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We present an overview of the statistical properties of turbulence in two-dimensional (2D) fluids.
After a brief recapitulation of well-known results for statistically homogeneous and isotropic 2D
fluid turbulence, we give an overview of recent progress in this field for such 2D turbulence in con-
ducting fluids, fluids with polymer additives, binary-fluid mixtures, and superfluids; we also discuss
the statistical properties of particles advected by 2D turbulent fluids. Published by AIP Publishing.
https://doi.org/10.1063/1.4986802

I. INTRODUCTION

Two-dimensional (2D) fluid turbulence is of central
importance not only in fluid dynamics but also in nonequilib-
rium statistical mechanics. Since the early theoretical studies
of Fjørtoft, Kraichnan, Leith, and Batchelor,1–4 it has been
recognized that 2D fluid turbulence is fundamentally differ-
ent from its three-dimensional (3D) counterpart.5–8 Perhaps
the most striking difference is the following: the fluid-energy
spectrum E(k) in forced, statistically steady, homogeneous
and isotropic 2D fluid turbulence shows (a) a forward cas-
cade of enstrophy (or the mean-square vorticity), from the
forcing wave number kf , at which energy is injected into the
fluid, to wave numbers k > kf and (b) an inverse cascade of
energy to k < kf , which leads, in the absence of friction, to the
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formation of large vortices, whose size is comparable to that of
the system. Not only is 2D fluid turbulence of theoretical inter-
est but it can also be realized, to a very good approximation,
in a variety of experimental flows. These include the follow-
ing: (1) Geophysical and planetary flows,9–12 for instance,
in the atmosphere, where the thickness of the atmospheric
layer is much smaller than its lateral extent, so it is approxi-
mately a two-dimensional fluid; illustrative examples include
the atmospheric mesoscale13–16 and large-scale zonal flows in
the oceans or in the atmosphere of Jupiter;17–20 (2) astrophys-
ical flows, such as those in accretion disks;21–23 (3) laboratory
flows in, for instance, soap films, thin layers of electrolytes
that can be driven electromagnetically, or Faraday-wave sys-
tems.24–41 Advances in computational resources, which have
followed Moore’s law for several decades,42 and new numeri-
cal schemes have made it possible to carry out direct numerical
simulations (DNSs), with ever increasing resolution and run
times, of two-dimensional fluid turbulence;43–56 such DNSs
complement experimental and theoretical investigations in
important ways. Different aspects of such investigations have
been covered in various reviews7,8,12,57–61 and books.5,6,62,63

The essential statistical properties of 2D fluid turbulence
are well known (see, e.g., the summary towards the end of
Ref. 7). In contrast to the case of a 3D fluid, there are an
infinite number of conserved quantities, in the 2D, invis-
cid, unforced fluid; the energy and the enstrophy are the
most important among these. As a consequence of this, 2D
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fluid turbulence displays, at large Reynolds numbers Re, an
inverse cascade of energy, from the length scale lf ∼ 2πk−1

f ,
at which the force acts, to larger length scales, and a for-
ward cascade of enstrophy, from lf to smaller length scales.
(Recall, for comparison, that 3D fluid turbulence displays
only a forward cascade of energy.5,6,62) These two cascades
lead to the following power-law forms for the energy spec-
trum in the inverse- and forward-cascade parts, respectively:
E(k) ∼ k−5/3 and E(k) ∼ k−δ , with δ = 3 in the absence
of friction; δ increases with the friction coefficient because
of nonlocal interactions.7,53,54,64–66 The dependence of other
statistical properties, in the forward-cascade regime, is dis-
cussed in Ref. 54; furthermore, velocity structure functions
(see below) do not show significant multiscaling, but vor-
ticity structure functions do. Very-high-resolution studies are
required to uncover both inverse- and forward-cascade power-
law ranges in a single DNS;53,55 for such ranges in one
experiment see, e.g., Ref. 41. In the absence of friction,
a very long run is required to obtain a statistically steady
state, with two, large coherent vortices (of opposite sign in
DNSs that enforce zero mean vorticity), in the inverse-cascade
regime.56 An analysis, based on the stochastic-Loewner evo-
lution, of isolines of the vorticity indicates that, in the inverse-
cascade regime, 2D fluid turbulence displays conformal
invariance.67

Interesting behaviors have also been observed in con-
fined 2D flows, in which the accumulation of energy at the
largest scales results in the formation of a large-scale circu-
lation, which exhibits random reversals.24 Recent experimen-
tal68 and numerical simulation69 studies have investigated this
phenomenon in detail by varying the large-scale friction. The
flow states, with random reversals of the large-scale circula-
tion, have a bimodal velocity probability distribution function
(PDF) with two symmetric maxima, corresponding to opposite
signs of the large-scale circulation. They emerge from bifur-
cations, over a turbulent background, with Gaussian velocity
fields, as the friction is reduced. If the friction is reduced
even more, then the reversals of the large-scale circulation
become progressively less frequent and, ultimately, may end
up in a condensed state, in which most of the kinetic energy
is carried by the large-scale circulation. These bifurcations
occur within strongly turbulent regimes and are, therefore, less
understood than bifurcations from a steady or periodic flow.
However, very recently, Ref. 70 has attempted to provide a
conceptual framework for treating such reversals, by using the
truncated Euler equation to describe the large length scales
of the turbulent flow. In particular, it shows that the length
scales larger than the forcing scales are in statistical equi-
librium; and the PDFs described above can be recovered by
using the micro-canonical distribution; transitions are obtained
from Gaussian to bimodal distributions and broken-ergodicity.
Another related study in Ref. 71 uses the 2D stochastic Navier-
Stokes equations to examine the bifurcations in the flow topol-
ogy; it has reported bistable behavior in this setting, accom-
panied by random changes from dipoles to unidirectional
flows.

We do not dwell on these statistical properties of 2D fluid
turbulence in detail because they have been covered in sev-
eral papers, a fair fraction of which we have cited above. Our

goal is to provide an overview of the statistical properties of
homogeneous, isotropic 2D turbulence in other hydrodynami-
cal systems, against the backdrop of what we have summarized
above for 2D fluid turbulence. The specific systems we study
are 2D fluids with particles, conducting fluids, fluids with
polymer additives, binary-fluid mixtures, and superfluids. The
study of turbulence in these 2D systems is considerably more
challenging than its 2D classical-fluid counterpart. In partic-
ular, the statistical properties of turbulence in these systems
depend on more control parameters than Re and kf . A system-
atic exploration of the space of control parameters is often not
feasible, with a given level of computational or experimental
resources. It is useful to compare studies of these different
types of turbulence to bring out similarities between them,
where they exist. Furthermore, the study of turbulence in these
systems is inherently interdisciplinary, for it requires methods
from both fluid mechanics and statistical mechanics. We hope
that this overview, which is based principally on our studies
of these problems, will bring together experts from both these
areas to work on the challenging problems that we discuss
here.

There has been a considerable progress in understand-
ing the statistical properties of particle transport by turbulent
flows, in general,72–78 and by 2D turbulent fluids, in particular
(see, e.g., Refs. 79–81 and 83–86). It is of relevance to a wide
class of problems in many industrial, atmospheric, geophys-
ical, atmospheric, and astrophysical settings.75,76,78 In recent
times, the clustering and preferential concentration of heavy
particles in a turbulent flow72,83,84,87,88 and the statistics of
particle-track geometries85,86,89–91 have attracted considerable
attention. We give a brief outline of such studies and then show
how particles in a 2D turbulent flow can be used to define
(a) a persistence problem92,93 for such turbulence, (b) quasi-
Lagrangian fields,94 which provide the natural framework for
studying the dynamic multiscaling of time-dependent struc-
ture functions,95–100 and (c) various statistical properties for
the geometries of particle trajectories.85,86,89–91 We also give
a summary of the statistical properties of elliptical particles in
a 2D turbulent flow.101

Inverse and forward cascades occur in homogeneous,
isotropic, and statistically steady magnetohydrodynamic
(MHD) turbulence, in both 3D102 and 2D, on which we concen-
trate here. The statistical properties of 2D MHD turbulence, in
which there is an inverse cascade of the magnetic vector poten-
tial, have attracted considerable attention.103–117 Recently we
have carried out detailed direct numerical simulations (DNSs)
of the forced 2D MHD equations, with friction.115 In this
DNS, we obtain spectral regimes with a substantial inverse-
cascade region. This allows us to compare the results of DNSs
with and without friction both from our study and those prior
to it.

The effects of polymer additives on fluid flows have
been the subject of several studies, principally in 3D, because
of the remarkable phenomena of (a) drag reduction,118 in
wall-bounded turbulent flows, and (b) elastic turbulence or
rheochaos (see, e.g., Refs. 119–121) at low Reynolds num-
bers. In fully developed turbulent flows, which are statistically
homogeneous and isotropic, the addition of polymers leads
to dissipation reduction, modifies the fluid energy spectrum,
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and suppresses structures at small scales.122–132 The effects
of polymer additives on 2D flows have also been studied
in experiments133–135 and DNSs136–141 of fluid films with
polymer additives; we give an overview of some of our recent
work here.

Multiphase, turbulent flows occur in several industrial and
natural settings;78 these include particle-laden flows that we
have mentioned above. In addition, such flows can have dif-
ferent, coexisting, liquid phases. The simplest examples are
binary-fluid mixtures, such as an oil-water mixture, which have
been studied extensively in equilibrium and non-equilibrium
statistical mechanics to understand phase equilibria and crit-
ical phenomena,143–145 nucleation,146 spinodal decomposi-
tion,147–150 and the late-stage growth during phase separation
(also called coarsening).148,151–154 It is conventional to refer to
minority (low-volume-fraction) and majority (high-volume-
fraction) phases; if these phases do not mix, then minority-
phase droplets are advected by the background flow of the
majority-phase; however, the droplets are not passive, for they
affect the flow even as they are affected by it. If the volume
fractions of the two phases are equal (a 50-50 mixture), then,
in the two-phase regime, the system exhibits phase separation,
unless this is suppressed by the turbulent flow of this binary-
fluid mixture. Such droplet dynamics or the suppression of
phase separation (coarsening arrest) by turbulence are active
areas of research both in 3D (see, e.g., Ref. 150 and references
therein) or in 2D, on which we concentrate here. In particu-
lar, we give an overview of recent studies155–157 that use the
Cahn-Hilliard-Navier-Stokes (CHNS) equations to study such
droplet dynamics and coarsening arrest. The Cahn-Hilliard
part of these equations uses a scalar field φ, called the phase
field, to distinguish between the two components of the binary
mixture; φ changes continuously across interfaces that sepa-
rate the two phases, so boundary conditions do not have to be
enforced on a sharp, moving interface.

Superfluid turbulence is of central importance in under-
standing the dynamics and nonequilibrium statistical mechan-
ics of quantum fluids.158–162 Such turbulence has been studied
more often in three dimensions (3D) than in two dimensions
(2D). As we have noted above, in classical fluids, the statistical
properties of turbulence are qualitatively different in 2D and
3D. These differences are being examined now for superfluid
turbulence. The dynamics of a superfluid can be described at
many levels. For example, if we are interested in resolving
spatial scales comparable to the healing length of the core of a
quantum vortex, then, for a weakly interacting Bose superfluid,
at low temperatures, we can use the Gross-Pitaevskii (GP)
equation to obtain the spatiotemporal evolution of the super-
fluid. However, if we consider much larger length scales, then
a two-fluid description, with normal and superfluid compo-
nents, is adequate; the Hall-Vinen-Bekharevich-Khalatnikov
(HVBK), two-fluid model,162–167 is used most often in such
cases. We give an overview of our recent studies of both inverse
and forward cascades of energy and enstropy in the 2D HVBK
system.168 To consider the role of quantum vortices in super-
fluid turbulence, the simplest model we can use is the GP
equation. It is important here to study both the thermalization
of the Fourier-truncated GP system in 2D and to understand the
development of cascades when it is forced and when a term

is added to model dissipation at small spatial scales.169–180

Furthermore, particles have been used to track quantum vor-
tices in superfluid turbulence.181 It is natural, therefore, to ask
about particle transport by superfluid turbulence. This can be
done both at the HVBK level182 and the level of the GP equa-
tion. We give an overview of recent results for the 2D GP
system.174,183

The remainder of our paper is organized as follows. Sec-
tion II introduces the equations we use to model the 2D fluid
systems we have mentioned above; we also outline the numer-
ical methods that we use to carry out DNSs of these models. In
Sec. III, we provide an overview of the results that have been
obtained for these models and compare them with experimen-
tal results if they are available. Section IV contains a discussion
of our results and conclusions.

