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a b s t r a c t

We present high-performance and high-accuracy numerical simulations of quantum turbulence mod-
elled by the Gross–Pitaevskii equation for the time-evolution of the macroscopic wave function of
the system. The hydrodynamic analogue of this model is a flow in which the viscosity is absent
and all rotational flow is carried by quantized vortices with identical topological line-structure and
circulation. Numerical simulations start from an initial state containing a large number of quantized
vortices and follow the chaotic vortex interactions leading to a vortex-tangle turbulent state. The
Gross–Pitaevskii equation is solved using a parallel (MPI-OpenMP) code based on a pseudo-spectral
spatial discretization and second order splitting for the time integration. We define four quantum-
turbulence simulation cases based on different methods used to generate initial states: the first two are
based on the hydrodynamic analogy with classical Taylor–Green and Arnold–Beltrami–Childress vortex
flows, while the other two methods use a direct manipulation of the wave function by generating a
smoothed random phase field, or seeding random vortex-ring pairs. The dynamics of the turbulent
field corresponding to each case is analysed in detail by presenting statistical properties (spectra
and structure functions) of main quantities of interest (energy, helicity, etc.). Some general features
of quantum turbulence are identified, despite the variety of initial states. Numerical and physical
parameters of each case are presented in detail by defining corresponding benchmarks that could
be used to validate or calibrate new Gross–Pitaevskii codes. The efficiency of the parallel computation
for a reference case is also reported.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The study of quantum fluids, realized in superfluid helium and atomic Bose–Einstein condensates (BEC), has become a central topic
n various fields of physics, such as low temperature physics, fluid dynamics of inviscid flows, quantum physics, statistical physics,
osmology, etc. One of the striking features of quantum fluids is the nucleation of vortices with quantized (fixed) circulation, when an
xternal forcing is applied (rotation, stirring, etc.). The observation of quantized vortices, as a signature of the superfluid (zero-viscosity)
ature of these flow systems, was extensively explored in different experimental settings of superfluid helium or BEC. Configurations
ith a large number of quantized vortices tangled in space can evolve to Quantum Turbulence (QT), generally referred to as vortex

angle turbulence. While QT in superfluid helium has been largely studied in the last two decades (see dedicated volumes [1–4]), only
ecent experimental and theoretical studies [5–8] reported different possible routes to QT in BEC.
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A promising path of research in exploring QT is based on the analogy with classical turbulence (CT), observed in conventional
iscous fluids and governed by the Navier–Stokes equations. Classical turbulent flows are characterized by the chaotic motion of
ortical eddies that populate a continuous hierarchy of intensities and scales, from the large (integral) scale of the flow, down to
he Kolmogorov’s viscous length scale. The classical turbulent cascade of energy between scales is characterized by the Kolmogorov’s
ower-law spectrum [9] in the regime of vanishing viscosity (i. e. large to infinite Reynolds numbers). Quantum turbulence appears
hen as an equivalent regime, since superfluids are assimilated to flows with zero viscosity. Both finite- and zero-viscosity regimes
an be experimentally obtained in liquid helium by changing the temperature: above the lambda transition temperature (2.17 K) the
iquid is normal (viscous) and well below it is a pure superfluid. Experimental measurements in superfluid helium-4 at temperatures
elow 2 K [10] provided indeed evidence of Kolmogorov’s law for the kinetic energy cascade. However, vortex interaction mechanisms
re different in the two types of turbulence. Unlike classical vortex eddies, vortices in QT are identical topological line defects in the
luid density field and their circulation is quantized (in units of Planck’s constant over the atomic mass). In QT, bundles of quantum
ine vortices play the role of classical vortex eddies. Since visualizations in QT experiments are not yet enough precise to provide an
ccurate image of vortex interactions, numerical simulations are then needed. The vortex filament (VF) and the Gross–Pitaevskii (GP)
odels are used in the literature to numerically explore vortex interactions mechanisms in QT. The VF model represents quantized
ortices as infinitely thin lines and follows their evolution by integrating the Biot–Savart–Laplace law over the vortex filament tangle.
his model proved very useful in studying superfluid helium-4 [11]. The GP model is the simplest mathematical model for a superfluid
t zero-temperature and it will be the focus of this paper. It can be also regarded as a theoretical and numerical framework used to
nvestigate the inviscid limit of a fully-developed CT. For a comprehensive description of different models of QT, see recent reviews
y Halperin and Tsubota [4], Brachet [12], Barenghi et al. [13] and Tsubota et al. [11].
The Gross–Pitaevskii equation (GPE) is a nonlinear Schrödinger equation with cubic nonlinearity. It describes, in the theoretical

imit of absolute zero temperature, the time evolution of the macroscopic complex wave function ψ (identical for all particles)
efining a weakly interacting Bose system. Consequently, the GP model naturally applies to numerical studies of QT in Bose–Einstein
ondensates [14]. The relevance of the GPE for describing QT in superfluid helium is discussed in Section 3.3. For general QT flows, the
P model offers the advantage that quantized vortices appear naturally as topological line defects, resulting from the U(1) symmetry
reaking of the phase shift of ψ . Subsequent vortex phenomena (reconnection, annihilation) are intrinsically described by the model.
upplementary phenomenological models are needed in the VF approach to take into account the same vortex mechanisms. As a
onsequence, QT simulations based on the GPE (denoted hereafter as GPE-QT) were largely used in the literature to study vortex
nteractions and statistical properties of QT in the zero-temperature limit.

There are several challenges when setting a numerical simulation to investigate GPE-QT: (i) generate a physically and mathematically
ound initial state with many quantized vortices that finally evolve to a statistically steady state of QT, (ii) use accurate numerical
ethods that preserve the invariants of the GPE when long time-integration is necessary, (iii) design numerical codes affording large
rid resolutions, necessary to accurately capture the dynamics of vortices and (iv) compute appropriate (statistical) diagnostic tools to
nalyse the superfluid flow evolution.
We use in this contribution a modern parallel (MPI-OpenMP) numerical code satisfying the requirements (ii) and (iii). The code is

called GPS (Gross–Pitaevskii Simulator) [15] and is based on a Fourier-spectral space discretization and up-to-date numerical methods:
a semi-implicit backward-Euler scheme with Krylov preconditioning for the stationary GP equation [16] and various schemes (Strang
splitting, relaxation, Crank–Nicolson) for the real-time GP equation [17]. The GPS code offers a solid framework to address in detail
challenges (i) and (iv), for which we review previous models and bring new contributions.

A great deal of attention has been lately devoted to the development of accurate numerical schemes to solve different forms of
the GPE, from the classical (stationary or time-dependent) GPE, to systems of coupled GPEs and more recent formulations (e. g. with
on-local or high-order interactions). For recent reviews of numerical methods for GPE, see [17–21]. Several software packages for
olving the GPE were deposited in the CPC Program Library. The spatial discretization is generally based on spectral [16,22–24], finite-
lements [25,26] or finite-difference [27–32] methods. Provided programs are written in Fortran [22,27], C [28,29], Matlab [16,23,24,
9,31], FreeFem++ [26] or C and Fortran with OpenMP [32]. None of these programs deal with QT simulations, but can eventually be
xtended to perform such simulations using the procedures explained in this paper.
As in classical turbulence, the numerical and physical accuracy of the initial condition is crucial in computing properties of

umerically generated QT. Using the hydrodynamic analogy for the GP model (through the Madelung transform, as explained below),
ioneering numerical simulations of GP-QT [33–35] suggested initial conditions and statistical analysis tools inspired from CT. A velocity
ield, derived from the well-known classical flow with Taylor–Green (TG) vortices, was imposed to the superfluid flow. An initial wave
unction, with nodal lines corresponding to vortex lines of the velocity, was thus generated. This initial wave function was then used
n the Advective Real Ginzburg–Landau equation (ARGLE), equivalent to the imaginary-time GP equation with Galilean transformation
see also below), to reduce the acoustic emission of the initial field. The result of the ARGLE procedure was finally used as initial field for
he time-dependent GP simulation. A similar approach was more recently used by replacing the TG vortices with the Arnold–Beltrami–
hildress (ABC) classical vortex flow [36,37]. If this approach is well suited to control the hydrodynamic characteristics of the initial
uperfluid flow (Mach number, helicity), it involves supplemental technicalities and computations through the ARGLE procedure. We
uggest in this paper two new approaches to generate the initial condition for the GP-QT simulations, based on the direct manipulation
f the wave function. The ARGLE procedure is thus avoided. The first method prescribes a smoothed random-phase (SRP) for the wave
unction, while the second one generates random vortex rings (RVR). The two new methods, which are simple to implement, are shown
o develop QT fields with similar statistical properties as those obtained using the TG or ABC classical initial conditions. Nevertheless,
he dynamics of the superfluid flow is different. Compared to TG and ABC cases, in the SRP case the initial field is vortex free and
ominated by the compressible kinetic energy; vortices nucleate progressively and do not display long vortex lines. For the RVR flow,
volution is opposite to that observed for the SRP case: in the early stages of the time evolution the incompressible kinetic energy is
ominant; the compressible kinetic energy then starts to increase due to sound emissions through vortex reconnections. However, like
n well-documented TG and ABC cases, a Kolmogorov-like scaling of the incompressible kinetic energy spectrum is obtained for the
ew SRP and RVR cases.
Concerning the analysis of the QT field, we present classical diagnostic tools (inspired from CT), as the energy decomposition and

ssociated spectra [33,34] and also new ones, as the second-order structure function, not reported in the previously cited studies. This
2
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supplements the statistical description of the superfluid flow. We also carefully investigate the influence of numerical parameters (as
the grid resolution of a vortex, the maximum resolved wave-number and the computed local Mach number) on the characteristic of
QT. This topic is generally very briefly addressed in physical papers on GP-QT.

Starting from the observation that in previously published studies of GP-QT, the focus was mainly given to the physics of turbulence,
his paper is also intended to define in detail numerical benchmarks in the framework of parallel computing. We start by revisiting
lassical GP-QT settings (based on TG and ABC flows). New results obtained with our high-performance/high-accuracy parallel code
re compared with available data in the literature. We then present the new numerical benchmarks, based on random phase fields
r random vortex rings generation. The new benchmarks offer a new perspective in comparing the classical CT based approaches to
ore GP-oriented models. For all benchmarks, we offer a comprehensive description of the numerical and physical parameters and
ive checkpoint values for validating each step of the simulation. This could be useful to assess new numerical methodologies or
une/validate new modern GP numerical codes.

The organization of the paper is as follows. Section 2 introduces the GP mean field equation, its stationary version and the
ydrodynamic analogy. Section 3 presents the mathematical and physical QT model used in the present numerical simulations. The main
haracteristics of the quantum flow (healing length, sound velocity) and the notion of quantized vortex are introduced. The Bogoliubov
ispersion relation and the validity of the model are also discussed. In Section 4 we present the main diagnostic quantities generally
sed to analyse a QT flow: spectra of compressible and incompressible kinetic energies, velocity structure functions and helicity. The
umerical methods used to solve the GP equation and the associated GPS code are described in Section 5. An extended subsection is
evoted to the derivation of dimensionless equations. The particular numerical methods used in this study to advance the GP wave
unction in imaginary-time (ARGLE) or real-time (GP) are also described. Section 6 presents in detail four different approaches to
enerate the initial field for the simulation of decaying GP-QT: Taylor–Green (TG), Arnold–Beltrami–Childress (ABC), smoothed random
hase (SRP) and random vortex rings (RVR). Each method is associated to a benchmark. The results obtained for the four benchmarks
re discussed in Section 7. We present values, spectra and structure functions of main quantities of interest (energy, helicity, etc.) that
ould be useful to benchmark numerical codes simulating QT with the GP model. Finally, the main features of the benchmarks and
heir possible extensions are summarized in Section 8. Appendix presents strong scalability tests of the computation code used to run
specific case (the ABC flow) in both MPI and hybrid MPI-OpenMP configurations.

