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Abstract. We undertake a systematic, direct numerical simulation of the two-
dimensional, Fourier-truncated, Gross–Pitaevskii equation to study the turbulent
evolutions of its solutions for a variety of initial conditions and a wide range
of parameters. We find that the time evolution of this system can be classified
into four regimes with qualitatively different statistical properties. Firstly, there
are transients that depend on the initial conditions. In the second regime, power-
law scaling regions, in the energy and the occupation-number spectra, appear
and start to develop; the exponents of these power laws and the extents of the
scaling regions change with time and depend on the initial condition. In the
third regime, the spectra drop rapidly for modes with wave numbers k > kc

and partial thermalization takes place for modes with k < kc; the self-truncation
wave number kc(t) depends on the initial conditions and it grows either as a
power of t or as log t . Finally, in the fourth regime, complete thermalization is
achieved and, if we account for finite-size effects carefully, correlation functions
and spectra are consistent with their nontrivial Berezinskii–Kosterlitz–Thouless
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forms. Our work is a natural generalization of recent studies of thermalization
in the Euler and other hydrodynamical equations; it combines ideas from fluid
dynamics and turbulence, on the one hand, and equilibrium and nonequilibrium
statistical mechanics on the other.

S Online supplementary data available from stacks.iop.org/NJP/15/113025/
mmedia
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1. Introduction

The elucidation of the nature of superfluid turbulence, which began with the pioneering
studies of Feynman [1] and Vinen and Hall [2–6], has continued to engage the attention
of experimentalists, theoreticians and numerical simulators [7–13] and has experienced a
renaissance over the last few years. Experimental systems, in which such turbulence is
studied, include the bosonic superfluid 4He, its fermionic counterpart 3He and Bose–Einstein
condensates (BECs) of cold atoms in traps and their optical analogues; for representative
studies, we refer the reader to [14–23]. Theoretical and numerical studies have used a variety of
models to study superfluid turbulence; these include the two-fluid model [24, 25], Biot–Savart-
type models with [26, 27] or without [28, 29] the local-induction approximation and the
Gross–Pitaevskii (GP) or nonlinear Schrödinger equations [30, 31]. These models have been
studied by a combination of theoretical methods, such as wave-turbulence theory [30–33] and
numerical simulations [34–40]. Most of these studies have been carried out in three dimensions
(3D); numerical simulations of two-dimensional (2D) models for superfluid turbulence have
been increasing steadily over the last few years [41–44]. Here we undertake a systematic direct
numerical simulation (DNS) of the dissipationless, unforced, Fourier-truncated, 2D GP equation
with a view to identifying what, if any, features of the turbulent evolution of the solutions of
this equation are universal, i.e. they do not depend on initial conditions. Some, although not
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all, of our results are contained in earlier simulations [41–48]. The perspective of our study is
different from earlier studies of the 2D GP equation; in particular, we elucidate in detail the
dynamical evolution of this system and examine the various stages of its thermalization; in this
sense our work is akin to recent studies of thermalization in Euler and other hydrodynamical
equations [49–51], which combine ideas from fluid dynamics and turbulence, on the one hand,
and equilibrium and nonequilibrium statistical mechanics on the other. Recent studies [49–51]
of the dynamics of spectrally truncated, 3D, incompressible Euler flows and related systems
have shown that the inviscid and conservative Euler equation, with a high-wave-number
spectral truncation, has long-lasting transients that behave just as those of the 3D dissipative
Navier–Stokes equation, with generalized dissipation. This is so because the thermalized modes,
between some transition wave number and the maximum wave number, act as an effective
microworld that provides viscosity to the modes, with wave numbers below the transition
wave number; a similar study for the 3D GP equation has been carried out by Krstulovic and
Brachet [38, 52].

In a recent review on quantum turbulence, Paoletti and Lathrop [12] write, ‘Despite the
abundant examples of turbulence, there is no consensus definition of the term. Here, we define
turbulence as a dynamic field that is spatially complex, aperiodic in time, and involves processes
spanning several orders of magnitude in spatial extent and temporal frequency’. It is in this sense
that we use the term turbulence in our study of the dynamical evolution of solutions of the 2D,
Fourier-truncated GP equation.

It is useful to begin with a qualitative overview of our principal results. We find that the
dynamical evolution of the dissipationless, unforced, 2D, Fourier-truncated GP equation can be
classified, roughly, into the following four regimes, which have qualitatively different statistical
properties. (i) The first is the region of initial transients; this depends on the initial conditions.
(ii) This is followed by the second regime, in which we see the onset of thermalization;
here the energy and occupation-number spectra begin to show power-law-scaling behaviour,
but the power-law exponent and the extents of the scaling regions change with time and
depend on the initial conditions. (iii) In the third regime, which we call the region of partial
thermalization, these spectra show clear, power-law, scaling behaviour, with a power that is
independent of the initial conditions, and, at large wave vectors, an initial-condition-dependent,
self-truncation regime, where spectra drop rapidly. (iv) Finally, in the fourth regime, the system
thermalizes completely and exhibits correlation functions that are consistent with the predictions
of the Berezinskii–Kosterlitz–Thouless (BKT) theory [47, 53–55], if the simulation domain
and simulation time are large enough. Although some of these regimes have been seen in
some earlier numerical studies of the 2D GP equation, we are not aware of any study that
has systematized the study of these four dynamical regimes. In particular, regime 3, which
shows partial thermalization and self-truncation in spectra, has not been identified in the 2D,
Fourier-truncated, GP equation, even though its analogue has been investigated in the 3D case
[32, 38, 52].

The remaining part of this paper is organized as follows. In section 2, we describe the
2D GP equation and the different statistical measures we use to characterize turbulence in the
Fourier-truncated, 2D GP equation (section 2.1); the details of our numerical methods and initial
conditions are given in section 2.2. In section 3, we present our results; these are described in the
four sections 3.1–3.4 that are devoted, respectively, to the following: (a) the temporal evolution
of the energy components, velocity-component probability distribution functions (PDFs) and
the population N0 in the zero-wave-number mode; (b) the statistical characterization of the first
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two regimes of the dynamical evolution (by using various energies and the occupation-number
spectra for different initial conditions); (c) a similar statistical characterization, as in section 3.2,
but for the regime with partial thermalization, and the study of the nature of the growth of the
self-truncation region; (d) the final, completely thermalized state of the Fourier-truncated, 2D
GP equation. Section 4 contains our conclusions. A note on the units used for the GP equation
and details of some analytical calculations are presented in appendices A and B, respectively.

2. Model, initial conditions and numerical methods

In this section, we describe the 2D GP equation. We define all the statistical measures that we
use to characterize the time evolution of this equation, given the three types of initial conditions
that we describe below. We also describe the numerical methods and computational procedures
that we use to solve this equation.