II. MODELS AND NUMERICAL METHODS

The two-dimensionality of the flows we have mentioned
above is the unifying theme of our paper. The statistical proper-
ties of turbulence in the two-dimensional (2D) Navier-Stokes
(NS) equation are markedly different from their 3D NS coun-
terparts. We cover the statistical properties of homogeneous,
isotropic 2D turbulence in other hydrodynamical systems,
namely, 2D fluids with particles, conducting fluids, fluids with
polymer additives, binary-fluid mixtures, and superfluids. It
is useful to study the different models for these systems sep-
arately. Therefore, in this section, we define the models that
are used to study 2D turbulence in (a) Navier-Stokes fluids
(Subsection II A), (b) MHD (Subsection II B), (c) fluids with
polymer additives (Subsection II C), (d) binary-fluid mixtures
(Subsection II D), (e) superfluids, at the level of the two-fluid
HVBK model (Subsection II E), and (f) superfluids, at the
level of the GP equation (Subsection II F). We also define var-
ious quantities that are useful in characterizing the statistical
properties of turbulence in these systems.

A. Navier-Stokes fluid

The forced, incompressible, 2D Navier-Stokes (2D NS)
equation, with air-drag-induced friction, can be written most
conveniently in the following vorticity ω–stream-function ψ
representation, which ensures incompressibility of the fluid
(we restrict ourselves to low-Mach-number flows):

∂tω − J(ψ,ω) = v∇2ω − αω + f ω , (1)

where ∇2ψ = ω, J(ψ,ω) ≡ (∂xψ)(∂yω) − (∂xω)(∂yψ), and
the velocity u ≡ (−∂yψ, ∂xψ); the kinematic viscosity and
coefficient of friction are, respectively, ν and α; the uniform
density ρ is set to unity; and f ω is the external force that injects
energy at the injection-scale wavenumber kf . If it is required,
we can non-dimensionalize lengths by k−1

f , time by k2
f /ν, α by

k2
f ν. This non-dimensionalized friction, the Grashof number

(i.e., the non-dimensionalized force) G ≡ 2π | | f ω | |2/(k3
f )ν2),

where | | f ω | |2 ≡ [∫A | f
ω |2dx)1/2 and A is the area of the

film, and the injection scale kf are the three important con-
trol parameters; their values govern the statistical properties
of the turbulent, non-equilibrium, but statistically steady, state
which the system reaches, typically, but not always, after a few
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large-eddy-turnover times τL = L/urms, where L is the linear
size of the domain, most often a square in DNSs, and urms is
the root-mean-square velocity. In this state, the Reynolds num-
ber Re = urms/(kf ν); most studies quote the value of Re rather
than G.

It is convenient to use periodic boundary conditions, if we
are not considering the effects of bounding walls, for instance,
in studies of statistically homogeneous and isotropic turbu-
lence. For the case with walls we refer the reader to Ref. 54.
For a periodic domain, it is best to solve the 2D NS equation
by using the pseudospectral method,53,184 with the 2/3 rule
for dealiasing; the successful implementation of such a pseu-
dospectral method relies on efficient, fast-Fourier-transform
(FFT) schemes.185 High-order, finite-difference schemes, like
the pencil code186 can also be used to study turbulence here.
Time marching can be carried out by using a variety of schemes
including the Adams-Bashforth, fourth-order Runge-Kutta, or
exponential Runge-Kutta methods.187

From ω(x, t), we calculate the total fluid kinetic energy
E(t) and the fluid-energy dissipation rate ε(t) as follows:

E(t) = 〈|u(x, t)|2〉 x, (2)

ε(t) = 〈v|ω(x, t)|2〉 x, (3)

where the average over space is shown by 〈〉x. We then obtain
(a) the root-mean-square fluid velocity, urms =

√
〈2E(t)〉t ,

where 〈〉t indicates the time average over the turbulent, but
statistically steady state of the fluid, (b) the Taylor-microscale
Reynolds number Reλ(t) =

√
2E(t)/

√
νε(t), and the mean

〈Reλ〉t , and (c) the box-size eddy-turnover time τeddy = L/urms.
It is often convenient to scale time by τeddy. The energy
spectrum of the fluid is

E(k) ≡
∑

k− 1
2 ≤k′≤k+ 1

2

〈|û(k′, t)|2〉t , (4)

where the circumflex denotes the spatial Fourier transform.
We also calculate the Okubo-Weiss parameter54,188,189

Λ = (ω2 − σ2)/8, (5)

where σ2 =
∑

i,j σijσji, with σij = (∂iuj + ∂jui), where i and j
indicate Cartesian components; in the inviscid, unforced case
without friction, the flow is vortical, if Λ > 0, or extensional
(strain-dominated), if Λ < 0. The Okubo-Weiss criterion
works well even in the presence of viscosity, friction, and
forcing.54

The multiscaling properties of turbulence are often char-
acterized by the equal-time, order-p, longitudinal-velocity
structure function

Sp(r) ≡ 〈[δu‖(r, t)]p〉, (6)

where δu‖(r, t) ≡ [u(x + r, t)−u(x, t) · r/r] and r ≡| r |. In the
inertial range (e.g., ηd � r � L for the case of 3D turbulence,
with ηd the Kolmogorov dissipation scale), Sp(r) ∼ rζp , where
ζp is the equal-time exponent. Vorticity structure functions
can be defined similarly; they play an important role in char-
acterizing multiscaling in the forward-cascade regime in 2D
fluid turbulence (see the subsection on dynamic multiscaling in
Sec. III).

To study the dynamics of a small, rigid, circular disk or
inertial particle in an incompressible flow,73,74 we use the fol-
lowing equations,75 if the particle is much heavier than the
advecting fluid:

d
dt

x(t) = v(t), (7)

d
dt

v(t) = −
v(t) − u(x, t)

τs
, (8)

v and x are, respectively, the velocity and position of an inertial
particle, τs = (2R2

p ρp)/(9νρf) is the Stokes (or response) time
of the particle of radius Rp, density ρp in a fluid of density ρf.
The Stokes number St = τs/τη , where τη is the Kolmogorov
dissipation time. We also assume the following: Rp � η,
where η is the Kolmogorov dissipation scale of the carrier
fluid; there are no interactions between particles because the
particle-number density is low; the acceleration because of
gravity can be neglected relative to the turbulence-induced
acceleration of the particles. For a neutrally buoyant tracer
or Lagrangian particle, v(t) = u(x, t), so

d
dt

x(t) = u(x, t). (9)

The statistical properties of the tracers are interesting in them-
selves; in addition, they help us to define quasi-Lagrangian
fields that are required to study dynamic multiscaling (see
below).

To go beyond circular disks, we can consider neutrally
buoyant elliptical particles,101 whose center of mass satisfies

d
dt

xc = u(xc(t), t), (10)

and the time evolution of the orientation follows the Jeffery
equation,101 which is, in 2D,

d
dt
Θ =

1
2
ω + υ(%)[sin(2Θ)S11 − cos(2Θ)S12], (11)

where Θ gives the orientation of the semimajor axis relative
to a fixed direction, Sij = σij/2, the components of the rate-of-
strain tensor are evaluated at xc, υ(%) ≡ (%2 − 1)/(%2 + 1), % is
the ratio of the lengths of the semi-major and semi-minor axes
of the ellipse, and (circular disks) 0 ≤ υ ≤ 1 (thin needles).

For the statistical properties of the particle paths, we
follow the trajectories of Np particles in DNSs. Trilinear
interpolation can be used to calculate the velocity and the
velocity-gradient tensor at the particle positions. We obtain
the trajectories of these particles via an Euler scheme, which
suffices, if, in one time step, a particle crosses only a small
fraction of the grid spacing.

B. Magnetohydrodynamics

The statistical properties of 2D MHD turbulence have
been studied for several decades.103–117 They employ the equa-
tions of incompressible 2D magnetohydrodynamics (MHD)
that are [cf. Eq. (1) for the 2D NS case]

∂ω

∂t
+ u · ∇ω + αωω = −ν(−∇2)ςω + f ω + b · ∇j,

∂ψb

∂t
+ u · ∇ψb + αψ

b
ψb = −ηb(−∇2)ςψb + f ψ

b
, (12)
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where b, the magnetic field, and u, the velocity field, follow
from the 2D analog of the magnetic vector potential ψb and
the stream function ψ: b = ẑ × ∇ψb and u = ẑ × ∇ψ, where
ẑ is the unit vector perpendicular to the 2D domain; j= ∇2ψb

andω= ∇2ψ are, respectively, the current density and vorticity.
These equations satisfy the incompressibility condition∇·u = 0
and∇·b = 0. We allow for dissipativity of order ς, friction with
coefficients αω and αψ

b
; and ν and ηb are, respectively, the

kinematic viscosity and magnetic diffusivity; f ω and f ψ
b

are
the forcing terms. {We follow Ref. 115 with some changes in
notations to ensure consistency across this paper; for example,
Ref. 115 uses ψ for the 2D analog of the magnetic vector
potential, but we use ψb [cf. their Eq. (5)]}.

In addition to Re, the nondimensionalized friction, and kf ,
we have other control parameters here. They are the magnetic
Prandtl number PrM = ν/ηb and the friction-coefficient ratio
αω/αψ

b
. If we use hyperviscosity and hyperdiffusivity, i.e.,

ς > 1, it is useful to define the effective viscosity and magnetic
diffusivity,115 respectively,

νeff =

∑
k vk2ςEu(k)∑

k k2Eu(k)
,

ηb
eff =

∑
k η

bk2ςEb(k)∑
k k2Eb(k)

, (13)

here the fluid- and magnetic-energy spectra Eu(k) and Eb(k),
respectively, are defined like their fluid counterparts.115 The
effective magnetic Prandtl number is PrM;eff = νeff/η

b
eff. To the

best of our knowledge, there is no comprehensive study of 2D
MHD turbulence that explores a large range of values of PrM

and friction coefficients.
The results we present in the MHD subsection of Sec. III

are based, principally, on the two pseudospectral DNSs of Ref.
115, which use the conventional pseudospectral method105,184

in a doubly periodic, square simulation domain and a 2/3
dealiasing method, and time marching via a second-order,
Runge-Kutta method. The first of these DNSs uses ς = 2, to
obtain large inertial ranges in energy spectra; furthermore, αω

= 0 but αψ
b
> 0 to suppress the accumulation of magnetic

energy at small k in the magnetic-energy spectrum Eb(k). The
second DNS uses the conventional values ς = 1,αω = αψ

b
= 0,

so the inverse cascade in ψb leads to a small-k accumulation of
magnetic energy. For other parameters see Table I in Ref. 115.
We emphasize that long runs are required to obtain statistically
steady states, whose statistical properties are characterized by
the fluid and magnetic energies, their energy spectra Eu(k)
and Eb(k), respectively, PDFs of the Okubo-Weiss parameter,
and its magnetic analog, which can be defined like their fluid
counterparts.115

C. Fluid with polymer additives

Dilute polymer solutions are modeled by using vis-
coelastic models in which the polymer contribution to the
fluid is represented by an extra stress term in the NS equa-
tions.125,126,133,136–142,190–192 This stress is expressed in terms
of the polymer-conformation tensor C, which is advected by
the velocity field of the fluid. Some studies employ the lin-
ear, Oldroyd-B model for polymers because of its simplicity,
but this model has a limitation because it allows polymers

to stretch without bound. The finitely extensible-nonlinear-
elastic-Peterlin (FENE-P) model overcomes this limitation by
approximating a polymer by a nonlinear dumbbell, which has
a single relaxation time τP and a maximal extension LP. For a
recent discussion of the FENE-P model, albeit in the 3D case,
we refer the reader to Ref. 192, which discusses its derivation
and the limitations of this model.