. The Gross–Pitaevskii model

In the zero-temperature limit, the superfluid system of weakly interacting bosons of mass m, is described by the Gross–Pitaevskii
ean field equation [38]:

ih̄
∂

∂t
ψ(x, t) =

(
−

h̄2

2m
∇

2
+ Vtrap(x) + g |ψ(x, t)|2

)
ψ(x, t), (1)

here Vtrap is the external trapping potential and g the non-linear interaction coefficient

g =
4π h̄2as

m
, (2)

ith as the s-wave scattering length for the binary collisions within the system.
The complex wave function ψ is generally represented as (Madelung transform):

ψ =

√
n(x, t) eiθ (x,t), n(x, t) = |ψ(x, t)|2 = ψ(x, t)ψ∗(x, t), (3)

with n the atomic density and θ the phase of the order parameter. We denote by ψ∗ the complex conjugate of the wave function.
The main integral quantities conserved by the GPE (1) are the number of atoms N

N =

∫
|ψ |

2 dx =

∫
n dx. (4)

and the energy of the system

E(ψ) =

∫ (
h̄2

2m
|∇ψ |

2
+ Vtrap |ψ |

2
+

1
2
g|ψ |

4
)

dx. (5)

tationary solutions to the GPE are obtained by considering that the wave function evolves in time as:

ψ(x, t) = Ψ (x) exp(−iµt/h̄), (6)

ith µ the chemical potential. Note that |ψ | = |Ψ | and the number of atoms in (4) is conserved by the stationary field. The
time-evolution GP equation (1) then reduces to the stationary (time-independent) GP equation:

−
h̄2

2m
∇

2Ψ + VtrapΨ + g|Ψ |
2Ψ = µΨ . (7)

he chemical potential µ is fixed by the normalization condition (4) and expressed from (6) and (7) as:

µ =
1
N

∫ (
h̄2

2m
|∇Ψ |

2
+ Vtrap |Ψ |

2
+ g|Ψ |

4
)

dx

=
1
N

(
E(Ψ ) +

∫
1
2
g|Ψ |

4 dx
)
. (8)
3
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The hydrodynamic analogy of the GPE (1) is obtained by relating the wave function ψ to a superfluid flow of mass density

ρ(x, t) = mn(x, t) = m |ψ(x, t)|2, (9)

and velocity

v(x, t) =
h̄
m

∇θ (x, t) =
h̄
ρ

ψ∗
∇ψ − ψ∇ψ∗

2i
. (10)

or a flow of non-vanishing density (ρ ̸= 0), we infer from (10) that the superfluid is irrotational:

∇ × v = 0. (11)

The evolution equations for the density ρ and the velocity v can be derived by inserting the Madelung transform (3) in the GPE (1),
eparating the imaginary and real parts, and using definitions (9)–(10):

∂ρ

∂t
+ ∇ · (ρv) = 0, (12)

∂v
∂t

+
1
2
∇(v2) = −

1
m

∇
(
gn + Vtrap

)
+

h̄2

2m2 ∇

(
1

√
ρ

∇
2(

√
ρ)

)
. (13)

q. (12) is the continuity equation of the superflow, expressing the conservation of the number of particles N given by (4). Eq. (13) is
he momentum equation and its last term in the right-hand side is the gradient of the so-called quantum pressure. This term is a direct
onsequence of the Heisenberg uncertainty principle [38] and depends on the gradient of density, suggesting that quantum effects
re important in non-uniform gases and, for uniform systems, close to vortex cores. The system of Eqs. (12)–(13) is equivalent to the
riginal GPE (1).

. Mathematical and physical model for quantum turbulence

The mathematical and physical model used in this study is based on the GPE (1) in which the trapping potential is set to zero
Vtrap = 0). The main consequence of this assumption is that the momentum equation (13) reduces, after neglecting the quantum
ressure term, to:

∂v
∂t

+ (v · ∇)v = −
1
ρ

∇

(
gρ2

2m2

)
. (14)

qs. (12) and (14) are now similar to the Euler equations describing the evolution of a compressible, barotropic and inviscid classical
low with pressure:

P =
gρ2

2m2 . (15)

e thus obtain a GPE-based model that is analogous to that describing a classical flow of a fluid with zero viscosity. Note that Eqs. (12)
nd (14) show that the total momentum of the superfluid,

p =

∫
(ρv) dx = h̄

∫
Imag(ψ∗

∇ψ) dx, (16)

s conserved. This is not generally the case if Vtrap ̸= 0. To summarize, the three main integral invariants of the model are: the number
f particles N (4), the energy E (5) and the momentum p (16).
The idea behind the model used in this study is to represent the quantum turbulent flow as an infinite background uniform flow

f constant density to which many vortices are superimposed in the initial state. The dynamics of this initial state is then followed by
umerically solving the GPE (1). Vortices interact to generate a vortex-tangle turbulent state that finally reach a statistical convergent
tate. This approach is similar to that used in classical fluids to simulate decaying turbulence. Note that, in contrast to CT Navier–Stokes
ased models, there is no dissipation in the present zero-temperature GP model. Phenomenological models for dissipation in superfluids
ould be added in the GPE to model thermal excitations [39].

.1. Uniform background flow

A second consequence of the assumption Vtrap = 0 is that the stationary GPE (7) admits an elementary solution Ψ0 representing a
low with constant density ρ = ρ0. From (6) and (7), we infer that:

µ0 = g|Ψ0|
2

= g|ψ0|
2

= gn0 = g
ρ0

m
. (17)

he solution Ψ0 could be taken as real and represents a first approximation of a quantum uniform flow developing in a container of
olume V , far from the walls. This flow is compressible, with pressure given by Eq. (15) and sound velocity c defined as in classical
ydrodynamics:

c =

√
∂P0
∂ρ0

=

√
gρ0
m

=

√
gn0

m
. (18)

The sound velocity gives a characteristic velocity of the uniform flow. To have a complete space–time description of the system we
eed to introduce a characteristic length scale. The healing length indicates the distance over which density variations take place in the
4
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system. The following expression for the healing length is obtained from the momentum equation (13) by imposing that the pressure
term balances the quantum pressure term over the healing length:

ξ =
h̄

√
2mgn0

=
h̄

√
2mµ0

=
1

√
2

h̄
mc
. (19)

t follows that the quantum pressure is negligible for distances R ≫ ξ , which is exactly the domain of validity of the hydrodynamic
nalogy with the Euler equations.

.2. Quantized vortices

The definition (10) of the superflow velocity becomes singular along lines with vanishing density (ρ = 0). The lines along which both
eal and imaginary part the order parameter are zero define topological defects, known as quantum vortices. The hydrodynamic analogy
hrough the Madelung transform becomes singular when vortices are present in the superflow. A detailed review of mathematical
roblems related to the Madelung transform in presence of quantum vortices is offered in [40]. It is important to recall that vortex
olutions are not singular solutions of the GPE (1).
A straight-line vortex in a uniform flow could be represented using cylindrical coordinates (r, ϕ, z) as [38]:

Ψv =
√
n0 f (η) eiκϕ, (20)

here η = r/ξ and κ is necessarily an integer to ensure that the wave function is single valued. Using (10) we infer that the velocity
round the vortex line is tangential and singular for r = 0:

vv =
h̄
m

1
r
∂(κϕ)
∂ϕ

eϕ =
h̄
m
κ

r
eϕ . (21)

he circulation around a regular path C surrounding this vortex line is then:

Γv =

∮
C
vv · dl = (2π )κ

h̄
m

= κ
h
m
. (22)

his quantification of the vortex line circulation is the outstanding difference between quantum and classical hydrodynamics. The
nteger κ is usually referred to as winding number or charge of the vortex. The asymptotic behaviour of the vortex solution (20) near
he origin (r = 0) is well-known [41]:

f (η) ∼ η|κ|
+ O(η|κ|+2), η → 0, (23)

uggesting that the vortex core, i. e. the region near the vortex line where the density is varying in a significant way, is of the order of
he healing length ξ .

Using (21), the kinetic energy (
∫
ρv2vdx) of the vortex solution results to be proportional to κ2 [e. g. 42]. This implies that a multiply

uantized vortex with κ > 1 is energetically unstable and split into κ-singly quantized vortices in the GP model.

.3. Dispersion relation and validity of the model

Since the GPE (1) sustains wave solutions, it is interesting to estimate the response of the system to small perturbations. The
ogoliubov–de Gennes model is based on the linearization of (1) around a stationary solution Ψ0 by assuming a perturbation of small
mplitude of the form:

δψ = a(x)e−iωt
+ b∗(x)eiω

∗t , (24)

here a, b are complex functions (of small amplitudes) and ω is a complex frequency. In the case of the uniform flow, Ψ0 =
√
n0 and

erturbations are taken as plane waves a(x) = ueik·x, b(x) = veik·x, with k the wave number vector. We obtain that the resulting
Bogoliubov–de Gennes system admits non-trivial solution if

(h̄ω)2 =

(
h̄2

2m
k2

)2

+ (gn0)
h̄2

m
k2. (25)

Using (18) to express the sound velocity and (19) for the healing length, the Bogoliubov dispersion relation (25) becomes:

ω = ck

√
1 +

ξ 2k2

2
. (26)

This dispersion relation is linear for (kξ ≪ 1) and the excitations in this regime are called phonons (sound waves). Going back to the
momentum equation (13), we can easily see that in the phonons regime, the quantum pressure is negligible in front of the hydrodynamic
pressure. Consequently, the validity of the hydrodynamic analogy is limited to the phonons excitations, a regime where the quantum
pressure could be neglected. In helium II, due to strong interactions between particles, the dispersion relation has a different shape,
with a linear regime followed by a quadratic regime with a maxon (local maximum) and a roton (local minimum) [42]. The excitations
in the quadratic region near the minimum of the dispersion curve are called rotons. Consequently, using the GPE allows us to capture
only the phonons regime of excitations in a quantum flow.

A second drawback of the GP model in describing superfluid helium turbulence comes from compressibility effects. An important
feature in the hydrodynamic description of superfluid helium is that the fluid is almost incompressible in both its normal (viscous) and
superfluid components. On the other hand, the hydrodynamic description (12)–(14) of the GPE shows the compressibility of the GP
fluid. We expect, however, that the GP model applied for low Mach number flows (i. e. the mean superfluid velocity is much smaller than
5
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the sound velocity) provides a good qualitative representation of the superfluid helium flow and, in particular, of vortex interactions.
From a physical point of view, both drawbacks (dispersion relation and compressibility) of the GPE model can be alleviated by adding
non-local or higher-order non-linear terms. This idea was suggested by Berloff et al. [43] who added to the GPE a non-local potential
and non-linear terms up to order 7 (instead of 3 for the standard GPE) to modify the equation of continuity and model more realistic
dispersion curves.

