us define a new energy component, the rotational
energy, as

Erot ¼ �X � hw�Jwi: (12)

The total Hamiltonian for the condensate in the rotating frame is then
H ¼H 0½w;w�� þH rot . When rotation is present, the kinetic part
of the Hamiltonian may be rewritten using the Madelung transforma-
tion, resulting in

H ¼
ð
d3r

q
2
jvj2 þ �h2

2m2
j$ ffiffiffi

q
p j2 þ g

2
jwj4

�
þVðrÞjwj2 �X � ðw�JwÞ

�
: (13)

From the discussion before, it follows that Ek ¼ hq0jv0j2i=2
¼ hqjvj2i=2, and similar relations hold for all integral and volume
averages of hydrodynamic scalar and vector fields. Thus, from this
Hamiltonian, we can now decompose the energy as E ¼ Ek þ Eq þ Ep
þEV þ Erot . Using the relation24 �X � ðw�JwÞ ¼ i�h=ð2mÞ$ � ðqX
�rÞ � qv � ðX� rÞ, we can also write this Hamiltonian as

H ¼
ð
d3r

q
2
ðv�X� rÞ2 þ �h2

2m2
j$ ffiffiffi

q
p j2

�
þ g
2m2

q2 þ VðrÞ
m
� ðX� rÞ2

2

	 

q

�
: (14)

The first term is associated with the kinetic energy density in the rotat-
ing frame, hqjvrotj2i=2, while the last term is a repulsive centrifugal
correction to the trapping potential.

In order to minimize the energy, the velocity v in this expression
must equal the rigid body rotation. This corresponds to the case in
which vrot is minimum. However, while this is what would happen in
a normal fluid, in a superfluid, v must be irrotational everywhere
except for the topological defects. Thus, the system can only mimic
X� r by generating quantum vortices. Moreover, the system cannot
generate less than one quantum of circulation. As a result, for this pro-
cess to happen, the rotation rate must be above the threshold26

Xc ¼ 5�h=ð2mR2
?Þ ln ðR?=nÞ, such that creating one quantized vortex

results in a state with less free energy than having none. Here, R? is
the condensate radius, which, for a harmonic trap with frequency x?,
is R2

? ¼ ð2�hcÞ=
ffiffiffi
2
p

mnðx2
? � X2Þ, and n is the condensate healing

length. For even larger values of X, rotation forces the system into a
two-dimensional (2D) state that mimics the solid body rotation via the
generation of a regular array of quantum vortices. This array is known
as the Abrikosov lattice and is such that its total circulation approxi-
mates that of the rotation. To this end, it must have a density of vorti-
ces per unit area of nv ¼ X=

ffiffiffi
2
p

pcn
� �

, where c is the speed of sound.
Tkachenko27 showed that for an infinite homogeneous system
[VðrÞ ¼ 0], this lattice must be triangular to minimize the free energy
of the system.

When such an equilibrium is perturbed, the system can sustain
waves (sound or phonons, Kelvin waves, inertial waves, and
Tkachenko waves, which correspond to normal modes of the
Abrikosov lattice). For details of the dispersion relations for each of
these waves, see Ref. 23. Abrikosov lattices and Tkachenko waves were
experimentally observed in rotating BECs.3 Similar lattices were
observed in superfluid helium.44 Vortex lattices were also reported to
be metastable states of classical rotating turbulence in finite domains.35

Finally, it is also worth pointing out the similarity between the system
under study and type II superconductors in external magnetic fields.
As an example, taking the curl of Eq. (5) gives
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$� j ¼ �2qX; (15)

which is equivalent to one of London equations in superconductors.
The similarity between the rotation and a magnetic field can also be
seen in the system Hamiltonian.

B. Generation of initial conditions for RGPE

We now discuss how to generate initial conditions for RGPE
compatible with the system rotation, either to have steady Abrikosov
lattices or to generate flows that can evolve into turbulent states at very
low temperature. To that end, we need a method to generate low
acoustic emission states that are quasi-stationary and that can be used
as initial conditions for Eq. (1).

Given some time independent solution of RGPE, one can verify
that it must also be a solution of the dissipative rotating real
Ginzburg–Landau equation (RRGLE),

@w
@t
¼ �h

2m
r2 � g

�h
jwj2 þ V

�h
� XJz

�h
þ l

�h

	 

w; (16)

where l is the chemical potential. Note that the extra term propor-
tional to l can be also added into RGPE, but it does not affect the
global dynamics of the system as it only adds a global phase to the
order parameter, turning w into e�ilt=�hw.