We concentrate on the 2D, coupled, incompressible NS
and FENE-P equations, which we write in terms of the stream-
function ψ and the vorticity ω = ∇ × u(x, t) as follows:

Dtω = ν∇
2ω +

µP

τP
∇ × ∇ · [ f (rP)C] − αω + Fω , (14)

∇2ψ = ω, (15)

DtC = C · (∇u) + (∇u)T · C − f (rP)C − I
τP

. (16)

Here, Dt ≡ ∂t + u · ∇, and, as in the incompressible 2D NS
equation, the uniform solvent density ρ= 1,α and ν are, respec-
tively, the friction coefficient and the kinematic viscosity; µP

is the zero-shear viscosity parameter for the solute (FENE-
P); Fω is the forcing term. We often use the Kolmogorov-type
form Fω ≡ kf F0 cos(kf y), with amplitude F0, as in the experi-
ments of Ref. 135, for which the energy-injection wave vector
is kf ; the superscript T denotes a transpose, Cββ′ ≡ 〈RβRβ′〉
are the elements of the polymer-conformation tensor (angular
brackets indicate an average over polymer configurations), I
is the identity tensor, f(rP) ≡ (L2

P −2)/(L2
P − r2

P) is the FENE-P
potential, and rP ≡

√
Tr(C) is the length of the polymers.140,141

If we set f(rP) = 1, we get the Oldroyd-B model.142

In addition to the parameters Re and kf /kmax, which we
use in classical-fluid turbulence, we have other important non-
dimensional parameters here. They are c ≡ µP/(ν + µP), a
dimensionless measure of the polymer concentration,191 the
scaled polymer extension rP/LP, and the Weissenberg num-
ber Wi, the ratio of the polymer time scale τP to a typical
shearing time scale in the turbulent fluid; for example, we can
set Wi = τP

√
ε f /ν, with ε f the energy dissipation rate for the

fluid; other choices can lead to slightly different values for
Wi; for example, τP can be multiplied by the maximum Lya-
punov exponent of the flow to obtain a Weissenberg number
based on this Lyapunov exponent.192 To characterize dissipa-
tion reduction (see below), it is useful to calculate the energy
E(t) ≡ 〈 1

2 |u(x, t)|2〉x, the enstrophy Ω(t) ≡ 〈 1
2 |ω(x, t)|2〉x,

and the mean-square palinstrophy P(t) ≡ 〈 1
2 |∇ × ω(x, t)|2〉x,

where 〈〉x denotes a spatial average, the PDFs of scaled
polymer extensions P(rP/L), ω2, σ2, and the Okubo-Weiss
parameter Λ.

In our DNSs of 2D fluid turbulence with polymer addi-
tives,140,141 we use periodic boundary conditions on a square
simulation domain and the following numerical scheme to
solve the FENE-P equations: for time marching, the fourth-
order, Runge-Kutta scheme; in space an explicit, fourth-
order, central-finite-difference scheme. Furthermore, we use
the Kurganov-Tadmor (KT) shock-capturing scheme for the
advection term in Eq. (16) [see Eq. (7) of Ref. 126] to resolve
steep gradients in the components of C and, thereby, min-
imize dispersion errors, whose size increases with LP and
τP. Equation (15) is solved conveniently by a Fourier-space
method. It is important to pick a sufficiently small time step140
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to maintain rP ≤ LP. It is equally important to ensure that
the symmetric-positive-definite (SPD) nature of C is preserved
by the numerical scheme. This is best done140,141 by using a
2D variant of the Cholesky-decomposition scheme of Refs.
125, 126, and 191; this scheme exploits the property that any
SPD matrix can be written as the product of a lower-triangular
matrix and its transpose; Eqs. (14)–(16) can then be recast in
terms of the components of a lower-triangular matrix; the SPD
nature of the parent matrix is, therefore, manifestly maintained
at every stage of the DNS (see Ref. 140 for the 2D case). A
straightforward pseudospectral DNS does not maintain this
SPD property of C at every step.

D. Binary-fluid mixture

The Cahn-Hilliard (CH)147 equation is of fundamental
importance in the statistical mechanics of binary mixtures,
where it has been used to study phase transitions, critical
phenomena, nucleation, spinodal decomposition, and phase
separation or coarsening.143–154 For a binary mixture, whose
two components are fluids, the CH and NS are coupled to
obtain the Cahn-Hilliard- Navier-Stokes (CHNS) equations
(also called model H145). These equations allow us to follow
the spatiotemporal evolution of the two fluids and the interfaces
between them; we do not have to impose boundary conditions
on these moving interfaces because they are diffuse; but, in the
CHNS system, we have, in addition to the NS velocity field, a
scalar, order-parameter field φ, which is negative in one phase
and positive in the other; interfacial regions between these
phases exhibit large gradients in φ.

Coupling, between a minority-phase droplet and the
majority-phase (background) fluid, appears naturally in the
CHNS equations.155,193–197 In the terminology of the particles-
in-turbulent-flows literature,78 this is a four-way coupling: the
droplets are advected by the background fluid, which they
affect in turn; furthermore, droplets can interact or fuse with
each other, or a single droplet can break into small fragments.
Note that most studies of particles in turbulent flows consider
particles whose linear size is well below the Kolmogorov dissi-
pation scale of the flow; the droplets we consider in our CHNS
studies have sizes that lie in the inertial range of scales, where
energy spectra show power-law forms.

In 2D, the CHNS equations can be written in the following
vorticity formulation:155,156

(∂t + u · ∇)ω = ν∇2ω − αω − ∇ × (φ∇µ) + Fω , (17)

(∂t + u · ∇) φ = γ∇2µ and ∇ · u = 0. (18)

Here, u ≡ (ux, uy), the fluid velocity; ω, the vorticity, and µ,
the chemical potential are given by155,193

ω = (∇ × u)êz, (19)

µ(x, t) = δF [φ]/δφ, (20)

F [φ] = Λ
∫

[(φ2 − 1)
2
/(4ξ2) + |∇φ|2/2]dx, (21)

where F [φ] is the Cahn-Hilliard free energy, the two phases
mix in the interfacial regime with energy density Λ, the dif-
fuse interface width ∼ξ, ν is the kinematic viscosity, γ is
the mobility195 of the mixture, the Kolmogorov-type forcing
Fω = F0 cos(kf y) has amplitude F0 and forcing wave number

kf , and α is the air-drag induced friction. For simplicity, we
take γ to be independent of φ and both components to have

the same viscosity. The surface tension σ = 2
√

2Λ
3ξ and the

Grashof number Gr = L4F0

ν2 is the dimensionless ratio of the

forcing and viscous terms; the diffusivity D = γΛ

ξ2 (we do not
vary this here). If a gravity term is added to the right-hand side
of the CHNS equation, it can be used to study Rayleigh-Taylor
turbulence193 in 2D, if the density difference between the two
fluids is small.

The 2D CHNS model has many more control parame-
ters than those we have discussed for the 2D NS case. These
are as follows: (a) The forcing-scale lf = 2π/kf Weber num-
ber We ≡ ρl3

f F0/σ, a natural dimensionless measure of the
inverse of the surface tension; (b) the non-dimensionalized
interface width or Cahn number Ch = ξ/L; (c) the mean value
of φ (e.g., if this is zero, we have a symmetric or 50-50 mix-
ture; if it is significantly different from zero, we can have a
droplet of the minority phase in a background of the major-
ity phase); (d) the capillary number Ca = 3ενρurms

2
√

2σ
, the ratio

between the viscous and capillary forces; (e) the Peclet number
Pe = (Lε2urms)/(σγ), the ratio of the diffusive and the convec-
tive time-scales; and (f) if we include gravity,193 then we also
have the Atwood number, the ratio between the difference and
the sum of the densities of the two fluids.

If we study the spatiotemporal evolution of a droplet in
the CHNS system, it is convenient to begin with the following
order-parameter profile:155,193,194

φ(x, y) = tanh


1
√

2ξ

(√
(x − xc)2 + (y − yc)2 − d0/2

)
; (22)

this yields, at t = 0, a circular droplet, with its center at (xc, yc)
and diameter d0; it has a diffuse interface, with width ξ, which
is best expressed by the Cahn number Ch = ξ/L. The scaled,
initial droplet diameter d0/L is yet another control parameter
for DNSs that are designed to investigate droplet dynamics.
Detailed studies of the dependence of the statistical proper-
ties of 2D CHNS turbulence on all these control parameters
remain a challenge; such comprehensive studies are now being
attempted.155–157,198

Our DNSs of the CHNS equations follow Refs. 155, 156,
and 198. In particular, we use the pseudospectral method and
periodic boundary conditions in a square simulation domain;
because of the cubic nonlinearity, we use N /2-dealiasing;184

and for time marching, we use the exponential Adams-
Bashforth method ETD2.187 We have developed both MPI
codes, for parallel computers, and a CUDA199 code for use on
computers with graphics processing units (e.g., the NVIDIA
K80); these efficient codes allow us to explore the large param-
eter space for the 2D CHNS system and carry out very long
simulations. Parameters for our studies are given in Refs. 155,
156, and 198.

In the following paragraph, we introduce the quantities
that we calculate from the fields ω(x,t) and φ(x,t), which we
obtain from our DNSs of the CHNS equations.

From φ(x, t), we obtain the droplet-deformation parame-
ter155,200

Γ(t) =
S(t)
S0(t)

− 1, (23)
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where S(t) is the perimeter of the droplet (the φ = 0 con-
tour) at time t, S0(t) is the perimeter of an undeformed droplet
of equal area at t. From the field ω(x, t), we calculate, for
the fluid, E(t), ε(t), urms, Reλ(t), 〈Reλ〉t , E(k), and τeddy as in
the 2D NS case; we express time in units of τeddy. Now it
is also useful to obtain the order-parameter (or phase-field)
spectrum:

S(k) ≡
∑

k− 1
2 ≤k′≤k+ 1

2

〈|φ̂(k′, t)|2〉t , (24)

where the circumflex denotes spatial Fourier transforms.

E. Two-fluid HVBK model

The theoretical model that we use for the dynamics of a
superfluid depends on the length scales we consider. For length
scales much larger than both the core of a quantum vortex and
the mean separation between such vortices, the incompress-
ible Hall-Vinen-Bekharevich-Khalatnikov (HVBK), two-fluid
model162–168,201 can be used, if we consider low-Mach-number
situations. Strictly speaking, we can only have power-law,
Kosterlitz-Thouless superfluid ordering at finite temperatures
in 2D;143,144 this subtlety comes out clearly in the Gross-
Pitaevskii (GP) description that we present in Subsection II F.
However, on the time scales of experiments on finite sam-
ples, an HVBK description may well suffice, if we consider
the length scales mentioned above. It is in this sense that it
is useful to study 2D superfluid turbulence via the 2D HVBK
model.

In essence, the HVBK model consist of the incompress-
ible Navier-Stokes equation (for the normal fluid) coupled with
an Euler equation (for the superfluid) via a mutual-friction
term. The incompressible, 2D HVBK equations are162–166

Dtun = −
1
ρn
∇pn + νn∇

2un − µnun + Fn
mf + fn

u, (25a)

Dtus = −
1
ρs
∇ps + νs∇

2us − µsus + Fs
mf + f s

u. (25b)

Here, Dtui ≡ ∂t+ui ·∇, incompressibility imposes∇·ui = 0, the
subscript i ∈ (n, s) distinguishes normal-fluid (n) and super-
fluid (s) components, which have the density, partial pressure,
and viscosity ρi, pi, and νi, respectively; the coefficients µi

account for friction. For the superfluid, νs and µs are, of course,
zero; however, in any DNS, we must use νs(,0) � νn and
µs � µn to avoid numerical instabilities in the statistically
steady state of superfluid turbulence. Fn

mf = (ρs/ρ)fmf and
Fs

mf = −(ρn/ρ)fmf are the mutual-friction terms, where

fmf =
B
2
ωs

|ωs |
× (ωs × uns) +

B′

2
ωs × uns, (26)

with the slip velocity uns = (un � us); the mutual-friction coef-
ficients are B and B′. These have been measured, as functions
of temperature, in 3D experiments,201 but such measurements
have not been made in 2D. Therefore, we often set B′ = 0 (so,
in 2D, fmf = −

B
2 |ωs |uns) but check in a representative case

that, if B′ > 0, our qualitative conclusions do not change.
In our DNS of the 2D HVBK system, we use the stream-

function ψi and vorticity ωi = ∇ × ui = −∇
2ψi formulation,54

force the vorticity fields with Kolmogorov-type terms f i
ω

= −f i
0ki

f cos(ki
f x) and f i

0 and ki
f amplitudes and the forcing wave

number, respectively. We use (a) ki
f = 2 and (b) ki

f = 50 to study
energy spectra that are dominated, respectively, by a forward-
or an inverse-cascade regime; in case (b), we force the normal-
fluid (superfluid) component if ρn/ρ > 0.5 (ρn/ρ ≤ 0.5).
We use periodic boundary conditions, on a square simulation
domain, the pseudospectral method54,168 with the 2/3 dealias-
ing rule, and, for time marching, a second-order, exponential
time differencing Runge-Kutta method.187 The parameters of
our DNSs are given in Ref. 168, which we follow closely
here.