2.1. The Gross–Pitaevskii equation

The GP equation, which describes the dynamical evolution of the wave function ψ of a weakly
interacting 2D Bose gas at low temperatures, is

i
∂ψ(x, t)

∂t
= −∇

2ψ(x, t)+ g|ψ |
2ψ(x, t), (1)

ψ(x, t) is a complex, classical field and g is the effective interaction strength [56, 57]. This
equation conserves the total energy

E =

∫
A

[
|∇ψ |

2 +
1

2
g|ψ |

4

]
d2x (2)

and the total number of particles

N =

∫
A

|ψ |
2 d2x, (3)

where A= L2 is the area of our 2D, periodic, computational domain of side L . From (1) we
obtain the continuity equation

∂ρ

∂t
+ ∇ (ρv)= 0, (4)

where ρ = |ψ |
2 is interpreted as the particle density and the velocity is

v(x, t)=
ψ∗

∇ψ −ψ∇ψ∗

i|ψ |2
. (5)

We can use the Madelung transformation ψ(x, t)=
√
ρ eiθ(x,t), where θ(x, t) is the phase of

ψ(x, t), to write v(x, t)= 2∇θ(x, t), whence we obtain [35]

E=

∫
A

[
1

4
ρv2 +

1

2
g|ψ |

4 + [∇ρ1/2]2

]
d2x=Ekin + Eint + Eq, (6)

where the kinetic, interaction and quantum-pressure energies are defined, respectively, as

Ekin =
1

4

∫
A

|
√
ρv|2 d2x, (7a)
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Eint =
1

2

∫
A

g|ψ |
4d2x, (7b)

Eq =

∫
A

|∇ρ1/2
|
2d2x . (7c)

We separate the compressible (superscript c) and the incompressible (superscript i) parts
of the kinetic energy by making use of the decomposition

ρ1/2v = (ρ1/2v)i + (ρ1/2v)c, (8)

where ∇ · (ρ1/2v)i = 0 and ∇ × (ρ1/2v)c = 0, whence we obtain the following:

E i
kin =

1

4

∫
A

|(
√
ρv)i|2d2x, (9a)

E c
kin =

1

4

∫
A

|(
√
ρv)c|2d2x . (9b)

The spectra for these energies are defined as follows:

E i
kin =

1

4

∫
| ̂(ρ1/2v)i|2d2k ≡

∫
E i

kin(k) dk, (10)

E c
kin =

1

4

∫
| ̂(ρ1/2v)c|2d2k ≡

∫
E c

kin(k) dk, (11)

Eint =

∫
|
̂√
g/2|ψ |2|

2d2k ≡

∫
Eint(k) dk (12)

and

Eq =

∫
|∇̂ρ1/2|

2d2k ≡

∫
Eq(k) dk. (13)

Furthermore, we define an occupation-number spectrum n(k) via

N=

∫
|ψ̂ |

2d2k ≡

∫
n(k) dk, (14)

where we denote the Fourier transform of A(x) by Â; and, for notational convenience, we do
not show explicitly the dependence of these spectra on time t . In any computational study, we
must limit the number of Fourier modes that we use in our study of the GP equation; we refer
to such a GP equation as a Fourier-truncated GP equation (cf [49, 50] for studies of the Fourier-
or Galerkin-truncated Euler equation).

The Bogoliubov dispersion relation ωB(k) is obtained by linearizing (1) around a constant
ψ . For total number of particles (3) N = 1, it is

ωB(k)= kc

√
1 +

ξ 2k2

2
, (15)

where the sound velocity is c =

√
2 g
L and the coherence length is

ξ =
L

√
g
. (16)
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We investigate thermalization in the 2D GP equation, so it is useful to recall that a uniform,
interacting, 2D Bose gas has a high-temperature disordered phase and a low-temperature BKT
phase [58–61], which shows quasi-long-range order with an algebraic decay of the spatial
correlation function [53]

c(r)= 〈[e−iθ(x)
− 〈e−iθ(x)

〉][eiθ(x+r)
− 〈eiθ(x+r)

〉)]〉 (17)

for temperatures T below the transition temperature TBKT (or energy EBKT in the microcanonical
ensemble)

c(r)∼ r−η, (18)

where r ≡ |r| and the critical exponent η < 0.25 for T < TBKT; and η = 0.25 at T = TBKT [54].
The BKT phase shows bound vortex–antivortex pairs; these unbind above TBKT, so

c(r)∼ e−r/` (19)

in the disordered phase, with ` the correlation length.

2.2. Numerical methods and initial conditions

To perform a systematic, pseudospectral DNS of the spatiotemporal evolution of the 2D,
Fourier-truncated, GP equation, we have developed a parallel message passing interface (MPI)
code in which we discretize ψ(x, t) on a square simulation domain of side L = 32 with N 2

c
collocation points. We use periodic boundary conditions in both spatial directions, because we
study homogeneous, isotropic turbulence in this 2D system, and a fourth-order, Runge–Kutta
scheme, with time step 1t , for time marching. We evaluate the linear term in (1) in Fourier
space and the nonlinear term in physical space; for the Fourier-transform operations we use
the FFTW library (www.fftw.org). Thus, the maximum wave-number kmax = (Nc/2)1k, where
1k = 2π/L , and

ξkmax =
πNc
√

g
. (20)

We have checked that, for the quantities we calculate, dealiasing of our pseudospectral code
does not change our results substantially; here we present the results from our pseudospectral
simulations that do not use dealiasing. For a general reference on numerical methods for
quantum fluids, see [62].

To initiate turbulence in the 2D GP equation we use three types of initial conditions
IC1 [41], IC2 and IC3 [52], always normalized to correspond to total number of particles (3)
N = 1. The first of these is best represented in Fourier space as follows:

ψ̂(k, t = 0)=
1

√
π1/2σ

exp
(
−
(k − k0)

2

2σ 2

)
exp (i2(kx , ky)), (21)

where k =

√
k2

x + k2
y , 2(kx , ky) are random numbers distributed uniformly on the interval[

0, 2π
]
; k0 =N01k and σ = B1k, where the integer N0 controls the spatial scale at which

energy is injected into the system, and the real number B specifies the Fourier-space width of
ψ̂ at time t = 0. The initial condition IC2 is like IC1 but, in addition, it has a finite initial
condensate population N i

0 =| ψ̂(k = 0, t) |
2 (1k)2 at time t = 0. Note the study of [41] uses a

hyper-viscosity term ν(−∇
2)nψ , which is absent in our study; such hyperviscosity terms can
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modify energy spectra in important ways, as has been discussed in the context of turbulence in
the Navier–Stokes equation in [50, 63].

We obtain the initial condition IC3 by solving the 2D, stochastic, Ginzburg–Landau
equation (SGLE), which follows from the free-energy functional

F =

∫
A

d2x

(
|∇ψ |

2
−µ|ψ |

2 +
1

2
g|ψ |

4

)
, (22)

where µ is the chemical potential4. The SGLE is

∂ψ

∂t
= −

δF
δψ∗

+ ζ(x, t), (23)

where ζ is a zero-mean, Gaussian white noise with

〈ζ(x, t)ζ ∗(x′, t ′)〉 = Dδ(x − x′)δ(t − t ′), (24)

where D = 2T , in accordance with the fluctuation–dissipation theorem [64], T is the
temperature and δ the Dirac delta function. Finally, the SGLE (23) becomes

∂ψ

∂t
= ∇

2ψ −µψ + g|ψ |
2ψ + ζ, (25)

which we solve along with the following ad hoc equation

dµ

dt
= −

νN

A
(N − Nav) , (26)

to control the number of particles N ; the parameter Nav controls the mean value of N ; and νN

governs the rate at which the SGLE equilibrates. We solve the SGLE by using a pseudospectral
method, similar to the one described above for the 2D GP equation, with periodic boundary
conditions in space, an implicit-Euler scheme, with time step 1t , for time marching and the
method of reference [65] (see page 25 of this reference).

The motivation for choosing the parameters for our runs is to explore the initial-condition
dependence of our results by varying the energy, the value k0 of the wave number at which the
initial energy is concentrated, the spread σ of the energy about k0 at time t = 0, the interaction
strength g and the presence of the initial condensate density N i

0. For our systematic study,
we have performed numerous runs; these are listed in table 1; the parameters for these runs
have been chosen to highlight one type of behaviour or another; e.g. the time dependence
of the self-truncation wave number kc (see below) changes dramatically as we change the
parameters of our runs (see table 2); this exploration of parameter space is necessary in order
to gain a comprehensive understanding of the dynamics of the 2D, Fourier-truncated, GP
equation.

Note that we introduce the initial conditions IC2 and IC3 to obtain the relevant
behaviour in a shorter time span than is possible with IC1. The initial condition IC1 has
zero initial condensate population N i

0 and, therefore, several vortices; its dynamics involves
a build up of the condensate population; this takes a long time. The initial condition IC2 is
similar to IC1 but with an initial condensate population N i

0 > 0; thus, condensate build-up is
bypassed. In the same manner, IC3 allows us to study the late stages of the self-truncation
regime.