4. Description of the quantum turbulent flow

4.1. Energy decomposition

The energy is the first integral quantity that will be used to characterize the QT flow field. The accuracy of numerical simulations in
onserving this quantity is an important checkpoint to validate the numerical scheme and the grid resolution. As in CT, energy spectra
ill be used to identify different (Kolmogorov) regimes/ranges in the structure of the turbulent field. Starting from the observation that
he QT field can be viewed as a background uniform flow to which a large number of quantum vortices are superimposed, the total
nergy of the system in QT studies [e. g. 34,44] is generally computed using the form:

ET (ψ) =

∫ (
h̄2

2m
|∇ψ |

2
+

1
2
g

(
|ψ |

2
− |Ψ0|

2)2) dx, (27)

here |Ψ0|
2

= n0 is the atomic density of the uniform flow. This expression is strictly equivalent to the form (5) of the energy because
f the conservation of the number of atoms (4). The corresponding GP equation, equivalent to (1) is then:

ih̄
∂

∂t
ψ(x, t) =

(
−

h̄2

2m
∇

2
+ g

(
|ψ(x, t)|2 − |Ψ0|

2))ψ(x, t), (28)

sing the hydrodynamic analogy presented in Section 2, the total energy (27) can be also presented as:

ET (ρ, v) =

∫ (
1
2
ρv2 +

h̄2

2m2 |∇
√
ρ|

2
+

1
2m2 g (ρ − ρ0)

2
)

dx. (29)

he three terms in (29) correspond to [34,44]:
the kinetic energy

Ekin =

∫
|
√
ρv|2

2
dx, (30)

the so-called quantum energy (expressed using (19))

Eq =

∫
h̄2

2m2 |∇
√
ρ|

2 dx =

∫
c2ξ 2|∇

√
ρ|

2 dx. (31)

– and the internal energy (expressed using (18)):

Eint =

∫
1

2m2 g (ρ − ρ0)
2 dx =

∫
c2(ρ − ρ0)2

2ρ0
dx. (32)

he kinetic energy Ekin can be further decomposed [34,44] as the sum of a compressible part Ec
kin and an incompressible part E i

kin:

Ec
kin =

∫
|(
√
ρv)c|2

2
dx, E i

kin =

∫
|(
√
ρv)i|2

2
dx, (33)

wing to the Helmholtz decomposition:

(
√
ρv) = (

√
ρv)c + (

√
ρv)i, with ∇ × (

√
ρv)c = 0, and

∇ · (
√
ρv)i = 0. (34)

4.2. Spectra and structure functions

Spectra of the different components of the energy and structure functions of velocity will be used to analyse the QT field, as in CT.
The energy spectra are computed using the following expressions resulting after applying Parseval’s theorem for the Fourier transform:

E i
kin(k) =

1
2(2π )3

∫
|k|=k

|Fk(
√
ρv)i|2 dΩk,

Ec
kin(k) =

1
2(2π )3

∫
|k|=k

|Fk(
√
ρv)c |2 dΩk,

Eint(k) =
c2

2ρ0(2π )3

∫
|k|=k

|Fk(ρ − ρ0)|2 dΩk,

Eq(k) =
c2ξ 2

3

∫
|Fk(∇

√
ρ)|2 dΩk,

(35)
(2π ) |k|=k

6
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where Fk is the Fourier transform

Fk(f (x)) =

∫
f (x)e−ik·x dx, F−1

x (g(k)) =
1

(2π )3

∫
g(k)eik·x dk, (36)

nd Ωk is the solid angle in the spectral space.
The structure function for the velocity following the x-direction (with unitary vector ex) is defined as:

Sp//(r) =

∫
((v(x + rex) − v(x)) · ex)p dx, (37)

here p is the order of the structure function and r the length scale. Similar expressions are used for the structure functions following
he y and z directions. Assuming a homogeneous and isotropic distribution of the QT velocity field statistics, averaging over different
irections should give the same results. As a verification, for p = 2 and large length scale r , the structure function could be reasonably
pproximated by:

lim
r→∞

S2//(r) ≃ 2
∫

|v(x) · ex|2 dx = 2
∫
v2x dx. (38)

.3. Helicity

The helicity is another important integral quantity characterizing the QT flow field. The definition of helicity in a classical flow is:

H =

∫
v · ω dx, (39)

here ω = ∇ ×v is the vorticity. In a quantum fluid, the vorticity concentrates in vortex cores as Dirac delta functions. Therefore, only
uantized vortices bring a non-zero contribution to the helicity.
We use in this paper the method suggested by Clark di Leoni et al. [36] to compute the helicity. Because the superfluid velocity v

iverges at the vortex cores as shown in Eq. (21), the direct calculation of the helicity looks ill-defined. However, only the superfluid
elocity perpendicular to the quantized vortex has a singularity, while the component parallel to the quantized vortex remains regular.
sing this observation, a regularized velocity is defined as:

vreg = v∥w/
√
wjwj, (40)

here

w =
h̄
im

∇ψ∗
× ∇ψ, (41)

nd

v∥ =
h̄wi

[
(∂i∂jψ)∂jψ∗

− (∂i∂jψ∗)∂jψ
]

2im
√
wkwk(∂lψ)(∂lψ∗)

. (42)

The resultant regularized helicity

Hreg =

∫
vreg · ω dx, (43)

proved useful and efficient in computing the helicity of quantum flows with hundreds of thousands of knots [36].

5. Numerical method and computational code

Numerical simulations were performed using the parallel code called GPS (Gross–Pitaevskii Simulator) [15]. The code is based on
a Fourier-spectral space discretization and recent up-to-date numerical methods: a semi-implicit backward-Euler scheme with Krylov
preconditioning for the stationary GP equation [16] and various schemes (Strang splitting, relaxation, Crank–Nicolson) for the real-time
GP equation [17]. GPS is written in Fortran 90 and uses a two-level communication scheme based on MPI across nodes and OpenMP
within nodes. Only one external library, FFTW [45], is required for the computation. Initially designed to simulate BEC configurations
(with or without rotation), the GPS code was adapted in this study for the simulation of QT flows. We present in this section the main
features of the numerical system: the particular scaling used to obtain the GP dimensionless equations, and the particular numerical
methods used to prepare the initial state and then to advance in real-time the GP wave function.

5.1. Scaling and dimensionless equations

For the numerical resolution of the GP equation (1), it is convenient to use a dimensionless form obtained after scaling all physical
quantities with the characteristic scales of the QT field introduced in Section 4. We start by considering general reference scales (Lref, vref)
for length and velocity, respectively. A natural scale for the wave function ψ is ψref =

√
n0. With the scaling:

x̃ =
x
Lref
, t̃ =

vref

Lref
t, ψ̃ =

ψ
√
n0
, (44)

the dimensionless GP equation (28) (with Vtrap = 0) becomes:

i
∂
ψ̃(x, t) =

(
−α∇̃

2
+ β

(
|ψ̃(x̃, t)|

2
− 1

))
ψ̃(x, t), (45)
∂ t̃
7
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with non-dimensional coefficients:

α =
h̄
2m

1
Lrefvref

=

√
2ξc
2

1
Lrefvref

=
1

√
2

(
ξ

Lref

)(
c
vref

)
, (46)

β =
gn0

h̄
Lref
vref

=
mc2

h̄
Lref
vref

=
c2

√
2ξc

Lref
vref

=
1

√
2

(
Lref
ξ

)(
c
vref

)
. (47)

From (46)–(47) we infer that non-dimensional coefficients α and β are related to physically relevant scales through:

ξ̃ =
ξ

Lref
=

√
α

β
, c̃ =

c
vref

=

√
2αβ =

1
Mref

, (48)

where (ξ/Lref) represents the non-dimensional healing length and (c/vref) the non-dimensional sound velocity. Mref is the reference
ach number, defined as the ratio between the reference velocity and the sound velocity.
The last important parameters to define when working with non-dimensional equations are the size of the computational box and

he grid resolution. If the physical GP equation (1) is defined in a cubic computational domain of physical size L, the non-dimensional
ize L of the computational box used to discretize the non-dimensional equation (45) is then:

L =
L
Lref

=

(
L
ξ

)(
ξ

Lref

)
=

(
L
ξ

)√
α

β
. (49)

We recall that ξ is a good approximation of the radius of a quantum vortex (see Section 3.2). It follows that the ratio (L/ξ) in (49) is
hysically important since it indicates how many vortices the computational domain can accommodate in one direction:

N1d
v =

L
2ξ

=
L
2

√
β

α
. (50)

hus, increasing the value of L (for fixed α and β) will result in a higher number of vortices present in the computational box.
When defining the grid resolution, it is important to control the number of grid points inside the vortex core. If the numerical

imulation uses Nx grid points in each direction, the physical grid spacing is δx = L/Nx, or in non-dimensional units δx̃ = (δx/Lref) =

/Nx. It is important to quantify the grid spacing with respect to the healing length by defining:

χ =
δx
ξ

=

(
L
Nx

)(
Lref
ξ

)
=

(
L
Nx

)√
β

α
. (51)

The parameter χ defined in (51) is also important when analysing the dispersion relation (26) presented in Section 3.3 to assess on the
validity of the GP model. Indeed, the maximum wave-number represented on a grid of size δx is kmax = (2π )/(2δx) and, consequently,
the non-dimensional quantity (kmaxξ ) is expressed as:

kmaxξ = π
ξ

δx
=
π

χ
. (52)

he numerical resolution will be then fixed in order to keep (kmaxξ ) ≈ 1, ensuring that the simulation captures the regime of phonons
xcitations.
We use in this paper the strategy suggested in [34,44] to fix the values of parameters defining a QT simulation. The size of the

on-dimensional computational box is first set to L = 2π , which is convenient for spectral methods. Moreover, instead of setting
ndependently the constants α and β , only the value of the reference Mach number Mref is fixed to a relatively low value. This is
quivalent to impose the value of the product αβ . From previous relations we infer that:

L = 2π, αβ =
1

2M2
ref

H⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ

Lref
=

√
2αMref,

vref = Mrefc,

L
ξ

=
2π

√
2αMref

,

kmaxξ =

(
Nx

2

)
√
2αMref.

(53)

We note from (53) that the parameter α can be used to control the non-dimensional size of the vortex, while the grid resolution Nx
can be set to control the parameter (kmaxξ ). We generally set for QT simulations Mref = 0.5, equivalent to αβ = 2.

Particular care has to be devoted when computing non-dimensional values of different quantities appearing in integral invariants
or in the hydrodynamic analogy. If the non-dimensional wave function is computed from (45) as ψ̃(x̃, t̃) = |ψ̃ | exp(iθ (x̃, t̃)), the scaled
number of atoms results from (4) as:

Ñ =
N
N0

=
1
L3

∫
D

|ψ̃ |
2
dx̃, (54)

where D is the non-dimensional computation domain. The scaled total energy (per volume unit) results from (27):

Ẽ(ψ̃) =
ET (ψ)
Eref

=
2α
L3

∫
D

(
α|∇̃ψ̃ |

2
+
β

2

(
|ψ̃ |

2
− 1

)2
)

dx̃, (55)

with energy units E = ρ v2 L3 = h2n LL2/(4mα2).
ref 0 ref ¯ 0

8
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From the hydrodynamic analogy developed in Section 2, taking as reference the density of the background uniform flow, i. e.
ref = ρ0 = mn0, results in:

ρ̃ =
ρ

ρref
=

mn0|ψ̃ |
2

ρref
= |ψ̃ |

2
. (56)

he momentum is derived from (10) and thus computed in the non-dimensional code as:

ρ̃ṽ(x̃, t̃) = 2α
ψ̃∗

∇̃ψ̃ − ψ̃∇̃ψ̃∗

2i
= (2α) Imag(ψ̃∗

∇̃ψ̃). (57)

The non-dimensional superflow velocity also results from (10):

ṽ(x̃, t̃) =
v(x, t)
vref

=
h̄

mvrefLref
∇̃θ (x̃, t̃) = 2α ∇̃θ (x̃, t̃), (58)

and the non-dimensional circulation of a vortex of winding number (κ = 1) from (22):

Γ̃ =
Γv

vrefLref
= 2π

h̄
mvrefLref

= 4πα. (59)

Finally, the hydrodynamic expression (29) of the total energy becomes

Ẽ(ψ̃) =
ET (ψ)
Eref

=
1
L3

∫
D

(
1
2
ρ̃ṽ2 + (2α2)|∇(

√
ρ̃)|

2
+ (αβ) (ρ̃ − 1)2

)
dx̃, (60)

with the same reference energy as in (55) Eref = ρ0v
2
refL

3. In (60) the first term represents the kinetic energy Ẽkin(ψ̃), the second the
uantum energy Ẽq(ψ̃) and the third the interaction energy Ẽint (ψ̃). Note that 2α2

= ξ̃ 2c̃2 and αβ = 1/(2M2
ref).