We characterize the statistical properties of homo-
geneous isotropic turbulence in the 2D HVBK model
by computing the energy spectra En(k) and Es(k), Ei(k)
= 〈

∑
k− 1

2<k′≤k+ 1
2
|ui(k′, t)|2〉t (〈〉t denotes the time average),

various probability distribution functions (PDFs) like P(ωi),
for the vorticities, and the PDF of the cosine of the angle θ
between un and us, and energy and enstrophy fluxes and the
mutual-friction transfer function M i(k), for which we refer the
reader to Ref. 168.

F. Gross-Pitaevskii superfluid

To resolve spatial scales of the order of the core size of a
quantum vortex, we can use the Gross-Pitaevskii (GP) equa-
tion for the spatiotemporal evolution of a weakly interacting
Bose superfluid, at low temperatures. The GP equation is well
known (see, e.g., Refs. 162 and 183 and references therein).
We have proposed a minimal Lagrangian183 that allows us to
study the dynamics of active Newtonian particles in a GP Bose
superfluid; these particles are active in the sense that they affect
the superfluid; their motion is, in turn, affected by the super-
fluid; furthermore, we allow the particles to have a short-range
(SR) repulsion. Our model Lagrangian is

L=
∫
A

[
i~
2

(
Ψ∗ ∂Ψ∂t − Ψ

∂Ψ∗

∂t

)
− ~

2

2m∇Ψ · ∇Ψ
∗

+µ|Ψ|2 −
g
2
|Ψ|4 −

N0∑
i=1

VP(r − qi)|Ψ|
2

]
dr

+
mo

2

N0∑
i=1

q̇2
i −

N0,N0∑
i,j,i,j

∆Er12
SR

|qi − qj |
12

,

(27)

where the condensate wave function isΨ, withΨ∗ its complex
conjugate, A is the simulation domain, g is the effective inter-
action strength, m is the mass of the bosons, µ is the chemical
potential, VP is the potential that we use to represent the parti-
cles, andN0 is the total number of particles each with mass mo.
The last term in the model Lagrangian above is the SR repul-
sive, two-particle potential that is characterized by ∆E and
rSR. If we remove the last three terms in this equation, we get
the conventional GP equation. The Madelung transformation,
Ψ(r, t) =

√
ρ(r, t)/m exp(iΦ(r, t)), relatesΨ to the density and

phase fields ρ(r,t) andΦ(r, t), respectively, whence we get the
superfluid velocity v(r, t) = (~/m)∇Φ(r, t); clearly, such flow
is irrotational if there are no vortices.

In the absence of particles, we can now rewrite the total
GP energy as

E =
∫
A

[ 1
2
ρv2 +

1
2

g|Ψ|4 +
~2

2m2
|∇
√
ρ|2

]
dr, (28)
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which has the following parts: the kinetic energy Ekin = (1/2)
∫ ρ|v |

2dr, the interaction energy Eint = (1/2) ∫ g|Ψ|4dr, and

the quantum-pressure energy Eq = (~2/2m2)
∫
|∇
√
ρ|2dr.

We can subdivide the kinetic energy into contributions that
come from the compressible (superscript c) and incompress-
ible (superscript i) parts of

√
ρv as follows: We begin with the

decomposition
√
ρv = (

√
ρv)i + (

√
ρv)c, where ∇ · (

√
ρv)i
= 0

and∇×(
√
ρv)c

= 0, whence we get the following compressible
and incompressible parts of Ekin:

Ei
kin =

1
2

∫
A
|(
√
ρv)i
|2d2x, (29a)

Ec
kin =

1
2

∫
A
|(
√
ρv)c
|2d2x. (29b)

These energies can be written in terms of their Fourier-space
spectra as follows:174

Ei
kin =

1
2

∫
|
G(ρ1/2v)i

|2d2k ≡
∫

Ei
kin(k)dk, (30)

Ec
kin =

1
2

∫
|G(ρ1/2v)c

|2d2k ≡
∫

Ec
kin(k)dk, (31)

Eint =

∫
|
G√g/2|ψ |2 |2d2k ≡

∫
Eint(k)dk, (32)

and

Eq =

∫
|E∇ρ1/2 |2d2k ≡

∫
Eq(k)dk; (33)

here, Ô denotes the spatial Fourier transform of O(r), k is the
wave number, and the time dependence of the spectra has been
suppressed. Similarly, we can define the occupation-number
spectra via

N =
∫
|Ψ̂|2d2k ≡

∫
n(k)dk. (34)

These spectra reach a statistically steady form under the fol-
lowing conditions: (a) if the Fourier-truncated GP equation is
used, as in any DNS (see below), and the system thermalizes
completely; (b) or the GP equation is forced and then a dissi-
pation mechanism is introduced, at small length scales (large
k), in a variety of ways (see, e.g., Refs. 159 and 170–172), to
account for different possible dissipation mechanisms that can
arise at length scales comparable to or smaller than the heal-
ing length. Freely decaying turbulence in the 2D GP equation
can also be studied by introducing a dissipation mechanism
(e.g., Ref. 202 introduces a hyperviscosity of the type we have
discussed above in the MHD context).

Other statistical properties that help us to characterize
the statistical properties of the 2D GP system are various
PDFs, such as those of the components of the velocity, and
the correlation function

c(r) = 〈
[
e−iΦ(x) − 〈e−iΦ(x)〉

] [
eiΦ(x+r) − 〈eiΦ(x+r)〉

]
〉, (35)

which helps us to identify the Berezinski-Kosterlitz-Thouless
(BKT) phase in the thermalized state; in the BKT phase, c(r)
decays as a power of 1/r.

For the particle part of our model Lagrangian above,
it is convenient to use the Gaussian potential VP = Vo

exp(−r2/2d2
p ), with strength Vo and width dp, to represent

a particle. The particle displaces some superfluid with mass

mf and, in 2D, an area comparable to the area of the particle.
The important control parameter M ≡ mo/mf distinguishes
between particles that are (1) heavy (M > 1), (2) neutral
(M = 1), and (3) light (M < 1).

To solve the 2D GP equations, we use a pseudospectral
DNS,174,183 a 2D, periodic, square computational domain and
a fourth-order, Runge-Kutta scheme for time marching. It is
convenient to work with the quantum of circulation κ ≡ h/m
≡ 4πα0, speed of sound cs =

√
2α0gρ0, healing length

ξ =
√
α0/(gρ0), and the mean density ρ0. Different studies

use slightly different normalizations or units. In our calcula-
tions with particles,183 we set ρ0 = 1, c = 1, and ξ = 1.44
dx, where dx = L/Nc, N2

c is the number of collocation points,
µ = g, Vo = 10 g, dp = 1.5 ξ, and ∆E = 0.062.

III. OVERVIEW OF RESULTS

This section is divided into six subsections. The first of
these is devoted to some statistical properties of particles that
are advected by a turbulent, 2D fluid (Subsection III A). The
next one deals with cascades in 2D MHD turbulence (Subsec-
tion III B). The third describes the effects of polymer additives
in a 2D fluid (Subsection III C). The fourth covers recent stud-
ies of 2D binary-fluid turbulence (Subsection III D). The fifth
provides an overview of 2D superfluid turbulence at the level
of the 2D HVBK equations (Subsection III E). The last one is
devoted to results on the statistical properties of turbulence in
the 2D GP equation (Subsection III F); we also cover particle
dynamics in a 2D GP superfluid.

A. Particles in a 2D turbulent fluid

As we have mentioned above, in 2D fluid turbulence,
the inverse and forward cascades7,53,54,64–66 lead to power-law
forms for the energy spectrum that are, respectively,

E(k) ∼ k−5/3, kα � k � kf , (36)

E(k) ∼ k−δ , kf � k � kv, (37)

here, kα ∼ α/urms is the small-k (IR) cutoff induced by fric-
tion, and kν ∼ ν−1/2η1/6

ν is the large-k (UV) cutoff, with
ην the constant enstrophy flux; δ = 3 without friction, but
it increases with the friction coefficient because of nonlocal
interactions.7,53,54,64–66 A single DNS can obtain both these
power-law ranges53,55 only if its resolution is very high; an
experimental example of both cascades is given in Ref. 41. In
the absence of friction, it is not easy to obtain a statistically
steady state for forced 2D fluid turbulence. Two, large coher-
ent vortices, with opposite signs if the mean vorticity vanishes,
dominate the large-time behavior of the system and its statis-
tical properties evolve slowly in time; however, a very long
run56 has managed to get a statistically steady state in this
case.

The parameter-dependence of other statistical properties,
especially those in the forward-cascade regime, is discussed
in Refs. 7, 53, 54, and 64–66; furthermore, velocity struc-
ture functions (see below) do not show significant multi-
scaling, but vorticity structure functions do. While calculat-
ing such structure functions, it is important to extract their
isotropic parts. The PDFs of velocity components are close
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to Gaussian; and the PDF for the Okubo-Weiss parameter Λ
shows a cusp and its form is in quantitative agreement with
experiments.54

We turn now to the statistics of passive particles, which
are advected by 2D turbulent flows but do not themselves
affect the flow. Their dynamics are governed by Eq. (9), for
Lagrangian tracers, and Eq. (8), for heavy particles. We can
calculate several quantities that characterize (a) the cluster-
ing of heavy particles and (b) the geometrical properties, such
as the curvature of these trajectories. The clustering of heavy
particles, or preferential concentration, in 3D turbulent flows
is well known.72,75,78 This occurs in 2D flows too.83,84,87,88

Lagrangian tracers are distributed uniformly in the flow. Ini-
tially, as the Stokes number St increases, so does the degree of
clustering; eventually, at large-enough values of St, the cluster-
ing tendency decreases. Formations of network-type regions,
with a high density of particles, and empty spaces in between
have been reported and analysed in Ref. 88; and it has been
suggested that such clustering is correlated with acceleration
stagnation points in an inverse-cascade-dominated DNS of 2D
fluid turbulence.87 Studies of single-particle and relative dis-
persion of particles in 2D turbulent fluids can be found in,
e.g., Refs. 79–83. The geometries of particle tracks, in par-
ticular the statistics of their curvatures, have been studied in
Refs. 85, 86, and 89–91. Irreversibility has also been studied
at the single-particle level.203,204 These studies are well known
in the fluid-dynamics literature.

In addition, we can use the trajectories of particles to
address questions that are of prime importance in nonequilib-
rium statistical physics; these issues are not very well known
in the fluid-dynamics community, so we concentrate on them
here. In particular, we provide a summary of how Lagrangian
tracers can be used (a) to define quasi-Lagrangian fields,
whose time-dependent structure functions play a central role
in establishing the dynamic multiscaling of time-dependent
structure functions,100 and (b) the persistence problem for
turbulence.93

1. Dynamic multiscaling

It has been noted often that there is a striking similarity
between critical phenomena in statistical mechanics143,144 and
the statistical properties of fluid turbulence. For example, in the
former, correlation functions show a power-law dependence on
the spatial separation between, say, spins in an Ising model, at
the critical point. As the system approaches this critical point,
its correlation length diverges; the relaxation time too diverges
as a power z of the correlation length, leading to dynamic scal-
ing with a dynamic-scaling exponent z. The fluid-turbulence
analog96–100 of power-law, critical correlation functions is the
inertial-range, power-law behavior of the structure functions
we have mentioned above.