4 Recall that the SGLE can be thought of as an imaginary-time GP equation with external, additive noise (see
e.g. [38]).
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Table 1. Parameters for our DNS runs A1–A13, B1–B2 and C1–C6: N 2
c is the

number of collocation points, k0 is the energy-injection scale, σ is the Fourier-
space width of ψ̂ at t = 0; g is the effective interaction strength; N i

0 is the initial
condensate population; D and k in

c are, respectively, the variance of the white
noise and the initial value of the truncation wave number, which we use in the
initial conditions of type IC3; E is the total energy; we use a square simulation
domain of area A= L2; we choose L = 32.

Nc k0 (×1k) σ (×1k) g N i
0

√
D (×10−3) k in

c E

A1 1024 5 2 1000 – – – 2.120
A2 1024 5 2 2000 – – – 3.045
A3 1024 5 2 5000 – – – 5.82
A4 1024 35 5 1000 – – – 49.69
A5 512 5 2 1000 – – – 2.15
A6 256 5 2 1000 – – – 2.07
A7 128 5 2 1000 – – – 2.1
A8 64 5 2 1000 – – – 2.2
A9 256 5 2 2000 – – – 2.94
A10 256 5 2 5000 – – – 5.57
A11 256 15 2 1000 – – – 9.86
A12 256 15 2 2000 – – – 10.82
A13 256 15 2 5000 – – – 13.68
B1 128 5 1 10000 0.95 – – 5.44
B2 128 5 1 1000 0.95 – – 0.59
C1 256 – – 5000 – 8 6 2.536
C2 256 – – 1000 – 8 6 0.583
C3 256 – – 1000 – 10 6 0.637
C4 256 – – 1000 – 8 9 0.7
C5 256 – – 1000 – 8 15 1.085
C6 256 – – 1000 – 8 20 1.557

3. Results

We first present the time evolution of the different energies, the PDFs of the velocity components
and the population N0 in the zero-wave-number mode. We then give a detailed statistical
characterization of the temporal evolution of the Fourier-truncated, 2D GP equation in the four
regimes mentioned in the introduction (section 1).

3.1. Evolution of energies, velocity probability distribution functions and the
zero-wave-number population

We show the early stages of the time evolution of the energies E i
kin, E c

kin, Eint and Eq, from our
DNS runs A1–A4, B1 and C6 in figure 1. The runs A1–A4 use initial conditions of type IC1, in
which E i

kin is a significant fraction of the total initial energy; the runs B1 and C6 start with initial
configurations of types IC2 and IC3, respectively, in which E i

kin is negligibly small at t = 0. The
transient nature of the early stages of the dynamical evolution of the dissipationless, unforced,
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Table 2. Summary of the self-truncation results from our DNS runs A1–A4, B2
and C1–C6: E is the total energy; kmax = 2πNc/2L; ξ = L/

√
g is the healing

length; k i
c and kf

c are the initial and final values of kc (averaged over a few time
steps); α1 is the slope obtained from the log–log (base 10) plot of kc versus t and
α2 = 1/(1 −χ), where χ is the slope obtained from the log–log (base 10) plot of
dkc/dt versus kc/kmax.

E kmax ξ ξkmax k i
c kf

c α1 α2

A1 2.120 100.53 1.01 101.73 4.52 12.42 0.28 0.26
A2 3.045 100.53 0.72 71.9 5.39 18.72 0.28 0.28
A3 5.82 100.53 0.45 45.49 7.11 31.3 0.29 0.27
A4 49.69 100.53 1.01 101.73 17.31 30.53 0.2 0.21
B2 0.589 12.57 1.01 12.72 2.23 9.23 0.24 0.25
C1 2.536 25.13 0.45 11.37 7.08 19.91 0.22 0.22
C2 0.583 25.13 1.01 25.43 6.15 8.90 0.12 0.14
C3 0.637 25.13 1.01 25.43 6.18 10.05 0.14 0.15
C4 0.6999 25.13 1.01 25.43 9.05 11.07 0.09 –
C5 1.085 25.13 1.01 25.43 15.09 16.08 0.04 –
C6 1.557 25.13 1.01 25.43 20.17 20.87 0.02 –
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Figure 1. Plots versus time t of the four components of the total energy E i
kin,

E c
kin, Eint and Eq, during the initial stages of evolution, from our DNS runs (a)
A1, (b) A2, (c) A3, (d) A4, (e) B1 and (f) C6 (see table 1).

2D GP equation is evident from figure 1, in which we observe a rapid conversion of E i
kin into

the other three components, with a significant fraction being transferred to E c
kin; moreover,

the transient stage depends on the initial conditions, as we describe below. Figures 1(a)–(c)
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show comparisons of the temporal evolution of the energies, from the runs A1–A3; we observe,
in particular, that the conversion of E i

kin into the other energy components is accelerated as
g increases from 1000 to 5000 (cf [42]); and there is a corresponding acceleration in the
approach to thermalization. The time evolution of the incompressible kinetic energy follows
that of the total number of vortices Nv; see e.g. [66], and figure F1, which we have included in
the supplementary material (available from stacks.iop.org/NJP/15/113025/mmedia). Moreover,
the larger the value of E i

kin, the larger is the time required for thermalization, as we can see
by comparing figures 1(a) and (d), for the runs A1 and A4, respectively; the run A4 starts
with a high value of E i

kin(t = 0) because of a large number of vortices and anti-vortices, so
it takes a long time to thermalize; indeed, if the spatial resolution of our DNS is very high,
the computational cost of achieving a statistically steady state is prohibitively high for initial
conditions A1–A4. In contrast, the runs B1 and C6 have negligibly small values of E i

kin(t = 0) to
begin with (figures 1(e) and (f), respectively); and E i

kin(t) remains close to zero throughout the
dynamical evolution here. For run B1, both E c

kin and Eq start from values close to zero, grow
at the cost of Eint and finally saturate to small, statistically steady values. For run C6, there
are hardly any vortices in the initial configuration, so the energies start fluctuating about their
statistically steady values very rapidly.

In figure 2 we plot, at three instants of time, the PDFs of vx and vy , the Cartesian
components of the velocity, for our DNS runs A1, B1 and C6, which correspond, respectively,
to initial conditions of types IC1, IC2 and IC3. For the run A1, these PDFs, in figures 2(a)–(c),
show a cross-over from a distribution with power-law tails to one that is Gaussian; the right and
left tails of the PDFs in figure 2(a) can be fitted to the form ∼ v

−γ

i , with γ ' 3.2, and i= x or y
(we show fits only for i = x). Such power-law tails in velocity-component PDFs have been seen
in experiments [67] and some numerical studies [39, 45, 68, 69]. However, it has not been noted
hitherto that, for turbulence in the Fourier-truncated, 2D GP equation with low-energy initial
conditions, such PDFs evolve, as t increases, from PDFs with power-law tails (figure 2(a) for
run A1), to ones with a Gaussian form near the mean, followed by broad tails (figure 2(b) for
run A1), and then to more-or-less Gaussian PDFs (figure 2(c) for run A1), but with tails that can
be fitted to an exponential form. This evolution towards Gaussian PDFs is associated with the
annihilation of vortices and anti-vortices. The video S1 in the supplementary material shows
the temporal evolution of this PDF in the left panel and the spatiotemporal evolution of the
pseudocolour plot of the vorticity in the right panel. The analogues of figures 2(a)–(c) for runs
B1 and C1, both of which have a negligibly small value of E i

kin at t = 0, are given, respectively,
in figures 2(d)–(f) and (g)–(i).

To calculate the velocity PDFs, during the various stages of the evolution of the system, we
obtain the velocity at every grid point in our simulation domain; thus, we make these numerical
measurements at a length scale that is always less than the inter-vortex separation. The power-
law tails, which we observe in the velocity PDFs for our DNS run A1, arise because of the
singular nature of quantum vortices [12]; and the cross-over from such power-law tails, in the
initial stages of evolution, to the more-or-less Gaussian PDFs, in the partially thermalized state,
arises because of the depletion of the vortex density with time. Thus, our results complement
those in [70] insofar as the cross-over from power law to Gaussian tails occurs as our system
evolves in time and not as we change the length scale of our measurement as in [70].