To simplify the presentation, we drop in the following the tilde notation. All the developments and results in the remaining of the
aper concern non-dimensional quantities.

.2. Numerical method to compute stationary solutions

To find stationary solutions to (45), a very popular numerical method is the normalized gradient flow [46]. The wave function is
ropagated (in imaginary time) following the gradient flow corresponding to the minimization of the energy (55), until a local or global
inimum of the energy is reached, corresponding to metastable or ground states, respectively. In the original method, the solution is
ubsequently normalized to satisfy the constraint of the conservation of the number of atoms (equivalent to imposing the L2-norm of
he solution). In our case, we want to find a stationary state that mimics a classical flow with prescribed velocity vext. Assuming that
· vext = 0, after applying a local Galilean transformation, the non-dimensional energy of the driven field becomes [see34, for details]:

Ev =
2α
L3

∫
D

(
α

⏐⏐⏐∇ψ − i
vext
2α

ψ

⏐⏐⏐2 +
β

2
(|ψ |

2
− 1)2

)
dx, (61)

r, using the hydrodynamic analogy:

Ev(ψ) =
1
L3

∫
D

(
1
2
ρ |v − vext|2 + (2α2)

⏐⏐∇(
√
ρ)

⏐⏐2 + (αβ) (ρ − 1)2
)

dx. (62)

n this setting, we are searching an unconstrained minimizer of Ev. Owing to the previous decomposition, there is a competition between
he background uniform distribution |ψ |

2
= 1 and a phase accommodating to vext. Numerically, we solve the gradient descent equation

or Advective Real Ginzburg–Landau Equation, ARGLE):

∂

∂τ
φ(x, t) =

(
α∇

2
− ivext · ∇ −

|vext|2

4α
+ β − β|φ(x, t)|2

)
φ(x, t), x ∈ D, (63)

ith initial condition φ(x, 0+) = φ0(x). Note that τ is here a pseudo-time used to propagate the solution until a stationary state is
eached. Hence, this method belongs to the class of so-called imaginary time propagation methods. We use a semi-implicit Backward
uler scheme to advance the solution in the pseudo-time interval (τn, τn+1):

φ̃n+1(x) − φn(x)
δτ

=
α

2
∇

2φ̃n+1
+

(
α

2
∇

2
− ivext · ∇ −

|vext|2

4α
+ β − β|φn(x)|2

)
φ̃n(x). (64)

here δτ := τn+1 − τn. The resulting system is solved with spectral accuracy using FFTs. The Backward Euler scheme was proved to be
ery effective is solving stationary GP equations with spectral discretization (the terms in Eq. (64) are easily computed with FFTs). The
etails of the spectral implementation and some proofs for the energy diminishing properties of the scheme are provided in [46].
The ARGLE procedure stops either after a pre-definite number of pseudo-time steps or when the convergence criterion is reached:

∥φn+1
− φn

∥∞
≤ ϵ, (65)
δτ

9
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where ϵ is a user defined parameter. If this criterion is not satisfied at the end of the computation, it is still possible to check the energy
convergence condition:

|Ev(φn+1) − Ev(φn)|
δτEv(φn)

≤ ϵ, (66)

hich is generally less constraining than (65). Note that, even when the convergence is achieved, we can only guarantee that the
ackward Euler method provides a local minimum of Ev.

.3. Numerical method for the time evolution

The simulation of QT consists of solving the GP equation (45) using a pseudo-spectral scheme in space and a second order splitting
or the time discretization (ADI, Alternating Direction Implicit or Strang splitting). Let us rewrite (45) as:

∂

∂t
ψ = iα∆ψ − iβ|ψ |

2ψ

= Lxψ + Lyψ + Lzψ + N(ψ), (67)

ith the following definitions:

Lxψ = iα∂2xxψ, Lyψ = iα∂2yyψ,

Lzψ = iα∂2zzψ, N(ψ) = −iβ|ψ |
2ψ. (68)

If H denotes one of the previous operators (Lx, Ly, Lz or N), and φ is a given field, we denote by S(s,H)φ := ψ(s) the solution at time
= s of the following Cauchy problem:⎧⎨⎩

∂

∂t
ψ = H(ψ),

ψ(t = 0) = φ.
(69)

hen the second order Strang splitting scheme is:

ψn+1 = S
(
δt
2
,Lx

)
S
(
δt
2
,Ly

)
S
(
δt
2
,Lz

)
S(δt,N)S

(
δt
2
,Lz

)
S
(
δt
2
,Ly

)
S
(
δt
2
,Lx

)
ψn. (70)

his scheme is indeed second order accurate, provided that we solve the partial problems exactly, i. e. each term S(s,H) is computed
xactly. This is achieved using the spectral representation. For j ∈ {x, y, z}, using Fj the Fourier transform in the j direction, we obtain

S
(
s,Lj

)
φ = F−1

j

(
e−iαk2j sFjφ

)
. (71)

or the non linear operator S(δt,N), we notice that, if ψN is such that ∂tψN
= −iβ|ψN

|
2
ψN , then ∂(|ψN

|
2)/∂t = 0. Consequently, this

tep can be solved analytically and:

S (s,N) φ = e−iβ|φ|
2sφ. (72)

n conclusion, using the spectral discretization we obtain a second order accurate scheme for the time integration.

. Initial data preparation and benchmarks

As in numerical studies of classical turbulence, the preparation of the initial state is crucial in investigating statistical properties of
T. We describe in this section four different approaches to generate the initial field for the simulation of decaying GP-QT. Each method
s associated to a benchmark for the GP-QT simulation. The first two methods are classical [34,44] and inspired from CT. They start
rom defining a velocity field containing vortices. The Taylor–Green or the Arnold–Beltrami–Childress (ABC) model flows are used for
his step. A wave function field is then constructed such that its nodal lines correspond to vortex lines of the velocity field. This initial
ave function is then used in the ARGLE procedure described in Section 5.2 to generate an initial field for the real-time GP simulations.
he role of the ARGLE step is to reduce the acoustic emission of the initial field. The last two methods are new and based on the
irect manipulation of the wave function. We prescribe either a random phase field or we manufacture an initial field containing many
uantum vortex rings. The four methods are described in detail below.

.1. Taylor–Green (TG) flow

The velocity vTG of the Taylor–Green (TG) three-dimensional vortex flow is defined as:

vTG,x(x, y, z) = sin(x) cos(y) cos(z),
vTG,y(x, y, z) = − cos(x) sin(y) cos(z),
vTG,z(x, y, z) = 0.

(73)

o create a wave function field ψTG with zeros along vortex lines of vTG, we make use of the Clebsch representation of the velocity
ield [34,44]:
∇ × vTG = ∇λ× ∇µ, (74)

10
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with Clebsch potentials

λ(x, y, z) = cos(x)
√
2 |cos(z)|,

µ(x, y, z) = cos(y)
√
2 |cos(z)| sgn(cos(z)),

(75)

here sgn is the sign function. Note that a zero in the (λ,µ) plane corresponds to a vortex line of vTG (see [34,44] for details).
In practice, we start by defining in the (λ,µ) plane a complex field ψe with a simple zero at the origin:

ψe(λ,µ) = (λ+ iµ)
tanh(

√
λ2 + µ2/

√
2ξ )√

λ2 + µ2
. (76)

When replacing (75) into (76), a three-dimensional complex field is obtained, with one nodal line. We can further define on [0, π]
3:

ψ4(x, y, z) = ψ4(λ(x, y, z), µ(x, y, z))

= ψe(λ−
1

√
2
, µ)ψe(λ,µ−

1
√
2
)ψe(λ+

1
√
2
, µ)ψe(λ,µ+

1
√
2
),

(77)

hich now contains four nodal lines (see Fig. 1a, left). When ψe is extended by mirror reflection to the entire domain [0, 2π ]
3, the

btained wave function field contains closed rings inside the domain (see Fig. 1a, right).
The last manipulation of the wave function is intended to match the circulation of the velocity field vTG. From (74) and (75) we

ompute the circulation on the face z = 0, (x, y) ∈ [0, π] × [0, π] using the Stokes’ theorem:

Γz=0 =

∫ π

0

∫ π

0
(∇ × vTG) · ezdx dy

=

∫ π

0

∫ π

0
2 sin(x) sin(y)dx dy = 8. (78)

efining the ratio of the total circulation to the circulation (59) of a single vortex as γd = Γ /Γv = 2/(πα), the wave-function field
atching the circulation of the TG velocity field is [34] is

ψARGLE(x, y, z) = ψ4(λ(x, y, z), µ(x, y, z))[γd/4], (79)

here [.] denotes the integer part. In this setting, each vortex line corresponds to a multiple zero line (see Fig. 1a). The next step
n the preparation of the initial field is to use the ARGLE imaginary time procedure (63) with vext = vTG and initial condition
(t = 0+) = ψARGLE. During the ARGLE dynamics the multiple zero lines in ψARGLE will spontaneously split into [γd/4] = [1/(2πα)]
ingle zero lines (see Fig. 1b). The system will finally converge to initial conditions for the GPE, compatible with the TG flow, and with
inimal sound emission. We denote the resulting converged state as φTG (see Fig. 1c).

.2. Arnold–Beltrami–Childress (ABC) flow

The TG vortex flow (73) has zero helicity. To obtain a helical flow at large scales, we use the method suggested by Clark di Leoni
t al. [37] in their study of helical quantum turbulence at zero temperature. The external velocity field is defined as the superposition
f two Arnold–Beltrami–Childress (ABC) flows:

vABC = v(1)ABC + v(2)ABC, (80)

ith

v
(k)
ABC,x(x, y, z) = B cos(ky) + C sin(kz),

v
(k)
ABC,y(x, y, z) = C cos(kz) + A sin(kx),

v
(k)
ABC,z(x, y, z) = A cos(kx) + B sin(ky).