Equation (16) suffices to prepare, e.g., a condensate with an
Abrikosov lattice. The equation can be integrated numerically, and the
solution will decay into a condensate trapped by the harmonic poten-
tial, while a lattice of vortices will appear to adjust for the system rota-
tion. To generate initial conditions for RGPE with a non-zero flow in
the rotating frame of reference, which can be used to study the devel-
opment and evolution of turbulence, one wants to perturb the system
with a non-trivial velocity field u. To do this, following the method in
Ref. 7, one can use the asymptotic solutions of the rotating-advective
real Ginzburg–Landau equation (RARGLE):

@w
@t
¼ �h

2m
r2 � g

�h
jwj2 � V

�h
þ XJz

�h
þ l

�h
� iu � $�mjuj2

2�h

	 

w: (17)

Solutions to this equation have the desired properties of low acoustic
emission and quasi-stationarity. In addition, the resulting order
parameter (used as an initial condition for RGPE) generates a velocity
field u. This can be seen explicit by writing the energy that the time
asymptotic solutions of Eq. (17) minimize, which is given by

H RARGL ¼
ð
d3r

q
2
ðv� uÞ2 þ �h2

2m2
j$ ffiffiffi

q
p j2 þ g

2
jwj4

�
þVðrÞjwj2 �X � ðw�JwÞ

�
: (18)

Thus, Eq. (17) generates states in which the superfluid velocity v tries
to approximate the advection velocity u while also generating a rota-
tion with angular velocityX.

C. Finite temperature model and statistical ensembles

If one considers the condensate as part of a larger system S with
whom it can exchange both particles and energy, equilibria will be
characterized by fixed values of the system volume V , the chemical
potential, and the temperature T. The probability is then given by the
Grand canonical ensemble,

P ¼ e�bðH �lN Þ

Z
; (19)

where b ¼ 1=ðkBTÞ, kB is the Boltzmann constant, Z is the Grand
canonical partition function, and N is the number of particles in the
system.

These equilibrium states are difficult to find, as the Hamiltonian
has terms that are quartic in the order parameter. However, the
method presented in Ref. 40 can be generalized to systems in rotating
frames. First, a forcing with Gaussian-white noise is added to Eq. (16),
defining the rotating Ginzburg–Landau equation at finite temperature
(RGLET),

@w
@t
¼ �h

2m
r2 � g

�h
jwj2 þ VðrÞ � XJz

�h
þ l

�h

� �
wþ

ffiffiffiffiffiffiffiffiffiffi
2

V �hb

r
fðr; tÞ;

(20)

where fðr; tÞ is a delta-correlated random process such that

hfðr; tÞf�ðr0; t0Þi ¼ dðr � r0Þdðt � t0Þ, and the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=V �hb

p
con-

trols the amplitude of the fluctuations through the temperature T.
Next, we perform a Galerkin truncation of Eq. (20) in Fourier

space. That is, the expansion of w and Eq. (20) are truncated using the
Galerkin projection operator, defined as

PGðbf ðkÞÞ ¼ Hðkmax � jkjÞbf ðkÞ; (21)

where bf ðkÞ is the Fourier transform of f ðrÞ; kmax is some maximum
(cutoff) wave number (physically kmax > 2p=n, in practice in the
numerical simulations kmax is the maximum wave number that the
simulations can resolve), and H is the Heaviside function. To conserve
the momentum, the term proportional to jwj2w in Eq. (20) must be
truncated as40 PGðPGðjwj2ÞwÞ. From now on, we simplify the nota-

tion by doing PGðbf ðkÞÞ ! bf ðkÞ. Defining the free energy
F ¼H � lN , the truncated Eq. (20) can be written as a Langevin
equation for the evolution of each Fourier mode of w,

@bwðk; tÞ
@t

¼ � 1
V �h

@F

@bw�ðk; tÞ þ
ffiffiffiffiffiffiffiffiffiffi
2

V �hb

r bfðk; tÞ; (22)

where the functional F is F½fbwðk; tÞ; bw�ðk; tÞg� (for all jkj < kmax).

The resulting stochastic process has a state probability P½fbwðk; tÞ;bw�ðk; tÞg� that is described by a corresponding multivariate Fokker–
Planck equation,40,45

@P

@t
¼

X
jkj<kmax

@

@bwk

1
V �h

@F

@bw�k Pþ 1
V �hb

@P

@bw�k
" #

þ c:c:; (23)

where bwk is shorthand for bwðk; tÞ and c:c: denotes the complex conju-
gate. This equation results in the Grand-canonical distribution, pro-
vided that bF is a positive defined function. Thus, by solving
numerically the Galerkin truncated Eq. (20), we can construct finite-
temperature rotating equilibria.

When solving RGLET in many cases, we will prefer to control
the number of particles (or equivalently, the mean density �q) instead
of the chemical potential. This is equivalent to working in the
Canonical ensemble. In practice, this can be done easily by solving Eq.
(20) coupled with an equation,40
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@l
@t
¼ �að�q � q0Þ; (24)

where q0 is the target (fixed) mean density in the center of the har-
monic trap, and a controls how fast convergence to the desired mean
density takes place.