What time-dependent structure functions should we use to
develop the turbulence analog of dynamic scaling? The answer
to this important question does not follow immediately by
pursuing the standard development of this subject in critical
phenomena because of the following two difficulties: (a) We
cannot use time-dependent Eulerian structure functions; they
lead to trivial dynamic scaling, with an exponent z = 1 because
of the sweeping effect: roughly speaking, the mean flow of

large eddies sweeps small ones, so spatial and temporal sepa-
rations are related linearly via the mean-flow velocity. (b) We
must characterize the dynamic multiscaling of time-dependent
structure functions.

To remove sweeping effects, it is natural to use quasi-
Lagrangian (superscript QL) fields.94–100 These are defined
with respect to a Lagrangian particle, which was at the point
R0 at time t0, and, at time t, is at R(t|R0, t0), such that dR(t|R0,
t0)/dt = u[R(t|R0, t0), t], where u is the Eulerian velocity. For
example, the quasi-Lagrangian velocity field uQL is

uQL(x, t |R0, t0) ≡ u[X + R(t |R0, t0), t]; (38)

similarly, we can define its vorticital counterpartωQL in terms
of the Eulerian ω; and, remarkably, we can calculate such
quasi-Lagrangian fields in a DNS in both 2D100 and 3D.205

We restrict ourselves to 2D here.
We begin with the equal-time, order-p, vorticity struc-

ture functions Sϕ(r) ≡ 〈[δωϕ(r, t)]p〉 ∼ rζ
ϕ

, in the power-law
range, and with δωϕ(r,t) = [ωϕ(x + r,t) �ωϕ(x, t)]; the super-
script ϕ can be E (Eulerian) or QL (quasi-Lagrangian); to avoid
cumbersome notation, we suppress the subscript ω on Sϕp and
the multiscaling exponent ζϕ . We assume isotropy (Ref. 100
discusses how to extract of the isotropic parts of Sϕp in a
DNS). The time-dependent, vorticity structure functions, for
order-p, are

F ϕ(r, {t1, . . . , tp}) ≡ 〈[δω
ϕ(r, t1) · · · δωϕ(r, tp)]〉, (39)

in general, t1, . . . , tp are p different times; and F ϕ(r, {t1
= · · · = tp = 0}) = S ϕ(r). Let us consider the simplest
case t1 = t and t2 = · · · = tp = 0 with the time-dependent
structure function denoted by Fϕ(r, t). Given Fϕ(r, t), we can
extract a characteristic time scale τp(r) from its integrals or
derivatives (see below); and we can use these time scales to
define and obtain the dynamic-multiscaling exponents zp via
the dynamic-multiscaling Ansatz τp(r) ∼ rzp . We obtain order-
p, degree-M, integral (superscript I) or derivative (superscript
D) time scales by using Eqs. (40) and (41) below,

T I ,ϕ
p,M (r) ≡

[ 1
Sϕ(r)

∫ ∞
0

Fϕ(r, t)t(M−1)dt
] (1/M)

, (40)

TD,ϕ
p,M ≡

[ 1
Sϕ(r)

∂M

∂tM
Fϕ(r, t)

����t=0

] (−1/M)

, (41)

and thence we calculate the dynamic-multiscaling exponents

z I ,ϕ
p,M , via T I ,ϕ

p,M ∼ rzI ,ϕ
p,M , and z D,ϕ

p,M , via TD,ϕ
p,M ∼ rzD,ϕ

p,M .
Equal-time vorticity structure functions in 2D fluid turbu-

lence with friction exhibit multiscaling in the direct cascade
range.54,64,65 A generalization of the multifractal model,5 with
time-dependent velocity structure functions in 3D,95,96,98,99

yields linear bridge relations between dynamic-multiscaling
and equal-time exponents. For our 2D direct-cascade regime,
with friction, these bridge relations for vorticity-structure-
function exponents are100

zI ,ϕ
p,M = 1 + [ζϕp−M − ζ

ϕ]/M, (42)

zD,ϕ
p,M = 1 + [ζϕ − ζϕp+M ]/M. (43)

The DNS of Ref. 100, to which we refer the reader for
details, allows us to compute both equal-time and dynamic-
multiscaling exponents and to verify that the bridge relations
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FIG. 1. (a) Illustrative semilog plots of the persistence-time cumulative PDFs Q+
E (red crosses), Q−E (black open circles), and Q−L (magenta full circles); here E

and L denote Eulerian and Lagrangian frames, respectively; and + or � PDFs from vortical (Λ > 0) and extensional (Λ < 0) regions, respectively; dashed lines
are exponential fits. (b) A representative log-log plot of the cumulative PDF Q+

L(•) versus τ showing the power-law region whose slope yields the persistence
exponent [see Fig. 2 of Ref. 93 for details and definitions of Tη , T inj, and T cf and the local-slope analysis (inset) of the power-law regime]. Reproduced with
permission from Perlekar et al., “The persistence problem in two-dimensional fluid turbulence,” Phys. Rev. Lett. 106, 054501 (2011). Copyright 2011 American
Physical Society.

of Eqs. (42) and (43) above are satisfied, within error bars (see
Table I in Ref. 100).

2. The persistence problem

Another problem that has attracted a lot of interest in
nonequilibrium statistical mechanics is the persistence prob-
lem.92 To define this, we consider a field Υ and obtain the
persistence-time PDF PΥ(τ), which is the probability that the
sign of Υ, at a point, does not change up until a time τ.
Studies show that for a variety of systems, PΥ(τ) ∼ τ−ϑ as
τ → ∞where ϑ is called the persistence exponent; it has been
obtained analytically only for a few models;92 for most mod-
els, this exponent has to be calculated numerically. A natural
way of defining and calculating the persistence exponent in 2D
turbulence has been given in Ref. 93, which uses the Okubo-
Weiss parameterΛ to distinguish between vortical (Λ > 0) and
extensional (Λ < 0) regions in the 2D flow. Persistence times
are then defined in the following frameworks: (A) Eulerian
framework: consider the time evolution of Λ, at a point (x, y),
and determine the time τ for which the flow at (x, y) remains
vortical (extensional) if, at this point, it became vortical (exten-
sional) at some earlier time; (B) Lagrangian framework: obtain
the time τ for which a Lagrangian particle resides in a vorti-
cal (extensional) region if it entered that region at an earlier
time.

The DNS study of Ref. 93 obtains PDFs and cumulative
PDFs, denoted generically by Q, of τ. In the Eulerian frame-
work, these PDFs show exponential tails, both with Λ > 0
and Λ < 0 [see, e.g., Fig. 1(a)]. In the Lagrangian framework,
the PDF of the residence time of the particle in extensional
regions also shows an exponential tail. In contrast, the anal-
ogous PDF for vortical regions shows a power-law region
that is clearly apparent in Fig. 1(b). This power law, which
stems from the long time for which a passive particle can be
trapped in a vortical region,93 yields the persistence exponent
ϑ = 2.9 ± 0.2; this exponent appears to be universal, insofar
as it is independent of Re, kf , and α. The detailed verification
and elucidation of such universality remains an important chal-
lenge. Furthermore, characteristic lifetimes can be obtained
from the persistence-time PDFs that decay exponentially.93

(A 3D generalization has been discussed recently;206 here all
persistence-time PDFs fall exponentially.) We refer the reader

to Ref. 90, which also studies Lagrangian-tracer statistics
conditioned on the topology of the flow, characterized, as in
our work, via the sign of Λ.

3. Elliptical particles

The last example we give of the rich statistical properties
of particles in 2D turbulent flows considers elliptical tracers
as in Ref. 101; this DNS study employs forcing either (A) at
large or (B) intermediate length scales; cases (A) and (B) lead
to qualitatively different properties. With forcing (A), parti-
cle orientations form large-scale structures in space; these are
absent for forcing (B). The unit vector, along the semi-major
axis of an elliptical particle, p and∇×ω align more with forcing
(A) than with forcing (B), as we show by the illustrative plots
of the PDFs of χ, the angle between p and∇×ω, in Fig. 2. Fur-
thermore, this alignment is much weaker than its 3D analog,
i.e., the alignment of p, for ellipsoidal particles, and ω, which
is yet another difference between turbulence in 2D and 3D.
Reference 101 calculates many other statistical properties of
orientation and rotation dynamics of these elliptical tracers. We
highlight one of these, which uses the order-parameter corre-
lation function from the statistical physics of liquid crystals in
2D, namely, Γ(r) = [〈P(r, t)P(0, t)〉−〈P(r, t)〉〈P(0, t)〉]/〈P2〉,

FIG. 2. PDFs of the angle χ between p and ∇ ×ω. Left: run A1 (solid, blue
curve), run A2 (dashed, red curve), run A3 (dotted-dashed, black curve) for
υ = 1. The inset shows the same PDF for run A3 and different values of υ.
Right: run B1 (solid, blue curve), run B2 (dashed, red curve), run B3 (dotted-
dashed, black curve) for υ = 1. The inset shows the same PDF for run B3 and
different values of υ. For run numbers and details, see Ref. 101, which uses
the symbol γ instead of υ. Reproduced with permission from A. Gupta, D.
Vincenzi, and R. Pandit, “Elliptical tracers in two-dimensional, homogeneous,
isotropic statistics of alignment, rotation, and nematic order,” Phys. Rev. E
89, 021001(R) (2014). Copyright 2014 American Physical Society.
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FIG. 3. Single-time two-point correlation function of P as a function of the
space separation rescaled by the correlation length. Left: run A1 (solid, blue
curve), run A2 (dashed, red curve), run A3 (dotted-dashed, black curve) for
υ = 1. Right: run B1 (solid, blue curve), run B2 (dashed, red curve), run
B3 (dotted-dashed, black curve) for υ = 1. The insets show the correlation
length as a function of υ; the color code is the same as in the main plots. For
run numbers and details, see Ref. 101, which uses the symbol γ instead of
υ. Reproduced with permission from A. Gupta, D. Vincenzi, and R. Pandit,
“Elliptical tracers in two-dimensional, homogeneous, isotropic statistics of
alignment, rotation, and nematic order,” Phys. Rev. E 89, 021001(R) (2014).
Copyright 2014 American Physical Society.

where P(r, t) ≡ (2 cos2Θ(r, t) − 1) is the local nematic order
parameter in 2D.143 The plots of Γ(r) in Fig. 3 show that it
oscillates for forcing (A) but decays exponentially for forc-
ing (B). From Γ we can calculate the correlation length LΓ,
which increases with υ, and which goes from 0 (for cir-
cular disks) to 1 (for thin needles). Furthermore, in case
(A), LΓ is determined principally by kf ; in case (B), the
size of large-scale flow structures increases with Reλ, so LΓ
increases too.

B. Two-dimensional MHD turbulence

Inverse and forward cascades occur in homogeneous,
isotropic, and statistically steady magnetohydrodynamic
(MHD) turbulence, in both 3D102 and 2D. We discuss the
statistical properties of 2D MHD turbulence, in which there
is an inverse cascade of the magnetic vector potential; this
has attracted considerable attention.103–117 For discussions of
the early studies of 2D MHD turbulence, we refer the reader
to Refs. 63 and 110, which cover the literature until 2003-
2004. The quadratic invariants of ideal, unforced 2D MHD
are the total energy, cross helicity, and the mean square vec-
tor potential. In 2D MHD, with forcing and a viscosity and
magnetic diffusivity, there is a forward cascade of energy
and cross helicity, but an inverse cascade in the spectrum for

the vector potential. There have been different suggestions
for the scaling forms of the spectra. We concentrate on the
inverse-cascade regime and show that the power-law expo-
nents, for the inverse-cascade regime, can depend on dissipa-
tion parameters.