(81)

nless stated otherwise, we use (A, B, C) = (0.9, 1, 1.1)/
√
3. As for the Taylor–Green flow, we use the ARGLE procedure (63) with

vext = vABC and initial condition:

φ(t = 0+) = ψ
(1)
ABC × ψ

(2)
ABC. (82)

The wave functions ψABC are defined as:

ψ
(k)
ABC = ψ

x,y,z
A,k × ψ

y,z,x
B,k × ψ

z,x,y
C,k , ψ

x,y,z
A,k

= exp
(
i
[
A sin(kx)

2α

]
y + i

[
A cos(kx)

2α

]
z
)
, (83)

where [a] stands for the nearest integer to a. The ARGLE procedure has the role to minimize the amount of energy of acoustic modes in
the initial condition. Details of the quantum ABC flow are discussed by Clark di Leoni et al. [36,37]. We denote the resulting converged
state as φ .
ABC

11
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Fig. 1. Illustration of the initial field preparation using the Taylor–Green vortex flow. Imaginary time evolution of quantized vortices (iso-surfaces of low φTG) during
the ARGLE calculation. Case Nx = 128 with [γd/4] = 3 (see Table 2). Two different views, on the subdomain [0, π]

3 (left) and the entire domain [0, 2π ]
3 (right),

illustrating the symmetry of the flow. Panels from top to bottom: (a) τ = 0, the initial condition φ(t = 0+) = ψARGLE , Eq. (79) with multiply quantized (thick)
vortices, (b) τ = 1 when each initial vortex line splits in 3 singly quantized vortices and (c) τ = 60 for the final converged ARGLE field, with closed loops inside the
domain.

6.3. Smoothed random phase (SRP) initial wave function field

Previous initial fields for the simulation of the QT were built based on the analogy with classical flows (TG and ABC) with vortices.
We present in this section the first method to set an initial field by direct manipulation of the wave function. A smoothed random
phase (SRP) is assigned to the initial wave function ψSRP . Initially, there are no vortices present in the field. Vortices nucleate during
the time evolution and their interaction generate a QT field. In practice, to obtain the nucleation of enough vortices for QT, we initialize
the field as follows:

ψ = eiθ (x), (84)
SRP

12
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Fig. 2. Illustration of the initial field preparation using the SRP (smoothed random phase) method. Spline interpolation in one dimension using random values for
the phase (left) and density contours (right) of the final 3D wave function ψSRP .

Fig. 3. Illustration of the initial field preparation using random vortex ring pairs. Vortex lines (iso-surfaces of low ρ) for the wave function ψRVR (Eq. (99)) with,
rom left to right, NV = 1, 20 and 50 vortex ring pairs.

here θ is a smooth random periodic function in the computational box. To create this initial phase, we first generate the random
hase θi,j,k ∈ [−K , K ] at N3

r points xi,j,k = Ns × (i, j, k) where Ns = N/Nr and i, j, k ∈ {0, 1, 2, . . . ,Nr − 1}. Then, θ is obtained by
cubic spline interpolation (with periodicity) using the points (xi,j,k, θi,j,k). The one-dimensional cubic (and uniform) spline interpolation
is expressed as:

θNs ir+is,Nsjr ,Nskr = AisθNs ir ,Nsjr ,Nskr + BisθNs(ir+1),Nsjr ,Nskr + Cisθ
′′

Ns ir ,Nsjr ,Nskr + Disθ
′′

Ns(ir+1),Nsjr ,Nskr ,

Ais =
Ns − is

Ns
, Bis =

is
Ns
, Cis =

(A3
is − Ais )N

2
s

6
,

Dis =
(B3

is − Bis )N
2
s

6
,

(85)

or ir , jr , kr ∈ {0, 1, . . . ,Nr − 1} and is ∈ {1, 2, . . . ,Ns − 1}. The second derivative θ ′′ is obtained by solving the following linear system
ith tridiagonal matrix:

N2
s (θ

′′

Ns ir−1,Nsjr ,Nskr + 4θ ′′

Ns ir ,Nsjr ,Nskr + θ ′′

Ns ir+1,Nsjr ,Nskr ) = 6
(
θNs ir−1,Nsjr ,Nskr − 2θNs ir ,Nsjr ,Nskr + θNs ir+1,Nsjr ,Nskr

)
. (86)

After the interpolation along the i-direction, we compute the spline interpolation along the j-direction

θi,Nsjr+js,Nskr = Ajsθi,Nsjr ,Nskr + Bjsθi,Ns(jr+1),Nskr + Cjsθ
′′

i,Nsjr ,Nskr + Djsθ
′′

i,Ns(jr+1),Nskr , (87)

for i ∈ {0, 1, . . . ,N − 1}, jr , kr ∈ {0, 1, . . . ,Nr − 1}, and js ∈ {1, 2, . . . ,Ns − 1}, and, finally, that along the k-direction

θi,j,Nskr+ks = Aksθi,j,Nskr + Bksθi,j,Ns(kr+1) + Cksθ
′′

i,j,Nskr + Dksθ
′′

i,j,Ns(kr+1), (88)

for i, j ∈ {0, 1, . . . ,N − 1}, kr ∈ {0, 1, . . . ,Nr − 1}, and ks ∈ {1, 2, . . . ,Ns − 1}.
With this method, the characteristic variation of the phase θ is KNr/π . The characteristic velocity results from (58): v = 2α(KNr/π ).

The Mach number of the system is computed using (48) as M = v/c =
√
2αKNr/π

√
β .

We denote the resulting converged state as ψ . An example of the resulting flow is shown in Fig. 2.
SRP

13



M. Kobayashi, P. Parnaudeau, F. Luddens et al. Computer Physics Communications 258 (2021) 107579

t
s
a

T
t
d

s

w
w

6.4. Random vortex rings (RVR) initial wave function field

The main idea for this last initial condition is to prepare an initial state containing enough vortices to lead to QT. We derive in
he following a method to fill the computational bow with vortex rings. The challenge is to obtain a physically acceptable ansatz. We
tart from the single vortex ring solution to the GP equation [38]. A vortex ring of radius R and constant translational speed can be
pproximated as:

ψVR(x, y, z, R) = f
(√

(r − R)2 + z̃2
)
e±i tan−1

(
z̃

r−R

)
, (89)

f (r) =

√
a1(r/ξ )2 + a2(r/ξ )4

1 + b1(r/ξ )2 + a2(r/ξ )4
, (90)

a1 =
73 + 3

√
201

352
, a2 =

6 +
√
201

528
,

b1 =
21 +

√
201

96
, (91)

x̃ = x − π, (92)

r =

√
x̃2 + ỹ2, (93)

ξ =
√
α/β (94)

where f (r) is the solution to the GP equation (45) written in cylindrical coordinates for ψ = f (r)eiκ tan−1(y/x) with κ = 1:

−
α

r
d
dr

(
r
df
dr

)
+
ακ2f
r2

+ β(f 2 − 1)f = 0. (95)

he form in (90) is obtained as the Padé approximation of this solution. Coefficients a1, a2, and b1 in (91) are fixed by satisfying (95)
o the order of (r/ξ )3 for both r/ξ ≪ 1 and r/ξ ≫ 1. This expression stands for a vortex ring centred in the origin. Note that this
efinition is consistent with a vortex core size of the order of ξ .
The vortex ring ansatz ψR has the finite net momentum ρv. To eliminate this momentum, we add an opposite-symmetrical ring by

etting the wave function for a vortex-ring pair (VRP) as:

ψVRP(x, y, z, R, d) = ψVR(x, y, z − d/2, R)ψ∗

VR(x, y, z + d/2, R), (96)

here d is the inter-vortex distance. Because the ansatz ψVRP for a vortex-ring pair does not satisfy the periodic boundary condition,
e rewrite it as

ψVRP(x, y, z, R, d) → ψVRP(x, y, z, R, d)
× ψ∗

VRP(2L − x, y, z, R, d)ψ∗

VRP(−x, y, z, R, d)
× ψ∗

VRP(x, 2L − y, z, R, d)ψ∗

VRP(x,−y, z, R, d)
× ψ∗

VRP(x, y, 2L − z, R, d)ψ∗

VRP(x, y,−z, R, d).

(97)

The last step to prepare the initial state ψRVR (random vortex rings) is obtained by randomly putting vortex-ring pairs in the domain.
First, we randomly translate the ansatz ψVRP (97) as

ψRVR(x, y, z, R, d) ≡ F−1
x

(
eik·XFk(ψVRP(x, y, z, R, d))

)
, (98)

where X = (X, Y , Z) ∈ [0, 2π ]
3 are uniform random numbers. After that, we randomly rotate the ansatz by:

ψRVR(x, y, z, R, d) →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψRVR(x, y, z, R, d)
ψRVR(x, z, y, R, d)
ψRVR(y, x, z, R, d)
ψRVR(y, z, x, R, d)
ψRVR(z, x, y, R, d)
ψRVR(z, y, x, R, d)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (99)

Finally, the initial state ψRPR is obtained by preparing NV different ansatze ψRVR and multiplying them. Changing the radius of the ring
R, the inter-vortex distance d or the number of vortex rings pairs NV will impact the behaviour of QT. An example of the resulting flow
is shown in Fig. 3.

7. Numerical results

We describe in this section quantum turbulence flows simulated using the four initial conditions described in the previous section:
Taylor–Green (TG), Arnold–Beltrami–Childress (ABC), smoothed random phase (SRP) and random vortex rings (RVR). We present values,
spectra and structure functions of main quantities of interest (energy, helicity, etc.) that could be useful to benchmark numerical codes
simulating QT.

The main physical and numerical parameters of the runs were fixed following the scaling analysis provided in Section 5.1 and
are summarized in Table 1. Runs are identified using the abbreviation of the initial condition, followed by the identifier of the space
resolution, e. g. TG_a is the run using the Taylor–Green initial condition and a 1283 grid. Resolutions up to 10243 grid points (runs "_d")
14
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Table 1
Numerical and physical parameters used in the QT simulations.
Run L Nx Mref c α β kmaxξ δx/ξ ξ N1d

v

_a 2π 128 0.5 2.0 0.05000 40 2.26 1.388 0.035355 88
_b 2π 256 0.5 2.0 0.02500 80 2.26 1.388 0.017678 177
_c 2π 512 0.5 2.0 0.01250 160 2.26 1.388 0.008839 355
_d 2π 1024 0.5 2.0 0.00625 320 2.26 1.388 0.004419 710

Table 2
Runs for the TG-QT case. Parameters used in the GP solver (cases TG_a to TG_d) and the imaginary-time (IT) ARGLE solver (cases TG_aIT to TG_dIT). For each space
resolution Nx , the corresponding physical and numerical parameters are displayed in Table 1.
Run Nx δt Tf Run Nx [γd/4] δτ τf

TG_a 128 1.250e−3 12 TG_aIT 128 3 1.2500e−2 60
TG_b 256 6.250e−4 12 TG_bIT 256 6 6.2500e−3 60
TG_c 512 3.125e−4 12 TG_cIT 512 12 3.1250e−3 60
TG_d 1024 3.125e−4 10 TG_dIT 1024 25 1.5625e−3 60

Fig. 4. TG-QT. Initial condition computed with the imaginary-time ARGLE solver. Vortex lines (iso-surfaces of low ρ) of the converged wave function φTG at final
maginary-time τf . From left to right: grid resolutions Nx = 128, 256, 512 (corresponding to runs TG_aIT, TG_bIT and TG_cIT in Table 2).

ere considered for some cases. For all simulations, the grid is equidistant in each space direction, covering a domain of the same
ize [0,L]

3, with L = 2π . We recall that a Fourier spectral spatial discretization with periodic boundary conditions is used in the GP
olvers.
Using the contribution by Nore et al. [34] as guideline, the reference Mach number was fixed to Mref = 0.5, equivalent to a

non-dimensional speed of sound c = 2. Consequently, αβ = 2 for all cases.
Following (53), when increasing the grid resolution Nx by a factor of 2, the value of the parameter α is diminished by the same factor

in order to keep constant the value of kmaxξ = 8
√
2/5 = 2.26. There are two main consequences of this setting: the non-dimensional

value of the healing length ξ =
√
2αMref diminishes when Nx is increased, while the grid resolution of a vortex is kept constant

x/ξ = π/(kmaxξ ) = 1.388. We check for the TG case that this grid resolution is enough to accurately resolve vortices in our QT
imulations. Since the size L of the computational box is kept constant, the higher the grid resolution Nx, the larger is the number of
ortices present in the domain (see values of N1d

v in Table 1).