D. Condensate characteristic lengths

Once a flow is created, several length scales can be used to charac-
terize turbulence and its time evolution. A relevant characteristic scale
in the study of classical turbulence is the flow integral scale Li, which is
associated with the large-scale flow correlation length. Let us write
explicitly the isotropic incompressible kinetic energy spectrum, given by

EðiÞk ðkÞ ¼
1
2

ð ���� bð ffiffiffiqp vÞðiÞ
h i

k

����2 k2dXk; (25)

whereXk is the solid angle in Fourier space. Note this spectrum involves
an integration over spherical shells in Fourier space. Spectra can also be
defined by integrating over cylinders with axis along kz in Fourier space,
which result in “perpendicular” spectra23 that depend on the wave num-
ber k? ¼ ðk2x þ k2yÞ

1=2. As rotation makes the flows strongly aniso-
tropic, we found no significant differences between these two spectra,
and in the following, we continue using isotropic quantities.

We can then define the flow integral scale as

Li
2p
¼

ð
EðiÞk ðkÞ=k dkð
EðiÞk ðkÞ dk

: (26)

From the Wiener–Khinchin theorem, it follows that this length is pro-
portional to the flow correlation length obtained from the flow two-
point spatial correlation function.

We can also define a spectrum of incompressible momentum,
PðiÞðkÞ, given by7

PðiÞðkÞ ¼ 1
2

ð ���� bðqvÞðiÞh i
k

����2 k2dXk: (27)

It has been shown empirically that in a disordered tangle of vortices,
for sufficiently large wave numbers, PðiÞðkÞ can be approximated as
the momentum spectrum per vortex unit length of a single quantized
vortex, PðiÞs ðkÞ, times the total length of the vortices.7,11 Thus, the total
vortex length Lv can be estimated as

Lv
2p
¼

ðkmax

kmin

PðiÞðkÞdkðkmax

kmin

PðiÞs ðkÞdk
; (28)

where kmin is a cutoff equal to 10 in this study. The motivation for
using a cutoff follows from the fact that smaller wave numbers are
dominated by the trap geometry and the condensate, while vortices
(being very thin) contribute mostly to the larger wave numbers of the
spectrum. The value of kmin was obtained empirically by looking for
the value, such that the computation of the vortex length became inde-
pendent of the choice of kmin and of these large-scale contributions.

From Lv, the mean intervortex distance can be estimated as

‘ ¼ ðV =LvÞ1=2: (29)

E. Phase transitions

In addition to the phase transition from normal fluid to super-
fluid at Tk associated with the condensate, in recent years, other phase
transitions were discovered in classical and quantum fluids. It was
found that the transition from a turbulent direct cascade of energy
(i.e., from energy going from large to small scales) to an inverse energy
cascade (i.e., from energy going from small to large scales, resulting in
a flow self-organization and another condensate of the kinetic energy)
can be a phase transition of second order, and controlled by the flow
dimensionality. For condensates under GPE, it was also found that
changing the aspect ratio of the condensate can trigger this transi-
tion.12 In classical rotating turbulence, transitions were reported
between direct cascades, flux loop states, and split cascades when vary-
ing the aspect ratio of the system or the Rossby number (i.e., the rota-
tion speed).35

In the presence of rotation, a new threshold Xc appears for quan-
tum fluids. Above this value, in order to minimize the free energy, the
system can generate a vortex with one quantum of circulation along
the axis of rotation. As rotation grows sufficiently strong, the flow
turns quasi-2D, which could trigger the development of an inverse cas-
cade in the turbulent regime. However, as rotation grows, the system
can also develop a vortex lattice. Thus, rotating quantum turbulence
could suffer different transitions than classical rotating turbulence as
X is varied. From the point of view of statistical mechanics, phase tran-
sitions can be discontinuous (first order), continuous but with discon-
tinuous derivative (second order), or smooth with no symmetry
breaking (sometimes called “of infinite order”). It is yet unclear
whether Xc or the flow two-dimensionalization resulting from rotation
can result in phase transitions, and of what order.

III. NUMERICAL SIMULATIONS
A. Numerical methods

In the following, we numerically solve Eq. (17) to generate initial
conditions and then use Eq. (1) to evolve the condensates in time.
Equation (20) is also numerically solved in order to generate thermal-
ized states. In all cases, we use an axisymmetric harmonic potential of
the form VðrÞ ¼ mx2

?ðx2 þ y2Þ=2 corresponding the limit of a verti-
cally (infinitely) stretched cigar-shaped trap. This choice is done to
reduce contamination of axisymmetric turbulent quantities (expected
to be dominant in the rotating case) due to the trap geometry.