We turn now to the time evolution of the population N0(t), in the k = 0 mode [36, 40, 71],
and its dependence on the initial conditions. In figure 3(a) we plot N0 versus t for the runs A1–A4
(red, blue, green and brown curves, respectively), which use initial configurations of type IC1;
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Figure 2. Semilog (base 10) plots of the PDFs of the x (red circles) and y (green
squares) components of the velocity from our DNS runs: (a)–(c) A1, (d)–(f) B1
and (g)–(i) C6, corresponding to each of the three types of initial conditions IC1,
IC2 and IC3, respectively. The complete time evolution of the PDFs (a)–(c)
for the run A1 is illustrated in the top-left panel of the video S1; see the
supplementary material available from stacks.iop.org/NJP/15/113025/mmedia.
The blue-dashed lines in (b)–(i) indicate fits to Gaussian PDFs; the dashed lines
in (a) indicate power-law fits to the left (blue-dashed line) and right (orange-
dashed line) tails of the PDFs (see text).

these figures show that N0(t) increases with t , on average, and depends on E , g, k0 and σ . For
the runs A1 and A2 (red and blue curves in figure 3(a)), N0(t) approaches a saturation value for
the time scales probed by our simulations; figure 3(a) also shows that, as we increase g (red,
blue and green lines in figure 3(a)), the fluctuations in N0 are enhanced and its large t value,
which it seems to approach asymptotically, diminishes. By comparing the runs A1 and A4 (red
and brown lines in figures 3(a)), we see that the latter has a higher value of E than the former,
because both k0 and σ are smaller for A1 than for A4; thus, N0(t) grows more slowly in A4 than
in A1; and, after equal lengths of simulation time, its value in A4 is nearly an order of magnitude

New Journal of Physics 15 (2013) 113025 (http://www.njp.org/)

http://stacks.iop.org/NJP/15/113025/mmedia
http://www.njp.org/


12

0 250 500 750 1000 1250
0

0.2

0.4

0.6

0.8

1

t

N
0

(a)

 

 

A1
A2
A3
A4

0 1000 2000 3000 4000 5000
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

t

N
0

(b)

 

 

B1

0 2000 4000 6000 8000 10000
0.976

0.978

0.98

0.982

0.984

t

N
0

(c)

 

 

C6

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

t

N
0

(d)

 

 

A1
A5
A6
A7
A8

Figure 3. Plots versus time t of the population N0, in the zero-wave-number
mode, from our DNS runs (a) A1–A4 (initial condition of type IC1), (b) B1
(initial condition of type IC2), (c) C6 (initial condition of type IC3) and (d) A1
and A5–A8, for five values for the number of collocation points N 2

c , namely,
10242, 5122, 2562, 1282 and 642.

lower than in A1; the former shows large fluctuations in N0(t) and no sign of saturation. The run
B1 (figure 3(e)) uses an initial configuration of type IC2, with a large value of N0(t = 0)= 0.95;
in this case, after a period of initial transients, N0(t)→ 0.98 over our simulation time. The run
C6 (figure 3(f)) uses an initial condition of type IC3; here N0(t) fluctuates slightly but remains
close to its initial value (cf [40, 71]).

To study the dependence of N0(t) on the number of collocation points N 2
c , we evolve the

initial configuration of A1 for Nc = 512 (run A5), 256 (run A6), 128 (run A7) and 64 (run A8).
Figure 3(g) shows plots of N0(t) versus t for these five runs; clearly, the initial evolution of
N0(t) depends significantly on Nc; however, the large t values of N0(t), on the time scales of
our runs, are comparable (' 0.9) for the runs with Nc = 128 (run A7), 256 (run A6) and 1024
(run A1). In contrast, the saturation value for the run with Nc = 64 (run A8) is ' 0.8. For the run
A5 (Nc = 512), N0(t) shows large fluctuations and no sign of saturation over the time scale that
we have covered; this suggests that N0(t) also depends on the realization of the random phases
2(kx , ky) in (21). These plots of N0(t) illustrate that complete thermalization proceeds very
slowly for N0; in the completely thermalized state of the Fourier-truncated, 2D GP system,
N0 must vanish in the thermodynamic limit by virtue of the Hohenberg–Mermin–Wagner
theorem [58, 59]; however, it is not easy to realize this limit in finite-size systems and with the
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Figure 4. Log–log (base 10) plots of the spectra E i
kin(k) from our DNS runs (a)

A1, (b) A2, (c) A3 and (d) A4 at different times t (indicated by curves of different
colours); a k−3 power law is shown by orange-dashed lines. The complete
time evolution of the spectra in (a)–(d) is illustrated in the video S2 (see the
supplementary material, available from stacks.iop.org/NJP/15/113025/mmedia).

limited run times that are dictated by computational resources. We discuss these issues again in
section 3.4 and also refer the reader to [71, 72].

3.2. Initial transients and the onset of thermalization

The initial stages of the evolution of energy spectra for the Fourier-truncated, 2D GP equations
are qualitatively different for initial conditions of types IC1–IC3. The first type begins with a
sizeable incompressible kinetic energy spectrum E i

kin(k); and the initial transients are associated
with the annihilation and creation of vortex–antivortex pairs, the associated depletion of E i

kin(k),
and the growth of the other energy components [41]. In contrast, runs with initial conditions of
types IC2 and IC3 start with a very small incompressible-energy component, therefore, even the
early stages of their dynamical evolution are akin to the late stages of the dynamical evolution
with initial conditions of type IC1. In figures 4(a)–(d) we show the time evolution of the spectra
E i

kin(k), for the runs A1–A4, to ascertain the presence of scaling behaviour, if any. We find that,
in the low-k region, E i

kin(k) lacks a well-defined scaling region (unlike in [42]); indeed, this
region depends on the initial configuration, changes continuously with time, and, in particular,
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Figure 5. Log–log (base 10) plots of the spectra E c
kin(k) from our DNS runs

(a)–(c) A1, (d)–(f) A4 and (g)–(i) B1 at different times t (indicated by curves of
different colours); a k power law is shown by orange-dashed lines.

a k−5/3 scaling region is tenable (a) over a range of wave numbers that is very tiny and (b)
over a fleetingly short interval of time (around t= 50 for the run A1). At large wave numbers,
E i

kin(k)∼ k−3, during the initial stages of evolution, because of the presence of the vortices [44];
this power-law form holds over the same time scales for which the PDF P(vx/σvx )∼ v−γ

x
(figures 2(a) and (b)).

It is useful to define a wave number khd = 2π/δ based on the average vortex separation
δ = λ−1/2, where λ= Nv/A is the vortex density. We calculate khd and plot it versus time
t , for the DNS runs A1–A3, in figure F2 in the supplementary material (available from
stacks.iop.org/NJP/15/113025/mmedia). In our simulations, only a small number of modes have
k 6 khd , especially for our DNS runs A1–A3 (see figure 4 in which we have plotted E i

kin(k)). In
our study, given the system sizes and initial conditions we use, the system evolves towards states
in which the vortex density is low.

The initial transients described above are followed by a regime in which the energy and
occupation-number spectra begin to show power-law-scaling behaviour, but the power-law
exponent and the extent of the scaling region change with time and depend on the initial
conditions; we regard this as the onset of thermalization, which is shown in figures 5 and 6,
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Figure 6. Log–log (base 10) plots of the spectra E c
kin(k) from our DNS runs

(a)–(c) A7 and (d)–(f) B2 at different times t (indicated by curves of different
colours); a k power law is shown by orange-dashed lines.

where we illustrate the time evolution of E c
kin. Figure 5(a) shows E c

kin(k) for the run A1; we
begin to see a power-law region here with E c

kin(k)∼ k, on the low-k side of the peak after which
the spectrum falls steeply. Similar E c

kin(k)∼ k behaviour starts to emerge in the region k . kmax

for the run B1 (figure 5(g)). In this onset-of-thermalization regime, we also see the development
of the following power laws: Eint(k)+ Eq(k)∼ k (figure 7) and n(k)∼ 1/k (figure 8).