.1. Benchmark #1: Taylor–Green quantum turbulence (TG-QT)

The Taylor–Green initial field was prepared as described in Section 6.1. We display in Table 2 the values of the time step δt used in
he GP solver (see Section 5.3) and the final time Tf of each simulation. The parameters of the corresponding imaginary-time (IT) run
ases preparing the initial condition using the ARGLE solver are also presented, with δτ and τf the imaginary-time step and final value
t convergence, respectively, and [γd/4] the winding number of initial TG vortices seed at τ = 0 (see Eq. (79) and Fig. 1).

7.1.1. Results for the imaginary time (ARGLE) procedure
In defining this benchmark, it is important to describe in detail the initial field obtained after the imaginary time (ARGLE) procedure.

We recall that this procedure starts from the ansatz ψARGLE(79) containing multiple zero TG vortices that split into [γd/4] = [1/(2πα)]
singly quantized vortices during the imaginary time propagation (see Fig. 1 illustrating the case TG_aIT). Note from Table 2 that when
increasing the grid resolution Nx, the ansatz TG vortices split in a larger number of individual quantized vortices (up to 25 for Nx = 1024).
This is illustrated in Fig. 4 showing vortex configurations obtained at the end of the ARGLE procedure for runs TG_aIT, TG_bIT and TG_cIT.

To validate the ARGLE runs, we report in Table 3 the values of different energies (see Section 4.1) computed for the final field (at
τf ). The results are in good agreement with those reported by Nore et al. [34,44]. The values of the helicity (see Section 4.3) are also
reported in Table 3. Note that in this particular case, we expect the helicity to be zero, which is satisfied for regularized helicity. As
already stated by Clark di Leoni et al. [37], the regularized helicity is smoother and less noisy, which explains the discrepancies for
helicity in runs TG_cIT and TG_dIT.
15
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Table 3
TG-QT. Values of different energies and helicity at τf for the runs preparing the Taylor–Green initial condition, using the
imaginary-time ARGLE solver.
Run E i

kin Ec
kin Eq Eint H Hreg

TG_aIT 0.12901707 4.8667051e−04 7.9239425e−03 1.2995235e−02 1.37e−13 −1.87e−11
TG_bIT 0.11334487 2.2334712e−04 4.0373670e−03 6.8223665e−03 2.96e−07 −5.52e−07
TG_cIT 0.12884207 1.5065059e−04 2.4895687e−03 4.2864757e−03 3.83e−03 −5.63e−07
TG_dIT 0.12968555 9.5590716e−05 1.3476259e−03 2.3466209e−03 −3.94e−04 −9.71e−08

Fig. 5. TG-QT. Instantaneous fields computed with the real-time GP solver, starting from the initial condition presented in Fig. 4. Vortex lines (iso-surfaces of low
ρ) of the wave function at final time Tf . From left to right: grid resolutions Nx = 128, 256, 512 (corresponding to runs TG_a, TG_b and TG_c in Table 2).

Fig. 6. TG-QT. Time evolution of incompressible kinetic energy E i
kin (a) and compressible kinetic energy Ec

kin (b) for runs TG_a to TG_d (see Table 2).

.1.2. Results for the TG-QT
Starting from the initial condition presented in Fig. 4, we used the Strang–splitting GP solver (see Section 5.3) to advance the wave

unction in real time. The final (at t = Tf ) QT field is displayed in Fig. 5 for runs TG_a, TG_b and TG_c. As explained before, when the grid
esolution Nx is increased, the size of a vortex core ξ diminishes and, consequently, the density of the tangled vortex lines is increased
n the computational box. Meanwhile, we recall that the grid resolution of the vortex core (δx/ξ ) is the same for all simulations.

To compare our results with those reported by Nore et al. [34,44], the TG-QT fields are analysed by providing in Fig. 6 the time
evolution of the incompressible (E i

kin) and compressible (Ec
kin) parts of the kinetic energy (60) for cases TG_a to TG_d. For each case, the

incompressible kinetic energy is dominant at the beginning of the simulation, and slowly decreases in time, while the compressible
part increases. We report in Fig. 7(a) the spectrum of E i

kin for the case TG_c at different time instants of the computation. For small k, the
spectrum follows a (Kolmogorov-like) power law E i

kin(k) ∼ k−5/3 (dashed line in Fig. 7 a), especially for early times of the simulation.
hese results concerning the incompressible energy evolution and its spectrum are in very good agreement with the numerical results
eported by Nore et al. [34,44] for the grid resolution Nx = 512. As a novel diagnostic tool of the turbulent field (not presented in Nore
t al. [34,44]), we show in Fig. 7(b) the time-evolution of the second-order structure function S2//(r) (see Eq. (37)). For a developed QT
ield at t = 12, the slope of the structure function curve at the origin is close to 2, while for large length scales the slope evolves
owards 2/3. Using Eq. (38) to check the structure function calculation, we also plot in Fig. 7(b) as a dotted line the value 2

∫
v2x dx

which is reached for large length scales (see Eq. (38)).

7.1.3. Accuracy of numerical results
There are two important check-points in validating a QT-GP simulation: the accuracy in verifying conservation laws (see Section 2)

and the grid convergence. In our numerical simulations, we monitor the time variation of the number of particles N (see Eq. (54)) and
total energy per volume unit E (see Eq. (55)). These two quantities should be conserved by the GP solver. For the TG-QT simulations,
16
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Fig. 7. TG QT. Spectrum of E i
kin (a) and second-order structure function (b) for the case TG_c (see Table 2).

able 4
G-QT. Conservation of the number of particles N and energy per volume unit. Initial (at t = 0) and final values (and t = Tf ) and relative maximum variation,

defined following e. g. δ(E) = maxt∈[0;Tf ] |E(t) − Et=0| /Et=0 .

Run N|t=0 N|t=Tf δ(N) E|t=0 E|t=Tf δ(E)

TG_a 0.9789997 0.9789997 0.0 0.1504230 0.1504111 7.97e−05
TG_b 0.9873160 0.9873160 0.0 0.1244280 0.1244235 3.60e−05
TG_c 0.9920083 0.9920083 0.0 0.1357688 0.1357597 6.67e−05
TG_d 0.9955732 0.9955732 0.0 0.1275738 0.1275550 1.47e−04

Table 5
TG-QT. Supplementary runs used to check the grid convergence of the results (to be compared to runs in Table 1).
Run Nx α β ξkmax δx/ξ

TG_a 128 0.05 40 2.26 1.388
TG_g 64 0.05 40 1.13 2.776
TG_h 256 0.05 40 4.52 0.694

Table 6
TG-QT. Energies computed from φTG , the wave function obtained at the end of the imaginary-time ARGLE procedure for cases TG_a, TG_g and TG_h. Relative errors
(rel. err.) were computed with respect to reference values of the case TG_a.

TG_a TG_g (rel. err.) TG_h (rel. err.)

E i
kin 1.29017e−01 1.29896e−01 (6.82e−03) 1.29562e−01 (4.23e−03)

Ec
kin 4.86671e−04 1.24066e−03 (1.55e+00) 2.72478e−04 (4.40e−01)

Eq 7.92394e−03 1.08017e−02 (3.63e−01) 7.80383e−03 (1.52e−02)
Eint 1.29952e−02 9.94301e−03 (2.35e−01) 1.30274e−02 (2.48e−03)
Ev 7.10060e−01 6.98672e−01 (1.60e−02) 7.10095e−01 (4.98e−05)

we report in Table 4 initial and final values for the norm and normalized energy, as well as their relative maximum variation during
the time evolution. Note from Table 4 that N is perfectly conserved, and energy relative fluctuations δ(E) are less than 0.02%, which is
ufficiently small value to guarantee the validity of the computation.
The second important check-point is the grid convergence. To correctly capture vortices of radius ξ , we need enough discretization

oints in each vortex core. We recall that the grid step size was fixed to δx/ξ = 1.338 for all runs, corresponding to ξkmax =
8
√
2

5 ≃ 2.26
(see Table 1). To check the influence of this parameter on the accuracy of the QT simulation, we performed two other runs reported in
Table 5, with double (TG_g) or half (TG_h) grid step size δx/ξ .

In Table 6, we report the values of different energies obtained at the end of the imaginary-time ARGLE procedure for these new
cases. Relative errors were computed with respect to reference values of the case TG_a. We conclude that a value of ξkmax ≃ 2, i. e.
δx/ξ = π/2, is sufficient to ensure the grid convergence and good accuracy of numerical results. To further check this assessment, we
also simulated the QT evolution starting from these runs. We report in Fig. 8 the time evolution of incompressible and compressible
kinetic energies. The similarities between cases TG_a and TG_h suggest that the resolution used for the case TG_a is fine enough to
capture the vortices in the QT field. This validates the choice of parameters in Table 1.

7.2. Benchmark #2: Arnold–Beltrami–Childress quantum turbulence (ABC-QT)

The ABC initial field was prepared as described in Section 6.2. We display in Table 7 the values of the time step δt used in the GP
solver (see Section 5.3) and the final time Tf of each simulation. The parameters of the corresponding imaginary-time (IT) run cases
preparing the initial condition using the ARGLE solver are also presented, with δτ and τf the imaginary-time step and final value at
convergence, respectively.
17



M. Kobayashi, P. Parnaudeau, F. Luddens et al. Computer Physics Communications 258 (2021) 107579

T
R
s

c
o
f
i
i
c
e
o
t
o

Fig. 8. TG-QT. Time evolution of incompressible E i
kin (a) and compressible Ec

kin (b) energies for cases TG_a, TG_g, TG_h, used to check grid convergence.

able 7
uns for the ABC-QT case. Parameters used in the GP solver (cases ABC_a to ABC_c) and the imaginary-time (IT) ARGLE solver (cases ABC_aIT to ABC_cIT). For each
pace resolution Nx , the corresponding physical and numerical parameters are displayed in Table 1.
Run Nx δt Tf Run Nx δτ τf

ABC_a 128 8.0e−4 10 ABC_aIT 128 4.0e−3 30
ABC_b 256 4.0e−4 10 ABC_bIT 256 2.0e−3 30
ABC_c 512 2.0e−4 10 ABC_cIT 512 1.0e−3 30

Fig. 9. ABC-QT. Initial condition computed with the imaginary-time ARGLE solver. Vortex lines (iso-surfaces of low ρ) of the converged wave function φABC at final
imaginary-time τf . From left to right: grid resolutions Nx = 128, 256, 512 (corresponding to runs ABC_aIT, ABC_bIT and ABC_cIT in Table 7).

7.2.1. Results for the imaginary time (ARGLE) procedure
Following (82) and (83), the initial condition for the imaginary-time ARGLE procedure is obtained only by phase manipulations of the

wave function. Therefore, vortices are not present at τ = 0, but they nucleate during the imaginary-time evolution, which a dissipative
process. The obtained fields with vortices at the end of the ARGLE procedure are illustrated in Fig. 9. Note that, compared to the TG
fields in Fig. 4, the distribution of vortices in the computational box displays no symmetries with respect to central planes. This is the
first feature that makes the ABC case different from the TG case.