To solve the equations, we use a pseudospectral Fourier-based
method in a spatial grid of N3 ¼ 5123 points, with the 2/3 rule for
dealiazing, and a fourth-order Runge–Kutta method for time evolution
for RGPE (an Euler time stepping method is used for the dissipative
systems described by RARGLE and RGLET). In all cases, we use the
parallel code GHOST, which is publicly available,46 in a cubic domain
of dimensions ½�p; p�L� ½�p;p�L� ½�p; p�L, so that the domain
edges have length 2pL. Periodic conditions are used in the z direction.
Because of the non-periodic nature of the angular momentum opera-
tor Jz ¼ �i�hðx@y � y@xÞ and of the potential V(x, y) in the x and y
directions, we smoothly extend them in a thin layer near the borders
of the domain to make them (as well as all their spatial derivatives)
periodic, allowing us to use Fourier expansions while controlling
Gibbs phenomena.47 To do so, we perform a convolution between the
Fourier transform of VðrÞ or Jz and a Gaussian filter in kx and ky. This
regularization is done in a region far away from the trap center, such
that the density of the condensate in that region is negligible.23
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The width of the filter was chosen in an empirical way, so that it mini-
mizes the approximation error of VðrÞ and Jz in the vicinity of the cen-
ter of the trap. We used a width for the Gaussian filter r ¼ ðNDkÞ=17,
where Dk is the resolution in wave number space. With this choice,
errors in the computation of VðrÞ and Jz were almost constant and
�10�7 in the region occupied by the condensate. Values of x? were
also chosen to keep the condensate confined in the region of the xy
plane satisfying these errors. With this method, a standard pseudo-
spectral method can be used to solve the equations, preserving the
usual convergence properties of the method.

The parameters c, n, q0, x?, and X fix all coefficients in the equa-
tions and were chosen as in the simulations reported in Ref. 23. Using
the unit length L, a unit mass M, and a unit speed U, we set
c ¼ ðgq0=mÞ1=2 ¼ 2U ; n ¼ �h=ð2gmq0Þ1=2 ¼ 0:017L, and the refer-
ence mass density in the center of the trap q0 ¼ 1M=L3. We use a
trap frequency x? ¼ 1:421U=L, and rotation frequencies X¼ 0,
0:2U=L� 0:7Xc; 0:4U=L� 1:5Xc; 0:6U=L� 2:2Xc; 0:8U=L� 3Xc;
1U=L� 3:7Xc, and 1:2U=L¼ 4:5Xc (where Xc is computed as a ref-
erence using the radius of the condensate R? for X¼0). Quantities
can then be scaled using reference values for L, M, and U. In experi-
ments, typical dimensional values are5 L� 10�4 m and c� 2� 10�3

m/s. This results in n� 1:7� 10�6 m, a trap frequency x? � 23 Hz,
and peak densities of �1013 cm�3 atoms for 87Rb, compatible with
typical values in experiments of non-rotating BECs.48

B. Preparation of initial conditions

For the preparation of the initial conditions and finite tempera-
ture states, we must solve Eqs. (17) or (20), respectively. In the latter
case, we start with a Gaussian density profile and let the system evolve
until it reaches a steady state. In the former case, we must choose a
velocity field u to integrate Eq. (17). To that end, we perturb a
Gaussian density profile with a three dimensional random array of
vortices using the initial conditions described in Ref. 12. Parameters
are chosen in such a way that the incompressible kinetic spectrum of
the final state (i.e., of the initial conditions for the integration with
RGPE) has a peak at k � 5. In this way, room is left in spectral space
for the system to self-organize at large scales.

IV. ROTATING TURBULENCE AND THERMALIZATION
A. Freely decaying flows

Global quantities provide useful insights into the evolution of tur-
bulent systems. In this section, we begin by studying the evolution of
energy components and flow characteristic scales as turbulence decays
freely, to understand how the evolution of quantum turbulence is
affected by rotation. To that end, we integrate for long times RGPE
with the turbulent initial conditions just described for different values
of X. Parameters for the simulations are the same as in Ref. 23 and are
like described before.

We first analyze the general energy budget in the system.
Equation (1) is conservative, so that changes in the total energy are
only due to the numerical errors and are negligible in our case. Thus,
when several components of the energy decrease in time, others must
grow to keep the total energy constant. As a rule, the incompressible
kinetic energy decreases in all runs as turbulence decays, and either
the compressible kinetic energy (i.e., sound), internal, or rotational
energy must increase as the turbulent kinetic energy is dissipated and
transformed into disorder or rigid body rotation. Figure 1 shows the

evolution of the incompressible, compressible, and quantum energy
components as a function of time, for several simulations with X
between 0 and 4:5Xc. Before discussing the effect of rotation on these
quantities, note that all energy components display oscillations with a
frequency independent of X, which correspond to the breathing mode
of the condensate in the trap. The frequency is proportional to 2x? in
agreement with theoretical predictions.49

When X¼ 0 in Fig. 1 (lightest curves), the envelope of the
incompressible kinetic energy (i.e., ignoring the breathing mode oscil-
lations) decreases in time in a fashion compatible with a power-law
decay, while the compressible and quantum energies first grow and
then decay. Eventually, the internal energy grows to compensate for
these decays (not shown). This is compatible with the classical behav-
ior of freely decaying turbulence, where kinetic energy cascades to
smaller scales until it is eventually converted into internal energy. In
this case, the early growth of compressible and quantum energies cor-
responds to the emission of sound waves and to the development of
density inhomogeneities. However, as X increases (darker curves), the
incompressible kinetic energy decays at a slower rate until it remains
almost constant for large enough X (except for the breathing mode
oscillations). As a result, very little increase in the compressible and
quantum energies is observed at early times (at later times, both the
internal and rotational energies increase to compensate for the small
decay of the other energy components). This latter behavior indicates
a substantial decrease in the energy dissipation by turbulence as rota-
tion increases.