The dimensional predictions for the spectra |ψb|2(k),
Eu(k), and Eb(k) in this inverse-cascade regime in 2D MHD
are105,111,112,115

|ψb(k)|2 ∼ k−7/3, (44)

Eb(k) ∼ k2 |ψb(k)|2 ∼ k−1/3, (45)

Eu(k) ∼ Eb(k) ∼ k−1/3. (46)

The last scaling form for Eu(k) relies on more assumptions
than the normal ones that enter such dimensional arguments.
For example, it has been suggested111,112 that the nonlinear
terms in the velocity equation in 2D MHD balance each other,
to yield the last of the relations in Eq. (46). Another study
has suggested105 that this last argument may not be valid in
the inverse-cascade regime, but only in the forward-cascade
part, via an Alfvén-type effect from the large-scale magnetic
field, which couples small-scale velocity and magnetic fields
strongly, so Eu(k) ∼ Eb(k). [Roughly speaking, we can relate
Eu(k) and Eb(k), in the forward-cascade regime, by appeal-
ing to the Alfvén effect, which arises from the influence of
the magnetic field, from the largest length scales in the direct
numerical simulation, on the fields at small length scales. In
particular, the velocity and magnetic fields are tightly cou-
pled, to form Alfvén waves, so Eu(k) ' Eb(k). However,
such an Alfvén effect should be weak in the inverse-cascade
regime because the large-scale magnetic field is not present
here.105]

The DNS study of 2D MHD in Ref. 115 has been designed
to explore, inter alia, the inverse-cascade, power-law forms
of such spectra; two cases are investigated: R1, with a finite,
positive friction, hyperviscosity, and magnetic hyperdiffusiv-
ity and R2, with zero friction. This study finds, remarkably,
that these runs yield qualitatively different statistical proper-
ties; for example, run R1 yields an inverse-cascade regime
consistent with Eu(k) ∼ k0 and Eb(k) ∼ k−1/3 (left panel of
Fig. 4); however, R2 yields spectra that are consistent with
Eu(k) ∼ k1/3 and Eb(k) ∼ k−1/3 (right panel of Fig. 4).
To get reliable statistically steady states, it is necessary to

FIG. 4. Log-log plots versus the wave number k, for runs R1 (left panel kf = 500) and R2 (right panel kf = 70); red and blue curves show, respectively, kinetic-
energy Eu(k) and magnetic-energy Eb(k) spectra. Middle panel: Plots versus scaled time t/τeddy, for run R2, of the total energy (green curve), magnetic-energy
(blue curve), and kinetic-energy (red curve). For details of these runs see Ref. 115. Reproduced with permission from D. Banerjee and R. Pandit, “Statistics
of the inverse-cascade regime in two-dimensional magnetohydrodynamic turbulence,” Phys. Rev. E 90, 013018 (2014). Copyright 2014 American Physical
Society.



111112-12 Pandit et al. Phys. Fluids 29, 111112 (2017)

have very long runs, especially in run R2 (central panel of
Fig. 4).

The comparison of results from different DNSs is often
not straightforward. We illustrate this by contrasting our results
for spectra with those of Refs. 105, 111, and 112. Our spectral
exponents from R2 agree with those of Ref. 105, but there are
important differences at small k, which suggests that they use
a friction unlike our run R2 (we have not found this stated
explicitly in their paper). Furthermore, Ref. 105 does employ
hyperviscosity (ς = 2), whereas our run R2 uses conventional
viscosity. Although hyperviscosity can yield a large inertial
range, it can also lead to bottlenecks,207 so we expect that
the spectra of Ref. 105 should differ from those of our run
R2 only at large values of k, beyond the bottleneck region.
The spectral exponents of Refs. 111 and 112 agree with those
from our run R2 for Eu(k) but not for Eb(k). Their low-k
spectra suggest that they use a friction term or large-scale
dissipation. They also report a forward-cascade power-law
Eu(k) ∼ k−5/3; we use a large value of kf to enhance the
size of the inverse-cascade range, so we cannot reliably com-
ment on the forward-cascade regime. The dependence of such
exponents on friction and the type of dissipation is known
already for the forward-cascade regime in 2D fluid turbu-
lence, where the spectral exponent depends on the friction (see
above). Furthermore, in the recent studies of Refs. 116 and
117, the direction of the cascade has been changed by tuning
the ratio of the forcing terms in velocity and magnetic-field
equations in 2D MHD. Clearly, more high-resolution DNS
studies are required to understand all the subtleties of spec-
tra in 2D MHD. Most DNSs of 2D MHD set the magnetic
Prandtl number to unity; it is interesting, but challenging, to
move away from this value (for the case of 3D MHD see, e.g.,
Ref. 208).

The study of Ref. 115 also obtains various PDFs that char-
acterize statistically steady 2D MHD turbulence. We present
a few illustrative PDFs in Fig. 5. The left panel shows the
PDF of cos(βu,b), where βu,b is the angle between the veloc-
ity and the magnetic field; this clearly indicates a tendency
for these two vectors to be aligned and, therefore, a depletion
of nonlinearities as discussed, e.g., in Ref. 210. The middle
and right panels of Fig. 5 show, for runs R1 and R2, PDFs
of the Okubo-Weiss parameter Λ and its analog Λb for 2D
MHD; these plots are qualitatively similar to their 2D-fluid
counterparts; and, just as the sign of Λ distinguishes between

vortical and extensional regions in a flow, the sign of Λb can
be used to test if a region is current-dominated or dominated
by magnetic strain.

C. Two-dimensional fluid turbulence with
polymer additives

In 3D, fluid flows with small concentrations of poly-
mer additives have been studied extensively because of
remarkable, polymer-induced effects, such as drag reduc-
tion,118 in turbulent flows, and elastic turbulence,119,120 which
occurs at low Reynolds numbers. In statistically homogeneous
and isotropic turbulence, polymers reduce the dissipation,
change the fluid energy spectrum, and suppress small-scale
structures.122–132

These effects have also been studied in 2D flows via
experiments133–135 and DNSs.136–141 It is now possible to
carry out (a) high-resolution140 DNSs of the FENE-P model
(Subsection II C) or (b) long DNSs for substantial ranges141

in the Weissenberg (Wi) number and Reynolds (Re) number
parameter space. We give illustrative results from these studies
to show how well we can capture the effects of polymers on a
turbulent 2D fluid and uncover the crossover from dissipation-
reduction to elastic-turbulence regimes in the Wi-Re parameter
space.

Figure 6(a) shows dissipation-reduction-type phenom-
ena,140 on the addition of polymers, for they reduce the total
fluid energy E (top panel), the enstrophyΩ (middle panel), and
the mean-square palinstrophyP (bottom panel). The polymers
change the fluid energy spectrum in Fig. 6(b) in both inverse-
and forward-cascade parts: it is reduced slightly at small and
intermediate wave numbers k and enhanced significantly at
large k (as in its 3D counterpart125,126); such spectral features
can be identified unambiguously only in a high-resolution
DNS like the one in Ref. 140 with 16 3842 collocation
points.

The size of a polymer, even when stretched, is less than
the dissipation scale. Roughly speaking, the polymers stretch
by taking energy from the fluid energy; this then cascades
from small to large k; thus, E(k) is depleted at small k. As the
polymers relax, they give energy to the fluid at large k and
enhance, thereby, the large-k tail of E(k). These qualitative
arguments can be quantified by calculating125,126,130,140 the
effective, scale-dependent viscosity νe(k) ≡ ν + ∆ν(k), with

FIG. 5. Plots of the PDFs: Left panel: PDF of cos(βu,b), with βu ,b the angle between u and b. Middle and right panels: PDFs of Λ (red) and Λb (blue) for runs
R1 and R2, respectively. For details of these runs see Ref. 115. Reproduced with permission from D. Banerjee and R. Pandit, “Statistics of the inverse-cascade
regime in two-dimensional magnetohydrodynamic turbulence,” Phys. Rev. E 90, 013018 (2014). Copyright 2014 American Physical Society.
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FIG. 6. (a) Plots versus the scaled time t/τe of the total kinetic energy E of the fluid (top panel), the enstrophyΩ (middle panel), and the mean-square palinstrophy
P (bottom panel) for c = 0 (upper curve, blue circles for run R7) and c = 0.4 (lower curve, black line for run R7); (b) log-log (base 10) plots of the energy
spectra E(k) versus k for c = 0.2 (red triangles for run R10) and c = 0 (blue circles for run R10); (c) plots of the hyperflatness F6(r) versus r for c = 0 (blue
circles for run R7) and c = 0.2 (green asterisks for run R7) (here run numbers are as in Ref. 140). Reproduced with permission from A. Gupta, P. Perlekar,
and R. Pandit, “Two-dimensional homogeneous isotropic fluid turbulence with polymer additives,” Phys. Rev. E 91, 033013 (2015). Copyright 2015 American
Physical Society.

∆ν(k) ≡ −µ
∑

k−1/2<k′≤k+1/2

uk′ · (∇ · J )−k′

[τPk2Ep(k)]
, (47)

where the subscripts k′ denote spatial Fourier transforms and
J = f (rP)C. It can then be shown140 that ∆ν(k) > 0, for small
k, where Ep(k) < Ef (k), but ∆ν(k) < 0, at large k, where
Ep(k) > Ef (k); the superscripts on E denote the fluid without
( f ) and with (p) polymers.

Intermittency at small length scales is characterized in
the DNS of Ref. 140 by a plot of the hyperflatness F6(r)
[Fig. 6(c)], which shows a marked reduction at small length
scales because of polymer additives. Furthermore, the stretch-
ing of the polymer by the turbulent fluid can be studied by
the conditional PDF of (rP/LP), conditioned on the sign of the
Okubo-Weiss parameter Λ, which illustrates [Fig. 7(a)] that
polymers stretch preferentially in strain-dominated (Λ < 0)
regions. This can also be shown visually by a superimposi-
tion of contours of r2

P on a pseudocolor plot of Λ [Fig. 7(b)].
Finally, the PDFs of Λ, with and without polymers, show how
the tails of these PDFs are depleted on the addition of polymers
[Fig. 7(c)].

We turn now to explorations of the disordering of a peri-
odic arrangement of vortices and antivortices in a fluid film
by fluid turbulence or by elastic turbulence. We follow Refs.
141 and 211, which characterize this as turbulence- or elastic-
turbulence-induced melting of a vortex crystal; such a melt-
ing transition is a nonequilibrium analog of the equilibrium,
temperature-induced melting of a crystal into a liquid. To study

this problem, we use a DNS of the FENE-P model, with a
forcing term such that, without polymers and at low Re, the
steady state is a cellular flow, i.e., a square lattice of period-
ically arranged vortices and anti-vortices. As we increase the
Weissenberg number Wi, we find a sequence of nonequilib-
rium phase transitions, which transforms the original vortex
lattice: first we get spatially distorted, but temporally steady,
crystals; then a sequence of crystals that oscillate in time, peri-
odically, at low Wi, and quasiperiodically, for slightly larger Wi
(these are examples of spatiotemporal crystals, which have no
analog in equilibrium statistical mechanics). Finally, the sys-
tem becomes disordered and displays spatiotemporal chaos
and elastic turbulence. There might well be many nonequi-
librium states in this system, but only a limited number can
be examined in any set of DNSs. We follow Ref. 141 and
define the following. SX: original, steady square crystal (the
pattern depends on the spatial periodicity of the forcing term);
SXA: temporally steady crystals distorted slightly compared to
SX; OPXA: crystal, distorted slightly relative to SX, and with
periodic temporal oscillations; OQPXA: like OPXA but with
quasiperiodic temporal oscillations; SCT: disordered phase
with spatiotemporal chaos and turbulence. These states can
be characterized in several ways, including nonequilibrium
generalizations of order parameters that are used in the density-
wave theory of the equilibrium freezing transition from a liquid
to a crystal.141,201,211 We restrict ourselves to plots of (a) the
time evolution of the energy E(t), (b) its power spectrum
|E( f )| versus the frequency f, and (c) pseudocolor plots of the

FIG. 7. (a) Conditional PDF of (rP/L) conditioned on the sign of Λ for run R9; (b) a pseudocolor plot of Λ superimposed on a contour plot of r2
P for run

R10; (c) PDFs of Λ without (blue curve) and with (green curve) polymers for run R7. For parameters for these runs see Ref. 140. Reproduced with permission
from A. Gupta, P. Perlekar, and R. Pandit, “Two-dimensional homogeneous isotropic fluid turbulence with polymer additives,” Phys. Rev. E 91, 033013 (2015).
Copyright 2015 American Physical Society.
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FIG. 8. Plots for an OPXA state (Ω = 1 and Wi = 3): (a) the time evolution of the energy E(t), (b) its power spectrum |E(f )| versus the frequency f, and (c)
pseudocolor plots of the Okubo-Weiss parameterΛ; see Ref. 141 for parameters and details. Reproduced with permission from A. Gupta and R. Pandit, “Melting
of a nonequilibrium vortex crystal in a fluid film with polymers: Elastic versus fluid turbulence,” Phys. Rev. E 95, 033119 (2017). Copyright 2017 American
Physical Society.