The second differentiating feature is the presence of helicity in the ABC flow obtained after the ARGLE procedure. We recall that the
helicity of the TG flow is strictly zero (see Table 3). We report in Table 8 the values of different energies (see Section 4.1) and helicity
computed for the final ABC field (at τf ). As expected, the value of the incompressible kinetic energy is close to 1, which corresponds to
the energy of the classical ABC flow. For the helicity, the theoretical value for the classical ABC flow is 3. A close value to 3 is obtained
only for large grid resolutions (Nx ≥ 256), i. e. for sufficiently small values of the vortex size ξ .

For these computations, the ARGLE procedure required a significant computational time and was therefore stopped before the
onvergence criterion (65) was satisfied. The complex inhomogeneous topological structure of the ABC flow and the large number
f vortices in the flow slowed-down the convergence of the imaginary-time ARGLE procedure. We observed that the energy could be
urther slightly diminished, but the resulting final stationary state displayed only slight changes in the position of the peripheral vortices
n the computational box. To ensure the validity of the ARGLE solution, we estimated the criterion (66) by monitoring in Fig. 10a the
maginary-time evolution of energy fluctuations defined as |Ev(φn+1) − Ev(φn)|/(δτEv(φn)), with Ev expressed by (61). The convergence
riterion (66) is satisfied to a fairly good degree of precision (10−3). Figure 10b shows the spectra of E i

kin, the incompressible kinetic
nergy of ARGLE solutions. This is an important benchmark verification, since E i

kin represents the most important part in the total energy
f the ABC super-flow (see Table 8). The similar slopes of the spectra for large wave numbers k indicate that the energy distribution of
he three ABC flows are similar at small scales. The low-k part of the spectrum (k ≪ kξ ) reproduces the classical spectrum which has
nly 2 nonzero modes, k = 1, 2. The slope for k ≫ kξ is −3 (i. e. E i

kin(k) ∼ k−3). This feature of the high-k spectrum is detailed in [47].
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Fig. 10. ABC-QT. (a) Relative fluctuation of the total energy (|Ev(φn+1) − Ev(φn)|/(δτEv(φn))) during the ARGLE computation. (b) Spectrum of E i
kin , the incompressible

inetic energy of ARGLE solutions. Results for cases ABC_aIT, ABC_bIT and ABC_cIT described in Table 7.

Table 8
ABC-QT. Values of different energies and helicity at τf for the runs preparing the ABC initial condition, using the
imaginary-time ARGLE solver.
Run E i

kin Ec
kin Eq Eint H Hreg

ABC_aIT 0.9485114 0.0014218 0.0277287 0.0430379 2.4106982 2.4726091
ABC_bIT 0.9792042 0.0008142 0.0144931 0.0237201 2.7439625 2.6532860
ABC_cIT 0.9884992 0.0006486 0.0073802 0.0124975 2.7217161 2.7365301

Fig. 11. ABC-QT. Instantaneous fields computed with the real-time GP solver, starting from the initial condition presented in Fig. 9. Vortex lines (iso-surfaces of low
ρ) of the wave function at final time Tf . From left to right: grid resolutions Nx = 128, 256, 512 (corresponding to runs ABC_a, ABC_b and ABC_c in Table 7).

.2.2. Results for the ABC-QT
Starting from the initial condition presented in Fig. 9, we used the Strang–splitting GP solver (see Section 5.3) to advance the wave

unction in real time. The final (at t = Tf ) QT field is displayed in Fig. 11 for runs ABC_a, ABC_b and ABC_c. As for the TG case, when
he grid resolution Nx is increased, the size of a vortex core ξ diminishes and, consequently, the density of the tangled vortex lines is
increased.

The time evolution of the incompressible kinetic energy E i
kin and the regularized helicity Hreg (see Eq. (43)) are shown in Fig. 12.

These results are in good agreement with those reported by Clark di Leoni et al. [37].
To analyse the turbulent super-flow, we plot in Fig. 13 spectra for the incompressible kinetic energy E i

kin (panel a) and the regularized
helicity Hreg (panel b) at different time instants and the second-order structure function S2//(r) (panel c). We plot with dashed lines in
igs. 13a and 13b the reference (Kolmogorov-like) power laws ε2/3k−5/3 for E i

kin and ηε−1/3k−5/3 for helicity, respectively. The constants
and η were computed as:

ε = −
dE i

kin

dt

⏐⏐⏐⏐
t=10

, η = −
dH
dt

⏐⏐⏐⏐
t=10

. (100)

We note from Figs. 13a and 13b that for t > 5, both energy and helicity Hreg spectra exhibit at large scales a power law variation with
xponent −5/3, compatible with a dual energy and helicity cascade. Again, this result is in good agreement with the results of Clark di
eoni et al. [37]. The novel diagnostic tool introduced in the previous section for the TG flow is also performed with the ABC flow by
omputing the second-order structure function S2//(r) (see Eq. (37)). Figure 13c displays the structure function for the same case ABC_c
nd same time instants considered for plotting spectra. A similar evolution as noted for the TG case (see Fig. 7) is observed: the slope
f the structure function curve at the origin is close to 2, and, for large length scales, the asymptotic value 2

∫
v2x dx (dotted line) is

eached.
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Fig. 12. ABC-QT. Time evolution of incompressible kinetic energy E i
kin (a) and regularized helicity Hreg (b) (see Eq. (43)).

Fig. 13. ABC-QT. Analysis of the turbulent super-flow. Spectrum of incompressible kinetic energy E i
kin (a) and regularized helicity Hreg (b) at different time instants

for case ABC_c. Dashed lines represent reference power laws with slope −5/3. Panel (c) displays the second order structure function for the same case ABC_c and
same time instants.

Table 9
ABC-QT. Conservation of the number of particles N and energy per volume unit. Initial (at t = 0) and final values (and t = Tf ) and relative maximum variation,
defined following e. g. δ(E) = maxt∈[0;Tf ] |E(t) − Et=0| /Et=0 .

Run N|t=0 N|t=Tf δ(N) E|t=0 E|t=Tf δE

ABC_a 0.9410138 0.9410138 0.0 1.0206996 1.0206400 5.98e−05
ABC_b 0.9647786 0.9647786 0.0 1.0182316 1.0181689 6.18e−05
ABC_c 0.9796053 0.9796053 0.0 1.0090255 1.0089631 6.19e−05

7.2.3. Accuracy of numerical results and influence of the Mach number
As for the TG case, we monitor the time variation of the number of particles N (see Eq. (54)) and total energy per volume unit E

(see Eq. (55)). The accuracy to which these two quantities are conserved by the GP solver is reported in Table 9 initial and final values
for the norm and normalized energy, as well as their relative maximum variation during the time evolution. Note from Table 4 that
N is perfectly conserved, and energy relative fluctuations δ(E) are less than 0.01%, which is sufficiently small value to guarantee the
validity of the computation.

Another interesting question that can be addressed using the ABC flow is the influence of the Mach number on the QT dynamics.
Since the velocity v is singular at the vortex centre r = 0, we considered in defining the local Mach number the quantity

√
ρv which
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Table 10
ABC-QT. Runs used to test of the influence of the Mach number. Compared to run ABC_c (see Table 7), only the constants A, B, C in defining the ABC flow were
odified (see Eq. (83)).
Name (A, B, C) Nx Mmax Mrms

ABC_c (0.9, 1, 1.1)/
√
3 512 1.486860 0.703259

ABC_c1 (0.9, 1, 1.1)/(2
√
3) 512 0.836509 0.357021

ABC_c2 2(0.9, 1, 1.1)/
√
3 512 2.800959 1.385344

Fig. 14. ABC-QT. Time evolution of the Mach number Mmax (a) and Mrms (a) for cases ABC_c, ABC_c1 and ABC_c2 (see Table 10).

Fig. 15. ABC-QT. Influence of the Mach number. Time evolution of the incompressible kinetic energy E i
kin (a) and regularized helicity Hreg (b). To be compared with

urves in Fig. 12.

s not singular (v ∼ 1/r and
√
ρ ∼ r , see Section 3.2). We thus computed two representative values: a maximum Mach number Mmax

ased on the maximum superfluid velocity, and a Mach number Mrms based on averaged values:

Mmax :=
∥
√
ρv∥L∞(D)

c
, Mrms :=

∥
√
ρv∥L2(D)

c
√
L3

=

√
2Ekin
c

. (101)

eeping c and ξ constant, one can change the Mach number in the ABC flow by tuning the values of the parameters A, B, C in (83). Using
s reference the case ABC_c (Nx = 512) we performed two new runs for which the parameters are displayed in Table 10. The values of
onstants A, B, C were divided (ABC_c1) or multiplied (ABC_c2) by a factor of 2. As a result, compared to case ABC_c, the velocities are
ivided (resp. multiplied) by 2 for case ABC_c1 (resp. ABC_c2). The values for the Mach number reported in Table 10 were computed
t the end of the ARGLE procedure preparing the initial condition. Figure 14 shows the time evolution for the two values of the Mach
umber, Mmax and Mrms computed by the (real-time) GP solver. The ratio of 2 is well conserved in time, though the values are varying
ignificantly. This proves that tuning the values of constants A, B, C is a simple and practical approach in modifying the Mach number
of the QT super-flow.

We present in Fig. 15 the time evolution of incompressible kinetic energy E i
kin and regularized helicity Hreg for new cases with

ifferent Mach numbers. As expected from the analysis above, the energy and helicity associated with the classical flow vABC are
divided (resp. multiplied) by 4 for case ABC_c1 (resp. ABC_c2). We note that the time evolution of these main quantities depends
on the Mach number. To assess on the distribution of the incompressible kinetic energy among scales, we plotted in Fig. 16 spectra of
E i
kin at significant time instants, t = 5 and final time t = Tf = 10. The spectra for the three cases are quite similar showing that the

obtained dynamics of the QT is equivalent when varying the Mach number of the flow.

7.3. Benchmark #3: Smoothed random phase quantum turbulence (SRP-QT)

The SRP initial field was prepared as described in Section 6.3. The advantage of this new initial condition is that the time-imaginary

ARGLE simulation is no longer necessary in the preparation of the initial field. We display in Table 11 the values of the time step δt
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Fig. 16. ABC-QT. Influence of the Mach number. Spectrum of the incompressible kinetic energy E i
kin for case ABC_c, ABC_c1, ABC_c2, at time instants t = 5 (a) and

= Tf = 10 (b).

able 11
uns for the SRP-QT case. For each space resolution Nx , the corresponding physical and numerical parameters are displayed in Table 1.
Run Nx δt Tf K Nr

SRP_a 128 1/1024 8 8π 4
SRP_b 256 1/2048 8 16π 4
SRP_c 512 1/4096 8 32π 4

Fig. 17. SRP-QT. Instantaneous fields computed with the real-time GP solver, starting from the initial condition presented in Fig. 2. Vortex structures (iso-surfaces
f low ρ) of the wave function at final time Tf . Grid resolution Nx = 512, corresponding to run SRP_c in Table 11).

sed in the GP solver (see Section 5.3), the final time Tf of each simulation, and the parameters K (maximum amplitude of the phase)
nd Nr (number of random values) of the method generating the phase field (see Fig. 2). We recall that the characteristic velocity of
he generated flow field results is v = 2α(KNr/π ), and the corresponding theoretical Mach number M =

√
2αKNr/π

√
β .