FIG. 1. Time evolution of energy components for freely decaying turbulence simula-
tions (from the RGPE equations) with different values of X (from light, indicating
X¼ 0, to darker colors, indicating increasing X up to 4:5Xc). From (a) to (c),
incompressible kinetic energy, compressible kinetic energy, and quantum energy all
normalized by the incompressible kinetic energy at t¼ 0.
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A more quantitative description of this process can be obtained
by assuming, as often done in turbulent flows, that energies evolve in
time in a self-similar way as �ta, for times t > t0 where t0 marks the
time of the beginning of the self-similar decay. The exponent a (<0
for the decaying case) can then be computed from the logarithmic

derivative, i.e., d lnEðiÞk ðtÞ=d ln t. To avoid contamination from the
breathing mode in Fig. 1, we take only the amplitude of each peak for
all times t > t0. The decay exponent for the incompressible kinetic
energy as a function of the dimensionless control parameter X=Xc is
shown in Fig. 2. Note the exponent remains approximately constant
for X=Xc < 1 and grows rapidly for X=Xc > 1, reaching saturation in
a small value close to zero (i.e., for almost non-decaying incompress-
ible kinetic energy). Thus, there are two regimes separated by Xc.
Below, this threshold rotation is too weak to affect the system (as its
associated circulation is smaller than the circulation needed to create
one quantized vortex). Turbulence evolves as in the non-rotating case,
with a Kelvin wave cascade of energy toward smaller scales, that results
in incompressible kinetic energy dissipation. Sufficiently above Xc, the
incompressible kinetic energy remains almost constant, and the direct
cascade seems to be quenched. As we will see later, this is associated
with the development of a self-organization process, in which energy
is transferred instead toward larger scales.

It is also interesting to compare these exponents with those found
in the decay of classical turbulence.50 In classical turbulence, a slow-
down of the decay is also observed as X increases. However, the expo-
nents in Fig. 1 indicate that the decay of quantum turbulence is even
slower than in the classical case. For X¼ 0, the incompressible kinetic
energy in classical turbulence decays as t�2; t�6=5, or t�10=7 depending
on the initial conditions. Even more different are the cases with
X > 0. While in the BECs for X > Xc, the decay can be slower than
t�0:1, in the classical case for X large enough the decay is proportional
to t�1; t�3=5, or t�5=7 depending on the initial conditions.50 It is also
worth noting that there is no classical equivalent for Xc.

A similar analysis can be done with the quantum energy at late
times (no clear power law scaling was found for the compressible
kinetic energy, which grows first, albeit less for larger X and then
slowly decays). The decay exponent of EqðtÞ, i.e., the logarithmic
derivative of the amplitude of its peaks d ln EqðtÞ=d ln t, as a function
of X=Xc, is shown in Fig. 3. The exponent is always negative, but, as in
the case of the incompressible kinetic energy, it shows a distinct behav-
ior as X=Xc increases. As rotation grows above Xc, the exponent

decreases (in absolute sign), this time monotonically with increasing
X. This is consistent with a slower decay and, together with the results
shown in Fig. 1, with the generation of weaker density inhomogenei-
ties as X increases.

The time evolution of characteristic length scales gives further
insights on the system dynamics. The total vortex length as a function
of time for different simulations is shown in the top panel of Fig. 4. As
turbulence evolves, vortex stretching results in a growth of the total

FIG. 2. Exponent of the decay of the incompressible kinetic energy with time in
freely decaying turbulence (RGPE) simulations, assuming a power law
EðiÞk ðtÞ � ta, as a function of X=Xc .

FIG. 3. Decay exponents of the quantum energy for freely decaying turbulence
(RGPE) simulations at late times in all simulations, assuming a power law
EqðtÞ � tb, as a function of X=Xc .

FIG. 4. (a) Evolution of the total vortex length as a function of time for freely decay-
ing turbulence (RGPE) simulations, normalized by its value at t¼ 0, as a function
of time. From light to dark, X¼ 0 up to 4:5Xc . (b) Decay exponents of the vortex
length at late times, as a function of X=Xc .
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vortex length at early times, followed by decay compatible with a power
law as the flow decays. However, rotation strongly affects this evolution.
For sufficiently large X (darker curves), Lv grows less at early times (i.e.,
there is less vortex stretching, compatible with the behavior expected in
a quasi-2D flow), and its decay is slower at late times. This is further
confirmed by the decay exponent computed from the amplitude of all
the peaks of Lv at late times, which is shown as a function of X=Xc in
the bottom panel of Fig. 4. The exponent again changes around
X=Xc � 1. For X=Xc > 1, the exponent approaches zero, confirming
that the total vortex length (and thus also the intervortex separation)
changes less for sufficiently large rotation rates.