FIG. 9. Plots for an SCT state (Ω = 1 and Wi = 20): (a) the time evolution of the energy E(t), (b) its power spectrum |E(f )| versus the frequency f, and (c)
pseudocolor plots of the Okubo-Weiss parameterΛ; see Ref. 141 for parameters and details. Reproduced with permission from A. Gupta and R. Pandit, “Melting
of a nonequilibrium vortex crystal in a fluid film with polymers: Elastic versus fluid turbulence,” Phys. Rev. E 95, 033119 (2017). Copyright 2017 American
Physical Society.

Okubo-Weiss parameter Λ; illustrative plots for OPXA and
SCT states are given, respectively, in Figs. 8 and 9.

To examine the stability of these states, 400 DNSs have
been carried out in Ref. 141 to obtain the nonequilibrium phase
diagram in the Wi-Ω plane [Fig. 10(a)], where Ω ∝ Re. It is
important to note that (a) the boundary between the crystalline
and turbulent phases has a complicated, fractal-type character
and (b) the Okubo-Weiss parameter Λ provides us with a nat-
ural measure for characterizing the phases and transitions in
this diagram. Such a crystal can be melted in many ways: (A)
by increasing Re at low Wi (turbulence-induced melting), as

shown in the absence of polymers in Refs. 85, 86, and 210;
the disordered phase is a turbulent fluid that shows dissipation
reduction because of the polymer additives; (B) by increasing
Wi, at low Re (elastic-turbulence-induced melting); the disor-
dered state is a polymeric fluid that shows elastic turbulence119

or rheochaos;120; (C) by increasing both Wi and Re, the disor-
dered state is a polymeric fluid that lies in the crossover regime
between dissipation-reduction and elastic-turbulence regimes.
The DNS of Ref. 141 characterizes these regimes by using
many measures. Illustrative examples include energy spectra
[Fig. 10(b)], in different regimes, and plots of contours of r2

P

FIG. 10. (a) Phase diagram of our 2D system with polymer additives in the Wi-Ω plane, where blue circles represent the regions SX and SXA, green circles
represent the regions OPXA and OQPXA, and the red circles represent the region SCT, (b) plots of energy spectra E(k) versus k and for Ω = 4 and Wi = 10
(red line with circles), Ω = 4 and Wi = 40 (green line with squares), and Ω = 50 and Wi = 5 (black line with triangles) and (c) plots of contours of the polymer
stretching r2

P superimposed on a pseudocolor plot of the Okubo-Weiss field Λ for Ω = 1 and Wi = 20 (melted crystal in the elastic-turbulence regime); see
Ref. 141 for parameters and details. Reproduced with permission from A. Gupta and R. Pandit, “Melting of a nonequilibrium vortex crystal in a fluid film with
polymers: Elastic versus fluid turbulence,” Phys. Rev. E 95, 033119 (2017). Copyright 2017 American Physical Society.
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FIG. 11. (a) Pseudocolor plots of the vorticity field with φ-field contours superimposed on them; log-log plots (base 10) versus the scaled wavenumber k/kmax
of (b) E(k) for runs R12 (〈dp〉t/L = 0.22, deep-blue line with asterisks), R16 (〈dp〉t/L = 0.176, green line with crosses), R20 (〈dp〉t/L = 0.125, red line with
circles), and R1 (single-phase fluid, light blue line); the power-laws k�3.6 and k�5.2 are depicted by yellow-dashdot and black-dashed lines, respectively; (c) the
order-parameter spectrum S(k) = |φ̂(k) |2 for 〈dp〉t/L = 0.22 and 〈dp〉t/L = 0.12; see Ref. 155 for parameters and details. Reproduced with permission from
Pal et al., “Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction,” Phys. Rev. E 93, 063115 (2016). Copyright 2016
American Physical Society.

superimposed on a pseudocolor plotΛ in the elastic-turbulence
regime. As far as we know, elastic-turbulence-induced melting
of a vortex crystal has not been explored in experiments, but
DNSs have been studying it or related problems;137,138,141 for
example, the Kolmogorov-flow pattern of Refs. 137 and 138
is a one-dimensional crystal in our terminology.

D. Two-dimensional binary-fluid turbulence

We turn now to some representative examples of 2D
binary-fluid turbulence that have been studied by using the
CHNS system of equations. The mean value of the order-
parameter field φ is an important parameter in this system.
In the first case we consider, this value is such that there is a
fluctuating droplet [Fig. 11(a)] of the minority phase in a back-
ground majority phase; in the second case, this mean value is
such that we have a symmetric, 50-50 mixture, which coarsens
and phase separates in the absence of turbulence.

This droplet is clearly not passive; therefore, it modifies
the turbulence. The energy spectra E(k), with and without
the droplet, shown in Fig. 11(b) illustrate how droplets affect
the turbulent fluid.155 First, E(k) exhibits oscillations, with a
period that is related reciprocally to '〈dp〉t , the mean droplet
diameter. Second, the large-k tail of E(k) is enhanced by the
droplet, in much the same way as it is by polymer additives;140

so, not surprisingly, it can be understood by introducing the

scale-dependent effective viscosity νeff (k) = ν + ∆ν(k) (in
Fourier space), with

∆ν(k) ≡
∑

k−1/2<k′≤k+1/2

uk′ .(φ∇µ)−k′

k2E(k)
(48)

and (φ∇µ)k is the Fourier transform of (φ∇µ) (see the CHNS
equations); the inset of Fig. 11(b) displays ∆ν(k) for 〈dp〉t/L
= 0.324; for ∆ν(k) > 0, E(k) is less than its single-phase-
fluid value (magenta curve); if ∆ν(k) < 0, E(k) is greater
than its single-phase-fluid value. ∆ν(k) changes sign at a value
of k/kmax that depends on 〈dp〉t/L; the smaller the value of
〈dp〉t/L, the larger is the value of k/kmax at which ∆ν(k) goes
from being positive to negative. From our study of 2D fluid
turbulence with polymer additives,140 we can anticipate that
the large-k enhancement of E(k) leads to dissipation reduc-
tion here, as is shown in Ref. 155. The oscillations in E(k)
appear even more clearly in the order-parameter spectrum S(k)
[Fig. 11(c)]; for small droplet fluctuations, e.g., when the sur-
face tension is large or 〈dp〉t/L is small, these oscillations are
very well defined.

How does the turbulence affect the droplet? We can
answer this question quantitatively in the CHNS system by
considering the time evolution of the droplet-deformation
parameter Γ(t) [Fig. 12(a)], which looks clearly intermittent.
Indeed, we find that this time series is multifractal as we can

FIG. 12. (a) Plots versus t/τeddy of Γ(t) for the runs R7 (We = 5.34, blue line), R8 (We = 2.3, green line), and R12 (We = 1.38, red line); (b) plots of the multifractal
spectra fΓ(α) for the time series of Γ for the runs R7 (We = 5.34, blue circles), R8 (We = 2.3, green squares), and R13 (We = 1.38, red diamonds); (c) plots
of the multifractal spectra fε (α) of the energy dissipation ε(t)/〈ε〉t (inset shows the plot versus the scaled time t/τeddy of the energy dissipation ε(t) = 〈ε〉t);
see Ref. 155 for parameters and details. Reproduced with permission from Pal et al., “Binary-fluid turbulence: Signatures of multifractal droplet dynamics and
dissipation reduction,” Phys. Rev. E 93, 063115 (2016). Copyright 2016 American Physical Society.
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FIG. 13. (a) Log-log (base 10) plots of the spectrum S(k), of the phase-field φ, versus k; as σ decreases, the low-k part of S(k) decreases and S(k) develops a
broad and gentle maximum whose peak moves out to large values of k. (b) Log-log (base 10) plot of σLc versus ε/σ4 showing data points [with Lc from S(k)]
in red; the black line is the Hinze result for LH (see text); a fit to our data yields an excellent approximation to the arrest scale Lc over several orders of magnitude
on both vertical and horizontal axes; the inset shows a plot of Lc versus D. (c) Log-log (base 10) plots of the energy spectrum E(k) versus k, for different values
of We, illustrating the truncation of the inverse energy cascade as We increases. The black line indicates the k�5/3 result for the inverse-cascade regime in 2D
fluid turbulence; see Ref. 156 for parameters and details. Reproduced with permission from P. Perlekar, N. Pal, and R. Pandit, “Two-dimensional turbulence in
symmetric binary-fluid mixtures: Coarsening arrest by the inverse cascade,” Sci. Rep. 7, 44589 (2017). Copyright 2017 Nature Publishing Group.

see from the multifractal spectra fΓ(α) [Fig. 12(b)] for the time
series of Γ. We have seen already that the droplet modifies the
fluid turbulence. Another example of this is given in Fig. 12(c),
where we show how the multifractal spectrum fε(α) of the
energy dissipation ε(t)/〈ε〉t time series is modified by the
droplet.

We now highlight a few results of a CHNS study156 of the
arrest of coarsening in a symmetric (50-50), binary-fluid mix-
ture; we refer the reader to Ref. 156 for details. This work uses
parameters that lead, in the absence of the CH-NS coupling,
(a) to domain growth or coarsening, which is monitored by φ,
and (b) an inverse-cascade regime in the energy spectrum E(k).
The CH-NS coupling then leads to an arrest of coarsening, at
a coarsening-arrest length scale Lc, which is evaluated from
the spectrum of φ, i.e., S(k), (left panel, Fig. 13), as follows:

Lc = 2π[
∑

k

S(k)]/[
∑

k

kS(k)]. (49)

In the middle panel of Fig. 13, we demonstrate that (a) Lc ∼ LH ,
the Hinze scale that follows from balancing inertial and
interfacial-tension forces, and (b) Lc is independent, within
error bars, of the diffusivity D. (Here, σ denotes the surface or
interfacial tension.) We have seen above that φ is an active field
in the CHNS system, insofar as it acts back on the velocity field.
The effect of this back reaction shows up clearly in a modi-
fication of the energy spectrum E(k) (right panel, Fig. 13);
we see that the inverse energy cascade is now blocked at a
wavenumber kc ' 2π/Lc.

It is also very interesting to note that the symmetric,
binary-fluid CHNS system is, in many ways, similar to 2D
MHD. We refer the reader to Ref. 156, which contains detailed
discussions of the similarities and differences between the
2D MHD and the symmetric CHS system. One of the results
of this study is that the mean-square concentration spectrum
(2D CHNS) shows the same power law as the mean-square
magnetic-potential spectrum, in the inverse-cascade regime of
2D MHD.