3.3. Partial thermalization and self-truncation

3.3.1. Partial thermalization. In the third stage of the dynamical evolution of the 2D, Fourier-
truncated, GP equation, which we refer to as the partial-thermalization stage, well-defined,
power-law-scaling behaviour appears in energy and occupation-number spectra, with exponents
that are independent of the initial conditions as illustrated by the compressible-kinetic-energy
spectra in figures 5(b), (c) (e), (f) and 6(b) for initial conditions of type IC1, and figures 5(h)
and 6(e), (f), for initial conditions of type IC2. It is important to distinguish between (I) spectra
that fall steeply at large values of k, e.g. the spectra in figures 5(b), (c) (e), (f) and 6(e), (f), and
(II) spectra that increase all the way to kmax, e.g. the spectra in figures 5(h) and 6(b), (c). In
case (I), we have spectral convergence to the 2D GP partial differential equation (PDE); in case
(II), the effects of Fourier truncation are so pronounced that our truncated 2D GP system does
not provide a good representation of the 2D GP PDE. As we show below, case (I) can be further
subdivided into (A) a subclass in which the maximum, at k = kc in Ekin(k)= (E c

kin(k)+ E i
kin(k)),

referred to as the self-truncation wave number [52], moves out to kmax as a power of t and (B) a
subclass in which kc moves out to kmax at a rate that is slower than a power of t .

Figures 5(g)–(i), from the run B1, show how E c
kin(k) evolves as the spectral convergence

to the GP PDE is lost in case (II); note that the scaling region with E c
kin ∼ k sets in at high
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Figure 7. Log–log (base 10) plots of the spectra Eint(k)+ Eq(k) from our DNS
runs (a)–(c) A1, (d)–(f) A4 and (g)–(i) B1 at different times t (indicated by curves
of different colours); a k power law is shown by orange-dashed lines.

wave numbers close to kmax and then extends to the low-wave-number regime. For case (IA),
analogous plots of E c

kin(k) are given in, e.g., figures 6(a)–(c). We give plots for case (IB) in
the next subsection, where we study in detail the time dependence of kc. Illustrative plots
of the spectra (Ei(k)+ Eq(k)) and n(k) in this regime of partial thermalization are given in
figures 7 and 8, respectively.

3.3.2. Self-truncation. We now present a detailed characterization of the partial-thermalization
regime, when energy spectra display self-truncation at wave numbers beyond kc(t), which can
be defined as follows:

kc =

√√√√2
∫ kmax

0 k2 Ekin(k) dk∫ kmax

0 Ekin(k) dk
, (27)

as the system approaches complete thermalization, kc(t)→ kmax. In particular, we explore how
the scaling ranges in energy spectra grow with t for different values of g, with the initial
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Figure 8. Log–log (base 10) plots of the spectra n(k) from our DNS runs (a)–(c)
A1, (d)–(f) A4 and (g)–(i) B1 at different times t (indicated by curves of different
colours); a k−1 power law is shown by orange-dashed lines. The total number
of particles N = 1 (see (14)) and the area A= 322 of the simulation domain is
the same for the DNS runs A1, A4 and B1; and N is conserved during the time
evolution of the system.

configuration and number of collocation points Nc held fixed. For an initial condition of type
IC1, with k0 = 51k, σ = 21k and Nc = 256, we obtain the time evolution of energy spectra
for g = 1000 (run A6), 2000 (run A9) and 5000 (run A10) in figures 9(a)–(c), respectively,
and their video analogues (video S3 (panel V2) in the supplementary material, available
from stacks.iop.org/NJP/15/113025/mmedia). The larger the value of g, the more rapid is the
thermalization, and the consequent loss of spectral convergence, as we can see by comparing
the sky-blue (run A10), green (run A9) and purple (run A6) spectra in figures 9(a)–(c); run A6
loses spectral convergence around t = 2500. We obtain the same qualitative g dependence, with
k0 = 151k, σ = 21k and Nc = 256, for g = 1000, 2000 and 5000, i.e. runs A11, A12 and A13,
respectively, for which energy spectra are portrayed in figures 9(d)–(f) and video S3 (panel V3)
in the supplementary material.
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Figure 9. Log–log (base 10) plots of the spectra Ekin(k) from our DNS runs
(a)–(c) A6, A9 and A10 (k0 = 51k and σ = 21k), (d)–(f) A11, A12 and A13 (k0 =

151k and σ = 21) and (g)–(i) A1, A5–A8 (N 2
c = 10242, 5122, 2562, 1282 and

642). The complete time evolutions of the spectra in (a)–(c), (d)–(f) and (g)–(i)
are illustrated in the panels V2, V3 and V4 of video S3 (see the supplementary
material, available from stacks.iop.org/NJP/15/113025/mmedia).

In figures 9(g)–(i) we explore the Nc dependence of the self-truncation of energy spectra,
for initial conditions, with k0 = 51k, σ = 21k and g = 1000, and five different values of Nc,
namely, Nc = 1024 (run A1), 512 (run A5), 256 (run A6), 128 (run A7) and 64 (run A8). We
find, not surprisingly, that the lower the value of Nc, the more rapidly the system loses spectral
convergence.

Note the dual nature of solutions to the truncated GPE: in the early part of the dynamical
evolution of this system, which lasts only as long as spectral convergence is ensured, the
solutions approximate numerically genuine solutions of the original PDE (i.e. the untruncated
GPE). In subsequent evolution, when spectral convergence is lost, the truncated system
evolves to a truncation-dependent thermodynamic equilibrium, which we call ‘complete
thermalization’. These two distinct aspects might appear, at first sight, to be mutually exclusive.
Indeed, in the first part of the evolution, the truncation wave number kmax has no effect (or
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Figure 10. Log–log (base 10) plots of the spectra Ekin(k) from our DNS runs
(initial conditions of type IC3): (a) C1, (b) C2, (c) C3, (d) C4, (e) C5 and (f) C6.

a vanishingly small one) on the solution, whereas, in the next part, the very existence of the
equilibrium needs the influence of kmax. However, figure 9 shows that, in a regime that we
call ‘partial thermalization’, the system ‘self-truncates’ with a physical cutoff at momentum
kc < kmax. In this new regime the system is in a state that both approximates a solution to the
original PDE and can also be thought of as a thermalized state with a slowly growing ‘self-
truncation’ at wave number kc. We show below that the self-truncation regime can last a long
time when ξkc is large.

Initial conditions of type IC2 lead to energy spectra whose time evolution, and their
dependence on g and Nc, is similar to those that are obtained from initial conditions of type
IC1.

With initial conditions of types IC1 and IC2, we cannot control the initial value kc(t = 0)
≡ k in

c easily. However, initial conditions of type IC3, which we obtain from the SGLE, allow
us to control k in

c and start, therefore, with initial spectra that display partial thermalization for
k < k in

c [52] and a sharp fall thereafter. In figure 10, we show the time evolution of E c
kin(k)

for such initial conditions from runs C1–C6. For different representative values of k in
c , g and

D, we now study the time evolution of kc(t), which characterizes the growth of the partially
thermalized scaling region. Here too, as with initial conditions of types IC1 and IC2, if all other
parameters like k in

c = 6.0 and D are held fixed, the speed of thermalization increases with g
(cf figure 10(a) for the run C1, with g = 5000, and figure 10(b) for the run C2, with g = 1000).
For these runs C1–C6, the growth of the energy spectra, in the region k > k in

c , starts with the
smoothing of the sharp cutoff at k in

c ; the higher the value of k in
c , the slower is this growth (cf

figures 10(b), (d), (e) and (f) for runs C2, C4, C5 and C6, respectively). By contrast, an increase
in D (or T ) in the SGLE accelerates this growth (cf figures 10(b) and (c) for runs C2 and C3,
respectively).
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Figure 11. Plots of (a) the self-truncation wave-number kc(t) versus time t and
(b) dkc/dt versus kc/kmax from our DNS runs A1–A4, B2 and C1–C6.