How is the spectral distribution of these vortices? A first hint is
given by the incompressible momentum spectrum at late times in all
simulations, as shown in Fig. 5. Remember that the total vortex length is
the integral of this spectrum properly normalized, as in Eq. (28), and
that the mean intervortex distance also follows from this spectrum, as
defined in Eq. (29). Figure 5 also shows as a reference the theoretical
incompressible momentum spectrum per unit length of one vortex7 for
X¼ 0, multiplied by the total vortex length in the simulation with
X¼ 0. Thus, differences from this spectrum (and differences with the
spectrum of the numerical simulation with X¼ 0) indicate differences
from an isotropic and disordered vortex tangle when rotation is present.
The spectrum continually changes as X is increased. The two most con-
spicuous differences can be found at large and at small wave numbers:
on the one hand, for large X, the spectrum has more power at large val-
ues of k. On the other hand, a clear accumulation of momentum at low
wave numbers (i.e., at large scales) can be seen. A gap in the spectrum
separates these two features. Thus, the quantized vortices for X > Xc

seem to have a large-scale ordering with small-scale fluctuations that are
different from the disordered vortex bundle when X < Xc.

B. Early time inverse energy transfer

The early time behavior of LvðtÞ (i.e., the significant decrease in
vortex stretching in the rotating BECs), together with the very slow decay

of the incompressible kinetic energy and the accumulation of momen-
tum at small wave numbers for large values of X in Figs. 1 and 5, sug-
gests that the incompressible kinetic energy may be accumulating at
large scales in the condensate, or in other words, that the incompress-
ible kinetic energy could be cascading inversely to larger scales. The
study of the time evolution of large-scale quantities in the flow at earlier
times (between 2x?t ¼ 2 and 22) confirms that this is, indeed, the
case and provides information on this process. The choice of analyzing
the growth or decay of large-scale quantities at early times is justified by
the fact that the turbulence is freely decaying, and a self-organization
process can only be sustained for as long as turbulence remains strong
enough, together with the fact that once the energy has reached the
largest available scale in the condensate, the process is expected to satu-
rate in systems with finite size. This behavior will be explicitly con-
firmed below.

The evolution of the flow integral length scale as a function of
time and its logarithmic derivative are shown in Fig. 6. In the top
panel, the time evolution shows a different behavior as X increases.
While in simulations with small X, the envelope of LiðtÞ first remains
approximately constant in time (consistent with freely decaying classi-
cal three dimensional turbulence51) and later increases as a result of
the fast decay of the total energy, for X > Xc, the envelope of LiðtÞ

FIG. 5. Momentum spectrum at late times for several freely decaying turbulence
(RGPE) simulations with different values of X (with darker colors indicating larger
X). The dashed black line indicates the theoretical momentum spectrum per unit
length of one vortex7 for X¼ 0, multiplied by the total vortex length in the simula-
tion with X¼ 0.

FIG. 6. (a) Time evolution of the flow integral length scale LiðtÞ for freely decaying
turbulence (RGPE) simulations (normalized by its initial value at t¼ 0) for simula-
tions with different values of X (from light to dark curves, X¼ 0 to 4:5Xc). The
shaded region indicates the times for which a power-law was adjusted. (b) Decay
exponent of the integral length scale, assuming LiðtÞ � tc, as a function of X=Xc .
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first increases and then slowly saturates at a constant value larger than
its initial value. The bottom panel in Fig. 6 shows the power-law expo-
nent of the growth or decay of LiðtÞ, assuming LiðtÞ � tc. It is close to
zero for X < Xc, increases rapidly for X > Xc, and then decreases but
remaining larger than zero (i.e., Li grows with time) for X � 3Xc.
Thus, the flow integral length scale grows as the rotation rate increases.
Note that LiðtÞ is a measure of the large-scale flow correlation, and,
thus, larger values indicate that the system creates larger vortex struc-
tures than those present in the initial conditions.

Figure 7 shows the same quantities for the incompressible kinetic
energy in the largest modes (i.e., those in the k¼ 1 Fourier shell), for
simulations with different values of X. We know from Fig. 1 that for
sufficiently large X, the incompressible kinetic energy remains almost
constant. The top panel in Fig. 7 shows that the way the system pre-
vents this decay is by accumulating kinetic energy at the largest scales.
For sufficiently large X, the incompressible kinetic energy condensates
in the largest mode, resulting in the aforementioned growth of the
flow integral scale. This is the result of an inverse transfer of energy,
which is a feature of rotating quantum turbulence.23 The bottom panel
shows the logarithmic derivative of the envelope of this quantity, as a
function of X=Xc. Again, a transition is observed for X=Xc � 1, and
d lnEðiÞk ðk ¼ 1; tÞ=d ln t becomes positive when X is above �1:5Xc.

Note also that �dEðiÞk ðk ¼ 1Þ=dt is the energy flux at that wave num-
ber, and a positive value of the logarithmic derivative confirms energy
is flowing in spectral space toward larger scales. Thus, as rotation
increases, incompressible kinetic energy accumulates in small wave
numbers, its transfer toward smaller scales is quenched as in classical
rotating turbulence,30,52 and the associated emission of compressible
excitations diminishes.