E. Two-dimensional HVBK superfluid turbulence

Although the HVBK model has been studied in 3D,167 a
DNS of this model has been carried out in 2D only recently.168

This offers interesting insights into superfluid turbulence some
of which we describe below. The mutual-friction coupling
between the normal fluid and the superfluid induces an align-
ment of these fields. We illustrate this by pseudocolor plots
of the vorticity fields (left-side panels of Fig. 14) of ωn and
ωs from a DNS with kf = 2. This locking of normal-fluid and
superfluid fields can be quantified by plotting (right side of
Fig. 14) the PDF P(cos(θ)), with θ the angle between un(r,t)
and us(r, t); clearly, these fields tend to align along the same
direction; the degree of alignment increases as we increase the
mutual-friction coefficient B. Both normal-fluid and superfluid
energy spectra can exhibit inverse- and forward-cascade parts
[Figs. 15(a) and 15(b)]. The first of these spectra has kf = 2,
so it has a significant forward-cascade part; a comparison of

FIG. 14. Pseudocolor plots of the vorticity fields, ωn and ωs, from our DNS run R1 at t = 1720 [panels (a) and (b), kf = 2]. (c) Semilogarithmic (base 10) plots
of the PDF P(cos(θ)) of the angle θ between un and us for runs R1 (red circles), R2a (B = 1, blue squares), R2b (B = 2, green diamonds), and R2c (B = 5, purple
triangles); see Ref. 168 for parameters and details. Reproduced with permission from V. Shukla, A. Gupta, and R. Pandit, “Homogeneous isotropic superfluid
turbulence in two dimensions: Inverse and forward cascades in the Hall-Vinen-Bekharevich-Khalatnikov model,” Phys. Rev. B 92, 104510 (2015). Copyright
2015 American Physical Society.
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FIG. 15. Log-log plots of the energy spectra En(k) (full lines) and Es(k) (dashed lines) from our DNS runs: (a) R0 (B = 0, purple lines) and R1 (B = 1, green lines)
with kf = 2; (b) R2a (green curves), R3 (purple curves), R4 (sky-blue curves), R5 (brown curves), and R6 (yellow curves), with B = 1; we force the dominant
component. NF (SF) stands for normal-fluid (superfluid). (c) PDFs of the Okubo-Weiss parameters for runs R2a (red line), R5 (blue line), and R6 (green line),
i.e., ρn/ρ = 0.1, ρn/ρ = 0.5, and ρn/ρ = 0.9, respectively; see Ref. 168 for parameters and details. Reproduced with permission from V. Shukla, A. Gupta, and
R. Pandit, “Homogeneous isotropic superfluid turbulence in two dimensions: Inverse and forward cascades in the Hall-Vinen-Bekharevich-Khalatnikov model,”
Phys. Rev. B 92, 104510 (2015). Copyright 2015 American Physical Society.

En(k) (full lines) and Es(k) (dashed lines), with B = 0 (purple
lines), with their counterparts for B = 1 (green lines) shows
again how the two fields and, therefore, their spectra become
similar because of the mutual-friction coupling. The spectra in
Fig. 15(b) show the dependence of both inverse- and forward-
cascade regimes on the normal-fluid fraction ρn/ρ. It is also
interesting to note that the counterparts here of the Okubo-
Weiss parameter have PDFs that are qualitatively similar to
their 2D-fluid-turbulence counterparts [Fig. 15(c)]. For details
we refer the reader to Ref. 168.

F. Two-dimensional Gross-Pitaevskii superfluid turbu-
lence

There have been several studies of the GP equation in both
3D and 2D (see, e.g., Refs. 159, 160, 162, 174, and 183 and
references therein). We give selected results here from recent
DNSs of the 2D GP equation (2D GPE), which investigate
thermalization in the Fourier-truncated 2D GPE, freely decay-
ing turbulence,202 and statistically steady turbulence169–175 in
the 2D GPE with some dissipation at small length scales. We
end with some results for the 2D GPE with particles.183

We first follow the dynamical evolution of the 2D Fourier-
truncated GPE, as in Ref. 147, to examine the various stages of
its thermalization. For similar studies for the Euler and other
hydrodynamical equations, see Refs. 207, 212, and 213; and
for the 3D GPE, see Ref. 214. These studies combine ideas
from fluid dynamics and statistical mechanics.

In the case of the Fourier-truncated 2D GPE,174 the time
evolution has been classified roughly into four regimes. (A)
The first regime is dominated by initial-condition-dependent
transients. (B) In the second, power-law regions appear and
develop in, e.g., energy spectra; but the exponents and extents
of these power-law regions evolve in time and are initial-
condition dependent. (C) In regime three, such spectra drop
sharply for wave numbers k > kc; partial thermalization occurs
for k < kc; the self-truncation wave number kc(t) grows either
as a power of t or as log t (depending on the initial condition).
(D) Complete thermalization occurs in regime 4, where a care-
ful consideration of finite-size effects for the correlation func-
tion c(r) and spectra show that, at low temperatures, the system
shows a Berezinski-Kosterlitz-Thouless phase, as it must in
2D. For a detailed explanation of this process of thermaliza-
tion, we refer the reader to Ref. 174. Here, we restrict ourselves
to two figures that illustrate this process of thermalization for
PDFs of the x and y components of the velocity (Fig. 16)
and spectra of the compressible kinetic energy Ec(k) (Fig. 17);
note the development of the thermalized part of the spectrum
that scales as k. The initial condition for the PDFs is such
that there are several vortices and anti-vortices initially; these
PDFs cross over from a form with power-law tails [Fig. 16(a)]
to a Gaussian form [Fig. 16(c)]; such power-law tails in
velocity-component PDFs have been seen in experiments
and DNSs in 3D; they are associated with the presence of
vortices.

FIG. 16. Semilog (base 10) plots of the PDFs of the x (red circles) and y (green squares) components of the velocity from our DNS runs: (a)–(c) A1 corresponding
to the initial conditions IC1. The blue-dashed lines in (b) and (c) indicate fits to Gaussian PDFs; the dashed lines in (a) indicate power-law fits to the left (blue-
dashed line) and right (orange-dashed line) tails of the PDFs (see text); see Ref. 174 for parameters and details. Reproduced with permission from V. Shukla,
M. Brachet, and R. Pandit, “Turbulence in the two-dimensional Fourier-truncated Gross-Pitaevskii equation,” New J. Phys. 15, 113025 (2013). Copyright 2013
IOP Publishing.
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FIG. 17. Log-log (base 10) plots of the spectra Ec
kin(k) from our DNS runs (a)–(c) A1 at different times t (indicated by curves of different colours); a k power

law, indicating the beginning of thermalization, is shown by orange-dashed lines; see Ref. 174 for parameters and details. Reproduced with permission from V.
Shukla, M. Brachet, and R. Pandit, “Turbulence in the two-dimensional Fourier-truncated Gross-Pitaevskii equation,” New J. Phys. 15, 113025 (2013). Copyright
2013 IOP Publishing.

The study of Ref. 202 considers decaying turbulence in
the 2D GPE with hyperviscosity (second power of the Lapla-
cian) to investigate if a Bose-Einstein-condensed (BEC) phase
occurs beyond an intensity threshold, for the initial condition.
This work suggests that, for very weakly nonlinear initial con-
ditions without any visible threshold, BEC arises via a growing
phase coherence because of the annihilation of vortices.

The development of an understanding of the nature of
the spectral transfer of energy in 2D superfluid turbulence is
an important question, which arises, inevitably, when we com-
pare 2D classical-fluid and superfluid turbulence. In particular,
does an inverse cascade of energy exist in 2D superfluid tur-
bulence? The search for an answer to this question has led to
investigations of vortex dynamics in such systems.169–175 In
a recent experiment on oblate BECs in an annular trap, it has
been demonstrated that, on stirring the system at small length
scales, of the order of a few healing lengths, the resulting dis-
ordered distribution of 2D vortices evolves dissipatively into
a large-scale flow.215 This has been interpreted as a transfer
of energy from small to large length scales. Direct numer-
ical simulations of the dissipative Gross-Pitaevskii equation
(dGPE), in which a phenomenological dissipation is intro-
duced to model the interaction between the condensate and the
thermal bath at finite temperatures, have led to some insights. It
has been shown that the existence of an inverse cascade and the

associated scaling exponent is linked to the spatial organi-
zation of the vortices, with the same sign of circulation,
into clusters, reminiscent of the coherent vortices in 2D,
classical-fluid turbulence.172,176,177 The role played by the vor-
tex distribution and the vortex clusters is still a subject of
research.178–180

We now discuss one interesting result of a recent study183

of the collision of two Newtonian particles in a 2D GP super-
fluid, which evolve according to the model equations (GP with
particles) that we have discussed above. This study shows
that, in this model, there is an effective, attractive interaction
between the particles; this is mediated by the superfluid; it then
goes on to investigate, in a DNS, collisions between particles
as a function of their incident kinetic energy and the extent
of the repulsive force between particles, when they approach
close to each other. The study of Ref. 183 finds that there is
a transition, as a function of parameters, from almost elas-
tic to completely inelastic collisions; this can be monitored
by computing the coefficient of restitution; it also finds that
aggregation and clustering result from this sticking transition
in multiparticle systems. Figure 18(a) gives a plot of the par-
ticle positions qo,x versus the scaled time cst/ξ, for the case
of neutral particles (M = 1). Insets show the sequence of
the collision events shown via the pseudocolor plots of the
density field ρ(r) (the particles appear as blue disks in which

FIG. 18. Superfluid-mediated attractive potential: (a) Plot of the particle (M = 1) positions qo ,x versus the scaled time cst/ξ . Inset: the sequence of the collision
events shown via the pseudocolor plots of the density field ρ(r) (the particles appear as blue disks in which ρ = 0); particles are released from rest, with an initial
separation r0 = 7 ξ , they undergo multiple collisions with the generation of sound waves in the wake of this collision; and they form a bound state with r ' rSR;
O1 and O2 are the particle labels. Energies are in units of Eξ = 2α0ρ

2
0g. (b) Plot of the coefficient of restitution e versus Eo for the head-on collision between

two heavy particles (M = 7.5). Inset of (b): Plots of the particle velocity uo,x versus t following a head-on collisions between two heavy particles (M = 7.5)
for three different values of the incident kinetic energy Eo of each particle, at rSR = 1.5 ξ ; see Ref. 183 for parameters and details. Reproduced with permission
from V. Shukla, M. Brachet, and R. Pandit, “Sticking transition in a minimal model for the collisions of active particles in quantum fluids,” Phys. Rev. A 94,
041602(R) (2016). Copyright 2016 American Physical Society.
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ρ = 0). Figure 18(b) displays the coefficient of restitution e
versus Eo for the head-on collision between two heavy par-
ticles (M = 7.5); the inset here shows the particle velocity
uo,x versus t, following head-on collisions, for three different
values of the incident kinetic energy Eo of each particle, at
rSR = 1.5 ξ. Given this model, it is now possible to study in
detail the dynamics of active and interacting particles in the
2D GP superfluid; for the spatio-temporal evolution of multi-
particle assemblies interacting with a GP superfluid, we refer
the reader to Ref. 183 for details.

IV. CONCLUSIONS

We have presented an overview of the statistical properties
of two-dimensional (2D) turbulence in fluids with particles,
conducting fluids (2D MHD), fluids with polymer additives
(2D FENE-P), binary-fluid mixtures (2D CHNS), and super-
fluids (2D HVBK or 2D GP), which is based principally on our
studies of these problems. It is useful to compare the results of
studies of turbulence in these systems to bring out similarities
between them, where they exist. Indeed, we have found exam-
ples of such similarity, e.g., effective viscosities that lead to
drag-reduction-type phenomena in both 2D FENE-P and 2D
CHNS systems and the similarities between the 2D CHNS, for
the symmetric, 50-50 mixture, and the 2D MHD systems. We
have also explored the natures of inverse cascades in some of
these systems, e.g., in 2D MHD and 2D HVBK. And we have
emphasized how the Okubo-Weiss parameter (and its gener-
alizations) can help us to distinguish vortical and extensional
regions of the flow not only in the 2D NS case but also in
2D MHD, 2D fluid turbulence with polymer additives, and in
the 2D HVBK system. The study of turbulence in these sys-
tems is inherently interdisciplinary: we have used a variety of
methods, from both fluid mechanics and statistical mechanics,
to characterize the properties of turbulence in these systems.
We hope our overview will stimulate interdisciplinary stud-
ies of the challenging problem of turbulence in these rich 2D
systems.

Turbulence and spatiotemporal chaos also occur in sev-
eral other 2D extended dynamical systems. An illustrative
list of examples and references includes the 2D Kuramoto-
Sivashinsky system,216 the 2D complex Ginzburg-Landau sys-
tem,217 models for 2D excitable media,218 models for cardiac
tissue,219,220 active-matter turbulence,221,222 and turbulence
in thin elastic plates.223 An overview of turbulence in these
systems must await a comprehensive review of this vast and
rapidly developing field.
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