The growth of kc(t) with t , illustrated in figure 11(a), can be fitted to the form kc(t)∼ tα;
however, as we show below, α depends on the initial condition. We obtain the exponent α
either from slopes of log–log plots of (i) kc(t) versus t or (ii) dkc/dt versus kc/kmax; we denote
the values from procedures (i) and (ii) as α1 and α2, respectively. Note that in (ii) we have a
parametric plot [38, 52], shown in figure 11(b); this yields a straight-line scaling regime with
slope χ and α2 = 1/(1 −χ). The values of α1 and α2, listed in table 2, show that α1 ' α2;
the discrepancy between these two values for α is a convenient measure of the errors of our
estimates. For runs C4, C5 and C6, we cannot obtain α2 reliably; the small values of α1 for these
runs indicate very slow growth of kc(t); indeed, in runs C5 and C6, a case can be made for a
logarithmic growth of kc(t) with t .

3.4. Complete thermalization

The partially thermalized stage of the dynamical evolution of the 2D, Fourier-truncated, GP
equation may either gradually become completely thermalized, in which state a power-law
scaling region is present in the entire energy and the occupation number spectra, or remain self-
truncated with logarithmic growth. In figures 5(g)–(i) and 6(a)–(c), we show the compressible
kinetic energy spectra E c

kin for the runs B1 and A7, where E c
kin shows power-law scaling over

the entire wave-number range, from k = 2π/L up to kmax, towards the end of the respective
simulations; a naive fit is consistent with E c

kin(k)∼ k (but see below).

3.4.1. Correlation functions and the Berezinskii–Kosterlitz–Thouless (BKT) transition. A
uniform, 2D, interacting Bose gas exhibits a BKT phase at low energies (temperatures in the
canonical ensemble). Thus, the completely thermalized state of the 2D, Fourier-truncated, GP
equation should yield a BKT phase [53, 55], with the correlation function c(r)∼ r−η, at energies
E < EBKT; and c(r) should decay exponentially with r if E > EBKT. We show this explicitly
now by using initial conditions of type IC1 with Nc = 64 and 128, and g = 1000; we obtain
different energies by changing k0 and σ (runs D1–D13 and E1–E12 in table 3).

In figure 12, we present plots of the correlation functions c(r). To illustrate the BKT
transition clearly, we present log–log plots of c(r) versus r , for E < EBKT, in figures 12(a) and
(d), where the straight lines indicate power-law regimes; and, for E > EBKT, we use semi-log
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Table 3. List of parameters for our complete-thermalization DNS runs D1–D13
(N 2

c = 1282) and E1–E12 (N 2
c = 642): N 2

c is the number of collocation points;
k0 is the energy-injection scale; σ is Fourier-space width of ψ at t = 0; E is
the total energy; and η is the exponent of the correlation function c(r)∼ r−η for
E < EBKT. g = 1000 for all the DNS runs and they have been performed on a
square simulation domain of area A= L2, with L = 32.

k0 σ k0 σ

Nc = 128 (×1k) (×1k) E η Nc = 64 (×1k) (×1k) E η

D1 5 2 2.1 0.008 E1 0 2 1.12 0.012
D2 10 2 5.05 0.024 E2 3 2 1.64 0.025
D3 12 2 6.74 0.034 E3 5 2 2.2 0.040
D4 14 2 8.74 0.047 E4 8 2 3.68 0.083
D5 16 2 11.05 0.080 E5 10 2 5.04 0.164
D6 18 2 13.68 0.111 E6 11 2 5.84 0.255
D7 20 2 16.62 0.181 E7 12 2 6.75
D8 21 2.5 18.34 0.239 E8 13 2 7.74
D9 24 3 23.75 E9 14 2 8.78
D10 25 2 25.3 E10 15 2 9.88
D11 26 2 27.27 E11 16 2 11.05
D12 28 2 31.44 E12 17 2 12.32
D13 30 2 35.9

plots, as in figures 12(b) and (e), where the straight lines signify an exponential decay of c(r)
with r . Given the resolution of our DNS runs, we find that, in a small energy range in the vicinity
of EBKT, we cannot fit power-law or exponential forms satisfactorily; this leads to an uncertainty
in our estimate for EBKT. Apart from this uncertainty, the behaviour of c(r), in the regime of
complete thermalization, is in accord with our expectations for the BKT phase; in particular,
the exponent η (see equation (18)) depends on E for E < EBKT as shown in figures 12(c)
and (f). Our values for η, for the runs with E < EBKT and with Nc = 64 and 128, are listed
in table 3. Note that EBKT ' 6 (Nc = 64) and EBKT ' 19 (Nc = 128), i.e. EBKT depends on Nc,
the number of collocation points; we show analytically below how a low-temperature analysis
can be used to understand this dependence of EBKT on Nc. In the completely thermalized state
of the Fourier-truncated, 2D GP system, N0 must vanish in the thermodynamic limit by virtue
of the Hohenberg–Mermin–Wagner theorem [58, 59] and n(k)∼ k−1+η; it is not easy to realize
this limit in finite-size systems and with the limited run times that are dictated by computational
resources (see the plots of N0 in figure 3); however, finite-size scaling can be used to extract the
exponent η from the k = 0 part of n(k), as shown in reference [72]; similarly, E c

kin(k) should
also show a power-law form with an exponent that depends on η, but this is difficult to realize
in numerical calculations with limited spatial resolutions and run lengths.

3.4.2. Analytical estimation of the energy of the BKT transition. The energy of a pure
condensate of a uniform, weakly interacting, 2D Bose gas, which is described by the GP
equation (1), is E0 = g/(2A). We define the energy of our system to be E = E0(1 + δE); this
energy E is fixed by the initial condition; and δE measures the relative amount by which E
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Figure 12. Plots of c(r) versus r for different energies in the complete-
thermalization regime, for N 2

c = 1282 ((a) and (b)) and N 2
c = 642 ((d) and (e)). (a)

and (d) Log–log (base 10) plots of c(r) versus r for different energies E < EKT;
the slopes of the linear parts of these plots yield the exponent η (table 3); (b) and
(e) semi-log (base 10) plots of c(r) versus r for different energies E > EKT; (c)
(N 2

c = 1282) and (f) (N 2
c = 642) show plots of η and N0 versus E (on the time

scales of our runs N0 is nonzero; see the text for a detailed discussion).

exceeds E0. As we show in appendix B, the Nc dependence of the energy EBKT, at which the
BKT transition occurs, can be obtained approximately as follows. We begin with

δEBKT = δẼBKT
8

log
(
π 2 Nc

2
(

1 + π2 Nc
2

2 g

)) , (28)

where δẼBKT, the estimate for the BKT transition energy that follows from an energy-entropy
argument (see (20) in the appendix and [53]), is

δẼBKT =
π 2 Nc

2

2 g
=
ξ 2k2

max

2
, (29)

whence we obtain

δEBKT =
4 k2

max ξ
2

log
(

k2
maxA

(
1 + k2

max ξ
2

2

)) . (30)

We can now write

EBKT = E0

1 +
4π 2 N 2

c

g log(π 2 N 2
c (1 + π2 N 2

c
2g ))

 , (31)

by using this expression, we can determine the ratio EBKT(N a
c )/EBKT(N b

c ) for runs with two
different values, N a

c and N b
c , for the number of collocation points; we can also obtain this

ratio from our DNS, by determining the value of E at which the exponent η becomes 1/4.