C. Thermalized Abrikosov states

What is the final state to which rotating turbulence decays? We
have seen that for X > Xc, the incompressible kinetic energy decays
more slowly (remaining almost constant for sufficiently large X), the
compressible kinetic energy grows less, vortex stretching decreases
substantially, and a large-scale flow develops. Thus, even though we
intuitively expect turbulence to generate a disordered state, in the pres-
ence of rotation, some order may survive even for very long times. The
resulting state can be expected to be very different from the final stages
of freely decaying classical rotating turbulence.51 The reasons for these
are twofold. On the one hand, a classical rotating flow can decay into a
state of solid body rotation, while the quantum flow can only mimic it.
On the other hand, in a classical flow, friction with the boundaries at
large scales and viscosity at small scales (as a fraction of the energy still
direct cascades to smaller scales) provide paths to dissipation.

As time evolves and the flow decays to a new equilibrium, it is
natural for structures that do not satisfy the system symmetries to van-
ish. From classical turbulence, we know that rotation makes the flow
quasi-2D,30–32,52 with vortical structures that are predominantly
aligned with the rotation axis. Figure 8 shows 2D slices of the mass
density at late time in RGPE simulations of freely decaying turbulence
with X ¼ 4:5Xc. A movie of its evolution can be insightful to under-
stand both the development of the turbulence and how the system
reaches the final state. This can be seen in Fig. 9 (Multimedia view).
Note that quantized vortices are predominantly aligned with the rota-
tion axis, and axisymmetry is somehow recovered in a statistical sense.
However, vortices are not perfectly parallel. Seen from top (i.e., in the
x–y plane), the vortices resemble an Abrikosov lattice but with random
fluctuations. Seen from the side (e.g., in the x–z plane), vortices wiggle
and are not perfectly parallel. Waiting for longer times does not result
in a cleaner or more ordered lattice. The reason is associated with the

FIG. 7. (a) Time evolution of the incompressible kinetic energy in the k¼ 1 Fourier
shell for free decaying simulations, normalized by its initial value at t¼ 0, for freely
decaying turbulence (RGPE) simulations with different values of X (from light to
dark curves, X¼ 0 to 4:5Xc). The shaded region indicates the times for which a
power-law was adjusted. (b) Decay exponent as a function of X=Xc . Note that
�dEðiÞk ðk ¼ 1Þ=dt is the energy flux at k¼ 1.

FIG. 8. Two-dimensional slices of the mass density in a plane perpendicular to the
rotation axis, qðx; y; z ¼ 0Þ (a), and in a plane-parallel to the same axis, qðx; y
¼ 0; zÞ (b), at late time in a RGPE simulation of freely decaying turbulence with
X ¼ 4:5Xc .
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time evolution discussed previously. At late times, despite the transfer
of incompressible kinetic energy toward large scales, some of the
incompressible kinetic energy is transferred to smaller scales where it
can excite phonons that partially thermalize.23 It is also important to
note that the development of the lattice is not the result of the periodic
boundary conditions in z, but of the need of the system to adjust to the
rotation. The boundary conditions used are convenient to simplify the
analysis and visualization.

We can compare this final state with thermalized equilibria gen-
erated by RGLET in Eq. (20). In Fig. 10, the mass density of simula-
tions of RGLET with different temperatures is shown. Temperature is
measured in dimensionless units of T=Tc, where the critical

temperature Tc to get a condensate is obtained by scanning the solu-
tions of RGLET for different temperatures using the method described
in Ref. 11. For T¼ 0, a clear Abrikosov lattice is obtained. As tempera-
ture is increased, larger fluctuations appear and vortices are not per-
fectly aligned with the rotation axis. Note that these solutions are not
obtained as a result of the decay of an initial flow. The system is started
with a Gaussian density profile with no vortices, and the Abrikosov
lattice appears as a solution that minimizes the system free energy at a
given temperature: these are thermal equilibria superimposed with the
Abrikosov lattice needed by the BEC to mimic the solid body rotation.

The thermal equilibrium with T=Tc � 0:05 qualitatively resem-
bles the RGPE solution in Fig. 8. To further compare both solutions,
we look at their kinetic energy spectra (see Fig. 11). In the figure, we
show the compressible and incompressible kinetic energy spectra of
the late time solutions of freely decaying turbulence with X ¼ 4:5Xc

in RGPE, compared against spectra of the same energy components
from thermal equilibria obtained with RGLET using the same X and
different temperatures. The top panel compares the late time decay of
turbulence in the condensate with the zero temperature Abrikosov lat-
tice. The spectra are very different: the zero temperature Abrikosov lat-
tice displays peaks at intermediate wave numbers, and flat spectra at
larger wave numbers not observed in the long time decay of turbu-
lence. Note that the incompressible kinetic energy spectrum of the
RGPE freely decaying run peaks at k¼ 1 and follows, for k� 20, a
power law compatible with EðiÞk ðkÞ � k�1 spectrum,23 i.e., a Vinen or
ultraquantum-like scaling. The compressible kinetic energy spectrum
for the same simulation has a slightly shallower scaling than �k in the
same range.