Figure 17 illustrates the vortex structures in the QT super-flow generated with this method. Compared to TG and ABC cases, in the
RP case vortices nucleate progressively and do not display long vortex lines. A very fine grain structure of vortices is observed in all
RP runs.
To analyse the SRP-QT flow we plotted in Fig. 18a the time evolution of the compressible Ec

kin and incompressible E i
kin kinetic energies.

An ensemble average for 10 different (random) initial conditions was taken to display the results. Since the initial field (at t = 0) does
not contain vortices, the incompressible kinetic energy E i

kin is initially zero and subsequently increases due to vortex nucleations. After
reaching the maximum value at t ∼ 0.5, E i

kin gradually decreases to the end of the simulation (t = Tf ). During the entire time evolution,
the dynamics of the flow is dominated by the compressible kinetic energy Ec

kin, which is always larger than E i
kin. Figure 18b shows the

spectrum of E i
kin. As for TG and ABC cases, a Kolmogorov-like scaling is obtained, with a −5/3 power-law at low wave numbers k.

Hereof, the SRP-QT flow is statistically similar to the TG and ABC QT flows and can be used in a detailed parametric study of the decay
of quantum turbulence (which is beyond the scope of this contribution).

7.4. Benchmark #4: Random vortex rings quantum turbulence (RVR-QT)

The RVR initial field was prepared as described in Section 6.4. Like in the SRP case, building this new initial condition avoids the use
of the time-imaginary ARGLE computation. We display in Table 12 the values of the time step δt used in the GP solver (see Section 5.3),
the final time Tf of each simulation, the parameter NV representing the number of pairs of vortex rings seeded in the initial field, the
radius R of a vortex ring, and the distance d between the vortex rings forming a pair (see Eq. (99)).

Note that in Fig. 3 we represented, to illustrate the method, a few number of vortex pairs (NV=1, 20 and 50). In the GP calculations
we used a much larger value for N , up to 800 for the case RVR_c. The initial field for the three considered cases is displayed in Fig. 19.
V
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Table 12
Runs for the RVR-QT case. For each space resolution Nx , the corresponding physical and numerical parameters are displayed in Table 1.
Run Nx δt Tf NV R d

RVR_a 128 1/1024 8 200 π/2 π

RVR_b 256 1/2048 8 400 π/2 π

RVR_c 512 1/4096 8 800 π/2 π

Like in the TG and ABC cases, when the grid resolution Nx is increased, ξ diminishes and, consequently, thinner vortex rings are seeded
in the initial field.

The obtained RVR-QT flow is illustrated in Fig. 20. Multiple vortex ring reconnections lead to a dense vortex distribution in the QT
field, similar to that obtained for the ABC flow (see Fig. 11).

For the analysis of the RVR-QT flow we provide in Fig. 21a the time evolution of the compressible Ec
kin and incompressible E i

kin
kinetic energies for the case RVR_c. Since the initial distribution of vortex rings pairs is random in the computational box, we present
the ensemble average results for 10 runs with random positions of the same number of vortex ring pairs (NV = 800). In the early stages
of the time evolution (t < 1), E i

kin is dominant. The compressible kinetic energy Ec
kin starts to increase at t ∼ 1, due to sound emissions

through vortex reconnections. This evolution is opposite to that observed for the SRP-QT cases. Figure 21b shows the spectrum of E i
kin.

Like in the SRP cases (see Fig. 18), we note a Kolmogorov-like scaling of the spectrum, with a −5/3 power-law at intermediate wave
numbers k.

8. Conclusion

We simulated in this paper quantum turbulence superfluid flows described by the Gross–Pitaevskii equation. Numerical simulations
were performed using a parallel (MPI-OpenMP) code based on a pseudo-spectral spatial discretization and second order splitting for the
time integration. As expected from the theoretical numerical analysis, this approach ensured an accurate capture of the dynamics of the
flow, with a perfect conservation of the number of particles and a negligible drift in time of the total energy. Several configurations of
QT were simulated using four different initial conditions: Taylor–Green (TG) vortices, Arnold–Beltrami–Childress (ABC) flow, smoothed
random phase (SRP) fields and random vortex rings (RVR) pairs. Each of these case was described in detail by setting corresponding
benchmarks that could be used to validate/calibrate new GP codes. Particular care was devoted in describing dimensionless equations,
characteristic scales and optimal numerical parameters. We presented values, spectra and structure functions of main quantities of
interest (energy, helicity, etc.) that are useful to describe the turbulent flow. Some general features of QT were identified, despite the

Fig. 18. SRP-QT. (a) Time evolution of the compressible Ec
kin and incompressible E i

kin kinetic energies. (b) Spectrum of E i
kin at different time instants. Case SRP_c

(Nx = 512). In both panels, the results represent an ensemble average for 10 different (random) initial conditions.

Fig. 19. RVR-QT. Initial field containing NV randomly distributed vortex ring pairs. Vortex lines (iso-surfaces of low ρ) of the wave function. From left to right: grid
esolutions Nx = 128, 256, 512 and NV = 200, 400, 800 (corresponding to runs RVR_a, RVR_b and RVR_c in Table 12).
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l

Fig. 20. RVR-QT. Instantaneous fields computed with the real-time GP solver, starting from the initial condition presented in Fig. 19. Vortex lines (iso-surfaces of
ow ρ) of the wave function at final time Tf . From left to right: grid resolutions Nx = 128, 256, 512 (corresponding to runs RVR_a, RVR_b and RVR_c in Table 12).

Fig. 21. RVR-QT. (a) Time evolution of the compressible Ec
kin and incompressible E i

kin kinetic energies. (b) Spectrum of E i
kin at different time instants. Case RVR_c

(Nx = 512). In both panels, the results represent an ensemble average for 10 different runs, with random initial distribution of NV = 800 vortex ring pairs in the
computational domain.

variety of initial states: the spectrum of the incompressible kinetic energy exhibits a Kolmogorov-type −5/3 power-law scaling for the
large scales, the flow dynamics is characterized by a continuous transfer between incompressible and compressible energy, etc.

The first two benchmarks (TG and ABC) are classical and inspired from classical turbulence. They start from defining a velocity
field containing vortices and use an imaginary-time ARGLE procedure to reduce the acoustic emission of the initial field. The last two
benchmarks (SRP and RVR) are new and based on the direct manipulation of the wave function. The new initial conditions have the
advantage to be simple to implement and to avoid supplementary computations through the ARGLE procedure. The SRP initial condition
has the particularity of being vortex free, with kinetic energy dominated at initial stages by its compressible part. The situation is
reversed in the RVR initial condition, since at early stages the incompressible kinetic energy dominates. Therefore, the new initial
conditions could be used as new QT settings to explore various physical phenomena, such as the interaction of particles with quantized
vortices in QT [48]. Another possible use of the new SRP and RVR initial conditions is for the simulation of QT in atomic Bose–Einstein
condensates (BEC). GP-QT dynamics in BECs is generally triggered by directly manipulating the wave function field. [49] used a randomly
distributed initial wave function field, [50] applied a simple rotation of the initial field, [51] used combined rotations around two axes,
while [52] suggested a random phase imprinting. The extension of our SRP and RVR models to BEC-QT will be reported in a forthcoming
contribution.

Supplementary images and movies depicting the dynamics of QT-GP cases simulated in this paper are provided as Supplemental
Material at http://qute-hpc.math.cnrs.fr/2020_03_QT_GP.html.
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Table A.13
Execution time for ABC runs. The last column reports the execution time divided by the number of degrees of freedom (N3

x ).
Case Nx Iterations MPI proc. Execution time (s) Ratio

ABC_aIT 128 7500 56 539.126 0.000257075
ABC_bIT 256 15000 112 5940.076 0.000354056
ABC_cIT 512 30000 224 53066.445 0.000395375
ABC_a 128 12500 56 700.524 0.000334036
ABC_b 256 25000 112 7364.754 0.000438973
ABC_c 512 50000 224 63397.341 0.000472346

Fig. A.22. Parallel performance (speed-up) of the GPS code when computing 3D cases with 1283 , 2563 , 5123 , 10243 and 20483 grid points. Strong scalability test
sing only MPI (from 64 to 64,536) processes. Dashed lines represent ideal speed-up.

Fig. A.23. Parallel performance (speed-up) of the GPS code when computing 3D cases with 5123 , 10243 and 20483 grid points. Strong scalability test of the hybrid
code MPI-OpenMP using MPI processes as in the previous test and 1, 2 or 4 OpenMP threads. Dashed lines represent ideal speed-up.

Appendix. Parallel performance of the code

A.1. Execution time

Execution times for runs ABC_a to ABC_c and ABC_aIT to ABC_cIT are reported in Table A.13. When switching from one case to the
next one, we doubled the total number of iterations and also the number of processes. We expected a small variation of the value of
the execution time divided by the grid resolution. For the ARGLE procedure, we monitored an efficiency of 65% from case ABC_aIT to
case ABC_cIT. For the time-dependent GP simulation, we obtained an efficiency of 70% from case ABC_a to case ABC_c. Note that the
measured time is the total time for the execution of the program, not solely the computational part of the code.

A.2. Strong scalability of GPS

Strong scalability results of the GPS code are presented in this section. To test the code, we used both CRIANN Myria and Idris Turing
BlueGene/Q (BG) supercomputers. The supercomputer called Myria has 366 nodes, each with 28 cores (Intel Broadwell 2.4 GHz) for
a total of 10,248 cores and 419 TFLOPs. The supercomputer BG has 6144 nodes, each with 16 cores (IBM PowerPC A2 1.6 GHz) for
a total of 98,304 cores and 1258 PFLOPs. It must be noted that the BG supercomputer has been built to solve the bottleneck due to
memory bandwidth and latency, by reducing the clock of each core. Myria has a much higher clock speed without a larger memory
bandwidth and a similar interconnection between nodes. As a result, the network and memory bandwidth are playing a larger role
in the performance of the code when run on Myria supercomputer than on BG. The code GPS used in this work, was first developed
during the French project ANR Becasim [15] and it was tuned on the BG supercomputer to optimize its scalability. In this work, the
supercomputer Myria was used in order to obtain present results. We present strong scalability results on both supercomputers. A 3D
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test case (with grid resolutions up to 20483) was run using a different number of processes (up to 4096 for Myria, and 64,536 for BG)
sing the Strang second order splitting scheme and the execution time was monitored.
The first strong scalability test was performed using only MPI (Fig. A.22). It shows scalability and speed-up close to ideal

erformances on BG, while on Myria the speed-up is good but with a lower efficiency. The efficiency on Myria is above 75% up to
56, 512, 1024 and 2048 processes for discretizations of 1283, 2563, 5123 and 10243, respectively. On the BG supercomputer, the
fficiency is above 75% up to 4096, 16,384 and 65,536 processes for discretizations of 5123, 10243 and 20483, respectively. The maximum
cceleration measured is 2152 on Myria using 4096 processes (N = 10243) and 56,987 on BG using 65,536 processes (N = 20483).
For a further assessment of the parallel capabilities of the code, another scalability test using MPI and up to 4 OpenMP threads

er MPI process was performed (Fig. A.23). Using OpenMP on the BG supercomputer resulted in an efficiency of about 80% with 4
hreads. The efficiency decreases drastically with more OpenMP threads. For computations with the GPS, using OpenMP is important to
ecrease the cost of the input/output operations, if the run needs more than 10,000 cores. This feature could be significantly affected
y the architecture of the processor available on the supercomputer. Using Myria (with no thread affinity enabled), we noticed that
sing more than 2 threads per process should be avoided.
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