New Journal of Physics 15 (2013) 113025 (http://www.njp.org/)

http://www.njp.org/


23

Table 4. The values of E0, δẼBKT (see (29)), δEBKT (see (30)), EA
BKT (see (31))

and EDNS
BKT from our DNS runs D1–D13 (Nc = 64) and E1–E12 (Nc = 64). E0 is

the ground state energy of a pure condensate of a uniform, interacting, 2D Bose
gas and EDNS

BKT is BKT-transition energy determined using our DNS runs.

Nc E0 δẼBKT δEBKT EA
BKT EDNS

BKT

64 0.488 20.21 11.84 6.27 5.84
128 0.488 80.85 39.44 19.75 18.34

In table 4, we compare EBKT(Nc) for Nc = 64 and 128; our analytical approximation (31) yields
E128

BKT/E64
BKT ' 3.15; this is in excellent agreement with the value ' 3.14 that we obtain for this

ratio from our DNS results.
The thermalized state in the run A1 is in the BKT phase, because its total energy E <

E1024
BKT = 818.7 (31); thus, the system should be devoid of any free vortices, so the power-law

tails in the velocity PDFs should disappear; this is indeed what we find. By contrast, for the
thermalized states with energy E > EBKT, free vortices and antivortices are present; so the
velocity PDFs should show power-law tails, in such states, as we show explicitly in figure F3 in
the supplementary material (available from stacks.iop.org/NJP/15/113025/mmedia) for the run
D10, which has E > EBKT in the thermalized state.

4. Conclusions

We have carried out an extensive study of the statistical properties of the dissipationless,
unforced, 2D, Fourier-truncated, GP equation. Our study has been designed specifically to study
and identify the universal features, if any, of the turbulent evolution of the solutions of this
equation, by undertaking a systematic DNS. In our study, we have used statistical measures such
as velocity-component PDFs and energy and occupation-number spectra, for a large number of
initial conditions. To the best of our knowledge, such a comprehensive study of the Fourier-
truncated, 2D GP equation has not been attempted hitherto.

Our comprehensive study of the Fourier-truncated, 2D GP equation, which makes use of
the three types of initial conditions (section 2.2) and a wide range of parameters (tables 1 and 3),
allows us to systematize the dynamical evolution of this system into four different regimes, with
qualitatively different statistical properties. This demarcation of the evolution into different
regimes has not been systematized in earlier studies, which have concentrated only on one
or two of these regimes. For example, the study of White et al [39] has investigated states
with a significant number of vortex–anitvortex pairs and obtained for them PDFs of velocity
components that have power-law tails of the type shown in figure 2. Small et al [47], Foster
et al [55] and Damle et al [72] have investigated the BKT nature of the thermalized state. Wave-
turbulence studies [32, 41, 73] have focused on power-law regions in energy and occupation-
number spectra of the type we find in our third regime. The DNS studies in [41–45, 48, 74] have
considered the time evolution of spectra and PDFs for the Fourier-truncated, 2D GP equation;
in some cases, these studies introduce dissipation or hyperviscosity and forcing; they have
also reported different power laws in spectra [42, 43, 45]. A recent theoretical and numerical
study [48] has studied power-law regimes, associated with metastable transient states in the 2D
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GP system; it suggests that these power-law regimes occur because of non-thermal fixed points.
Our work suggests that, for the class of initial conditions which we have considered, at least in
the dissipationless, unforced, Fourier-truncated, 2D GP equation, the only robust power laws
in spectra are the ones we have reported above; all other apparent power laws occur either (a)
for very special initial conditions [44] or (b) last for fleetingly small intervals of time and extend
over very small ranges of k.

To recapitulate, we find that, in the first dynamical evolution regime of the Fourier-
truncated, 2D GP equation, there are initial-condition-dependent transients. In the second
regime the energy and the occupation-number spectra start to develop power-law scaling
regions, but the power-law exponent and the extent of the scaling region change with time
and are influenced by the initial conditions. In the third regime, of partial thermalization,
we find E c

kin(k) and Eint(k)+ Eq(k) ∼ k, and n(k)∼ 1/k, for k < kc(t) and, for k > kc, we
find an initial-condition-dependent self-truncation regime, in which the spectra drop rapidly;
the self-truncation wave number kc(t) grows either as tα or logarithmically for different
initial conditions (table 2). In the fourth, complete-thermalization regime, power-law forms of
correlation functions and spectra, for E < EBKT, are consistent with their nontrivial BKT forms;
however, considerable care must be exercised, as explained in section 3.4.1 and [47, 55, 72], to
distinguish these nontrivial power laws from their wave-turbulence analogues [32, 41, 73].

We have calculated a variety of order-p structure functions in our study; a full analysis
of these structure functions lies outside the scope of this paper. However, we comment briefly
on the use of the extended-self-similarity (ESS) procedure [75–77] here. Recall that, in the
ESS procedure, log–log plots of the order-p structure functions Sp(r) versus the third-order
structure function S3(r) extend the scaling region, and their slopes yield estimates for the
multiscaling exponent ratios ζp/ζ3 that are better than the estimates of ζp obtained from slopes
of log–log plots of Sp(r) versus r ; this procedure is especially valuable if ζ3 = 1, as it is
in 3D fluid turbulence, by virtue of the von Kármán–Howarth relation. We have calculated
structure functions [78] of the ψ [79], velocity and vorticity fields in the 2D, Fourier-truncated,
GP equation. The ESS procedure works here insofar as it extends the range over which
scaling occurs; however, the exponents that follow from such plots evolve in time in a manner
that mirrors the evolution of the spectral exponents that we have described above. A full
elucidation of ESS and multiscaling in the 2D, Fourier-truncated, GP system will be presented
elsewhere [80].
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Appendix A

The GP equation, which describes the dynamical evolution of the wave function ψ(x, t) of a
weakly interacting, 2D Bose gas at low temperatures, is

ih̄
∂ψ(x, t)

∂t
= −

h̄2

2m
∇

2ψ(x, t)+ g2D|ψ |
2ψ(x, t), (A.1)
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where g2D is the effective interaction strength. As we have mentioned earlier (see (2) and (3)),
the GP equation conserves the energy, given by the Hamiltonian

H =

∫
A

d2x

(
h̄2

2m
|∇ψ |

2 +
g2d

2
|ψ |

4

)
, (A.2)

and the total number of particles N =
∫
A |ψ |

2 d2x . To obtain (1), we first divide (A.1) by h̄
and define g = g2D/h̄; we then set h̄/2m = 1, with m = 1, so that |ψ |

2 is the same as ρ; this is
tantamount to using units with h̄ = 2. The energy of the system, as expressed in equation (2), is
obtained by dividing the equation (A.2) by h̄ = 2. A comparison with the experimental values
can be made by noting that the healing energy Eh = h̄2/(2mξ 2); in our units this is simply
Eh = 1/ξ 2; ξ depends on g through equation (16); and g is related to g2D as mentioned above.
The interaction strength g2D depends, inter alia, on the scattering length of the 2D interaction
potential and the size of the BEC-cloud; for more details about the actual form of g2D in 2D
see [57]. The wave number k = ni1k, where 1k = 2π/L and ni = 0, 1, 2, . . .; L is the length
of the side of a square simulation domain.