However, the thermal equilibria (T> 0) obtained with RGLET
share several similarities with the spectra of the freely decaying simula-
tion (see the bottom panel of Fig. 11). For the incompressible kinetic
energy, except for a pile up of energy for very large wavenumbers, the
spectra are similar to EðiÞk ðkÞ from RGPE. In other words, the peak at
small wave numbers is associated with a large-scale flow generated by
the wiggly Abrikosov lattice, and the �k�1 spectrum at larger wave

FIG. 9. Snapshot of an animation of the evolution of the freely decaying (RGPE) tur-
bulent system in the X ¼ 4:5Xc case (same as in Fig. 8). The rendering shows
regions of low mass density, such that the cores of quantized vortices can be seen.
The rendering was done using VAPOR.53 Multimedia view: https://doi.org/10.1116/
5.0123277.1

FIG. 10. Two-dimensional slices of the
mass density in a plane perpendicular to
the rotation axis, qðx; y; z ¼ 0Þ from (a)
to (c), and parallel to that axis, qðx; y
¼ 0; zÞ from (d) to (f), for thermalized
states with increasing temperatures, in
finite-temperature equilibrium simulations
generated with RGLET, with X ¼ 4:5Xc .
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numbers results, as discussed in Ref. 23, from the fluxless disordered
array of vortices (note that the Abrikosov lattice at T¼ 0 does not
have this spectrum). For the compressible kinetic energy, the spectrum
generates a quasi-2D thermalized state with scaling �k. For k� 20,
the amplitude of this spectrum in the RGLET run with T=Tc � 0:05
is closer to EðcÞk ðkÞ in the RGPE run, but note also that all thermal
equilibria have less compressible energy density at small wave num-
bers when compared with RGPE. This can be expected as the RGPE
run starts with a random flow at intermediate scales that can emit
sound waves at those scales, while RGLET runs are initialized with a
Gaussian density profile at rest.

Thus, the free decay of rotating quantum turbulence seems to
lead the system to a state that is partially thermalized and partially
ordered, unlike classical behavior. As the flow decays, incompressible
kinetic energy is mostly transferred toward large scales for X > Xc,
where a large-scale flow compatible with the Abrikosov lattice is gener-
ated. However, a small fraction of that energy is transferred toward
smaller scales, where through reconnection or a wave cascade, it
excites phonons. These phonons generate an effective thermal bath,
shaking and wiggling the Abrikosov lattice. The system, thus, decays
to a new equilibrium that has an Abrikosov lattice disordered by ran-
dom fluctuations, and very similar to finite temperature rotating equi-
libria resulting from Canonical or Grand canonical ensembles.

V. CONCLUSIONS

We studied freely decaying rotating turbulence in BECs using the
rotating Gross–Pitaevskii equation, with a special emphasis on how rota-
tion affects the decay of turbulence. Global quantities were observed to
present a sharp change in their decay or growth rates when the dimen-
sionless controlling parameter X=Xc � 1, where Xc is the minimum
rotation rate, such that spontaneously creating one quantized vortex in
the BEC to mimic the solid body rotation, which has less free energy
than having none. For X=Xc < 1, the system evolves as in the non-
rotating case, with a fast decay of incompressible kinetic energy, excita-
tion of compressible modes, and vortex stretching associated with a
three-dimensional direct cascade of incompressible kinetic energy. For
X=Xc > 1, incompressible kinetic energy is mostly transferred inversely
(i.e., to larger scales), and the excitation of compressible modes and vor-
tex stretching are diminished. The flow becomes quasi-two-dimensional,
with a tendency of the quantized vortices to align with the rotation axis.
The behavior of the flow integral scale and of the energy in the largest
Fourier modes further confirm this behavior.

Rotating quantum turbulence decays for sufficiently long times
into states that are partially ordered, displaying topological defects in a
disordered arrangement reminiscent of an Abrikosov lattice. To com-
pare against statistical equilibria, we presented a theoretical framework
to generate finite temperature states of rotating BECs. Comparison of
these thermalized states with the long time decay of rotating turbu-
lence shows strong similarities in the spatial distribution of mass den-
sity as well as in the spectral distribution of the incompressible and
compressible kinetic energies. This confirms that the observed �k�1
Vinen-like spectrum of incompressible kinetic energy can be the result
of a random quasi-two-dimensional arrangement of vortices,23 which
the emission of phonons is mostly two-dimensional (as indicated by
the �k thermalized scaling of the compressible kinetic energy) and
provides useful information on how rotating quantum turbulence
decays into new equilibria.
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FIG. 11. Isotropic compressible (solid) and incompressible (dashed) energy spectra
for X ¼ 4:5Xc of (a) the Abrikosov lattice at T¼ 0, compared with a RGPE late
time solution and (b) different Abrikosov lattices at different T> 0, compared
against the same RGPE solution. In both panels, the late time average of RGPE
decaying turbulence is indicated by black lines. In the bottom panel, the spectra of
thermal equilibria Abrikosov lattices obtained with RGLET are indicated by red lines.
From light to dark red, the simulations with increasing temperature correspond to
T=Tc � 0:005, 0.01, 0.02, and 0.05. Several power laws are shown as references.
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