Appendix B

The BKT transition is best studied by using the renormalization group [53]; here, we restrict
ourselves to the heuristic, energy–entropy argument to obtain a rough estimate of the BKT
transition temperature TBKT. In the XY model, this transition is studied by using the Hamiltonian

HXY = −J
∑
〈i, j〉

cos(θi − θ j), (B.1)

where 〈i, j〉 denotes nearest-neighbour pairs of sites, on a 2D square lattice, J is the nearest-
neighbour exchange coupling and (θi − θ j) is the angle between the nearest-neighbour, XY
spins on sites i and j . In the continuum limit, the above Hamiltonian becomes, to lowest order
in spatial gradients,

HXY =
J

2

∫
d2x(∇θ(x))2. (B.2)

By comparing (B.2) with the kinetic-energy term in (A.1), we find that

J =
|〈ψ〉|

2h̄2

m
=

ρ02

(2π)2
, (B.3)

where 0 denotes the Onsager–Feynman quantum of velocity circulation 0 = 4π h̄/2 m = h/m.
A rough estimate for the BKT transition temperature TBKT is given below:

T̃BKT =
π J

2kB
=
π | 〈ψ〉 |

2 h̄2

2mkB
=
ρ02

8πkB
, (B.4)

where T̃BKT denotes the estimate for TBKT that follows from an energy–entropy argument [53].
For T < TBKT, the phase correlation function c(r) (see (17)) and the angle-integrated spectrum
ĉ(k), which follows from a Fourier transform of c(r), scale as

c(r)∼ (a/r)
T

4TBKT (B.5)
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and

ĉ(k)∼ k−1+ T
4TBKT , (B.6)

respectively. Above TBKT the correlation length

`=

∫
k−1 E(k) dk∫

E(k) dk
(B.7)

is finite; and, as T → TBKT, it displays the essential singularity

`∼ exp(b(TBKT/(T − TBKT))
1/2). (B.8)

We now develop an analytical framework, which is valid at low-temperatures T �

TBKT, that can be used to test some of the results of our DNS runs in the region of
complete thermalization. We first calculate equilibrium thermodynamic functions for a weakly
interacting, 2D Bose gas, in the grand-canonical ensemble; we then obtain their analogues
in the microcanonical ensemble. In the grand-canonical ensemble the probability of a given
state is

P=
1

4
e−β(H−µN ), (B.9)

where 4 is the grand partition function, β the inverse temperature, µ the chemical potential and
N the number of bosons. The grand-canonical potential is

�= −β−1 log(4), (B.10)

and the mean energy E , entropy S and N are

N = −
∂�

∂µ
, (B.11a)

S = β2∂�/∂β, (B.11b)

E =
∂�

∂β
+µN =

S

β
+µN . (B.11c)

We adapt to 2D the 3D study of [52], expand ψ in terms of Fourier modes Ak and obtain �
as the sum of the saddle-point part �sp and �Q, the deviations from the saddle point that are
quadratic in Ak. We write �=�sp +�Q, where �sp = −Aµ2/2g and

�Q = −

∫ pmax

0
dp

(
pA log

(
2m

β
√

p4+4mp2µ

))
2πβ h̄2 . (B.12)

We can also calculate the condensate depletion δN , where the particle number N = N0 + δN
and N0 is the number of particles in the k = 0 mode, as follows:

δN =

∫ pmax

0
dp

mpA
(

p−2 + 1
p2+4mµ

)
2πβ h̄2 . (B.13)

The integrals in (B.12) and (B.13) can be performed analytically, but, in contrast to the 3D case
where the primitives are zero at p = 0, the 2D primitive for �ph is finite at p = 0 and for δN
it is infra-red (IR) divergent. By subtracting the IR finite and divergent terms from �Q and δN ,
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respectively, we obtain the following expressions, in 2D, in the thermodynamic limit A→ ∞:

�= −
µ2A
2g

−
p2

maxA
4πβ h̄2 +

mµA log
(

1 + p2
max

4mµ

)
2πβ h̄2

−

p2
maxA log

(
2m

β
√

p4
max+4mµp2

max

)
4πβ h̄2 (B.14)

and

δN =

mA
(

log
(

1 + p2
max

4mµ

)
+ log

(
p2

maxA
h̄2

))
4πβ h̄2 . (B.15)

By using the thermodynamic relations (B.11), we obtain

N =
µA
g

−

mA log
(

1 + p2
max

4mµ

)
2πβ h̄2 (B.16)

and

E =
µ2A
2g

+
p2

maxA
4πβ h̄2 −

mµA log
(

1 + p2
max

4mµ

)
2πβ h̄2 . (B.17)

We next determine the chemical potential µ, which fixes the total density ρ = m N/A at a
given value, by solving the equation

ρ−
mµ

g
+

m2 log
(

1 + p2
max

4mµ

)
2πβ h̄2 = 0 (B.18)

at β = ∞, i.e. zero temperature (subscript 0), we obtain

µ0 =
g ρ

m
(B.19)

to order β−1 we obtain

µ= µ0 + δµ, (B.20)

where

δµ=

mg
(
4gρ2 + ρp2

max

)
log

(
1 + p2

max
4gρ

)
m2 p2

max + 2πβ h̄2ρp2
max + 8πβ h̄2 gρ2

. (B.21)

We insert µ from (B.20) into (B.15), define the change in density δρ = mδN/A, use the energy
E from (B.17) and then expand to order β−1 to obtain

δρ =

m2
(

log
(

1 + p2
max

4gρ

)
+ log

(
p2

maxA
h̄2

))
4πβ h̄2 (B.22)

and

E =
gρ2A
2m2

+
p2

maxA
4πβ h̄2 . (B.23)
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By using (B.4) and ρ = m|〈ψ〉|
2, we obtain

β̃BKT =
1

kBT̃BKT

=
2m2

πρh̄2 , (B.24)

which we can use along with (B.22) to relate the condensate relative depletion δρ/ρ to β/β̃BKT,
where β = 1/(kBT ) and kB is the Boltzmann constant, as given below:

δρ

ρ
=
β̃BKT

8β
log

 p2
max

(
1 + p2

max
4gρ

)
A

h̄2

 . (B.25)

We use this low-temperature result (B.25) to estimate the inverse-temperature scale βBKT, at
which the depletion of the k = 0 condensate mode becomes significant for a finite-size system
with N 2

c collocation points (which fixes the maximum momentum pmax); in particular, we can
solve (B.25), for δρ/ρ = 1, to obtain

βBKT

β̃BKT

=
1

8
log

 p2
max

(
1 + p2

max
4gρ

)
A

h̄2

 . (B.26)

By making the replacements that correspond to defining h̄, m and g in terms of c and ξ , as in
[52], pmax → h̄kmax, h̄ →

√
2cmξ and g → c2m2/ρ, we can rewrite (B.26) as

βBKT

β̃BKT

=
1

8
log

(
k2

maxA
(

1 +
kmax

2 ξ 2

2

))
. (B.27)

Our DNS runs, which use initial conditions of types IC1 and IC2, give the dynamical
evolutions of the Fourier-truncated, 2D GP equation, which is a Hamiltonian system. The
energy E , particle number N and area A are conserved in this evolution, so our calculation can
be viewed as a simulation of this Hamiltonian system in the microcanonical ensemble, which
yields, eventually, the fully thermalized state that we have described above. Therefore, we now
transform the results, which we have obtained in the previous subsection, into their counterparts
in the microcanonical ensemble. In the low-temperature limit, (B.23) yields

β =
m2 p2

maxA
2π h̄2

(
2m2 E − gρ2A

) . (B.28)

The energy of a pure condensate is

E0 = lim
β→∞

E =
g ρ2A
2 m2

(B.29)

and the energy and the inverse temperature β (B.28) can be related as follows:

E = E0(1 + δE), (B.30)

where δE is the relative increase of energy above E0, and

β =
m2 p2

max

2π h̄2 gρ2δE
. (B.31)

If we now substitute β = βBKT by using (B.26), we obtain, in terms of c, ξ and ρ (see text just
below (B.26))

E0 =
c2 ρA

2
, (B.32)
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δẼBKT =
k2

maxξ
2

2
(B.33)

and

δEBKT =
4k2

maxξ
2

log
(

k2
maxA

(
1 + k2

maxξ
2

2

)) . (B.34)

All the energies mentioned in the main paper are dimensionless; thus, to convert the energies
given in this appendix to dimensionless forms, we divide them by h̄. Hence, the energy of a pure
condensate is obtained, in the dimensionless form, by dividing (B.29) by h̄, which gives

E0 =
g

2A
=

1

2

g

L2
. (B.35)
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