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Abstract – We consider the generation of a large-scale magnetic field by a turbulent flow driven
by a small-scale helical forcing in a low magnetic Prandtl number fluid. We provide an estimate of
the dynamo threshold that takes into account the presence of large-scale turbulent fluctuations by
considering that the scales of the flow that mostly contribute to the dynamo process are roughly in
absolute equilibrium. We show that turbulent flows in absolute equilibrium do generate dynamos
and we compare their growth rates to their laminar counterparts. Finally, we show that the
back reaction of the growing magnetic field modifies the statistical properties of turbulent flow by
suppressing its kinetic helicity at large magnetic Reynolds number.

Copyright c© EPLA, 2014

Introduction. – Magnetic fields of planets and stars
are believed to be generated by a dynamo process, an in-
stability that results from electromagnetic induction by
the flow of an electrically conducting fluid [1]. Small
perturbations of a magnetic field are amplified provided
the magnetic Reynolds number, RI

m, is large enough.
RI

m = μ0σV l, where μ0 is the magnetic permeability of
vacuum, σ is the electrical conductivity, V is the order
of magnitude of the velocity and l is the characteristic
(integral) length scale of the flow. An important prop-
erty of liquid metals as well as of stellar plasmas is the
extremely small value of their magnetic Prandtl num-
ber, Pm = μ0σν < 10−5, where ν is the kinematic vis-
cosity. Thus, the kinetic Reynolds number of the flow,
ReI = RI

m/Pm becomes huge when RI
m is increased to

reach a dynamo regime and the flow displays strong tur-
bulent fluctuations. The effect of these fluctuations on
the efficiency of the amplification mechanism of the mag-
netic field as well as on its saturation by the Lorentz force
above the dynamo threshold is to a large extent an open
problem. Direct numerical simulations are not possible
in the parameter range of experiments in liquid metal
but they have displayed the following trend for larger
values of Pm: for a flow forcing with a given geometry,
the dynamo threshold first increases and then saturates
when the magnetic Prandtl number is decreased. This has
been observed with the Taylor-Green flow [2], with a von-
Karman–type forcing [3] and with the Arnold-Beltrami-
Childress (ABC) flow [4]. For low Pm, i.e. small kinematic
viscosity compared to magnetic diffusivity, the forced flow

undergoes hydrodynamic instabilities before reaching the
dynamo threshold, thus the increase in dynamo threshold
has been often related to the inhibition of dynamo mech-
anisms by turbulent fluctuations. Note, however, that a
similar increase of threshold when Pm is decreased has
been observed when the flow is generated by a random
forcing [5]. All the deterministic forcings quoted above
have been simulated in the absence of scale separation,
i.e. the magnetic field cannot grow at a scale larger than
the integral scale of the flow. A more recent study has
been performed with a moderate scale separation using
an ABC forcing at a scale smaller than the one of the
first Fourier mode of the simulation. It has been reported
that the increase in dynamo threshold, between the one
of the laminar flow at large Pm and its saturation value
when Pm is small enough, is smaller than for simulations
that do not involve scale separation [6]. Slightly above
the dynamo threshold, ABC flows or more generally flows
with strong kinetic helicity, are expected to generate a
magnetic field at large scales through the alpha effect [1].
It is not known whether the dynamo threshold dependence
on Pm becomes weaker and weaker for these flows when
the scale separation is increased. Indeed, direct numeri-
cal simulations cannot both handle a wide scale separa-
tion between the large-scale magnetic field and the spatial
periodicity of the flow, and resolve the turbulent cascade
above the forcing scale when Pm is small. We report here a
new approach that can provide a way to study a dynamo
generated by a helical flow with scale separation in the
small Pm limit. The idea is to model the flow using the
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truncated Euler equation. This is motivated by the obser-
vation that velocity fluctuations at scales larger than the
forcing are in statistical equilibrium [7] when Re is large
(equivalently Pm is small). A second crucial assumption
is that the velocity field at scales smaller than the one of
the forcing does not contribute to the generation of the
large-scale magnetic field and thus can be discarded in
the flow model. This relies on an observation provided by
the Karlsruhe experiment [8] for which it has been shown
that the correct value of the dynamo threshold is pre-
dicted when the small-scale turbulent fluctuations are not
taken into account. Note that with our procedure only
small-scale fluctuations are discarded, whereas large-scale
fluctuations are taken into account.

This paper is organized as follows: in the next section,
we recall the governing equations and the numerical
method. We consider the dynamo generated by an ABC
forcing at two different wave numbers in the third section.
We show that the velocity field displays a large-scale spec-
trum roughly similar to the one of absolute equilibrium
(AE). Despite these large-scale fluctuations, the dynamo
threshold remains low, Rc

m ∼ 10. After recalling the con-
cept of AE in the fourth section, we show that these flows
display dynamo action at low threshold provided they are
helical enough and we compare their dynamo efficiency to
that of the single-mode ABC dynamo at large Pm (fifth
section). These results are analyzed using simple argu-
ments in the sixth section. The Lorentz force back reac-
tion effect on the flow is discussed in the seventh section.
Finally, we conclude by proposing a new configuration of
a dynamo experiment in which we can take advantage of
helical forcing and scale separation in order to reach the
dynamo threshold at reasonable values of Rm despite the
presence of AE large-scale turbulent fluctuations.

Governing equations. – The equations of magneto-
hydrodynamics (MHD) governing an incompressible ve-
locity field u of a fluid with unit density and magnetic
induction b (in units of Alfvèn velocity) read

∂tu + (u · ∇)u = −∇p + j × b + νΔu + f , (1)
∂tb = ∇ × (u × b) + ηΔb, (2)

where j is the current density, j = ∇×b, and ∇·u = 0 =
∇·b. p is the pressure, f is the mechanical forcing, ν is the
kinematic viscosity and η = 1/μ0σ is the magnetic diffu-
sivity. They are solved numerically in a periodic domain of
length 2π using the pseudo-spectral code GHOST [9]. This
parallel solver uses a Runge-Kutta time-stepping method
and FFTW. Dealiasing is done by the 2/3 rule [10], so
that runs at resolution N3 have maximum wave number
kmax = N/3.

The so-called ABC velocity field

u(k0)
ABC(x, y, z) = [B cos(k0y) + C sin(k0z)]x̂

+[C cos(k0z) + A sin(k0x)]ŷ
+[A cos(k0x) + B sin(k0y)]ẑ (3)
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Fig. 1: (Colour on-line) (a) Kinetic energy Eu(k) and (b) rel-
ative kinetic helicity H(k)/Eu(k) spectra for ABC flow forced
at k0 = 20 and 21 with finite viscosity (Re = 200) and resolu-
tion 1283. The dashed line represents k2 indicating an AE-like
behavior at large scales.

is a stationary solution to the Euler equation (1), with
vanishing viscosity, forcing term and magnetic field. This
field will be used below to build both initial conditions and
the forcing term f = −νk2

0u
(k0)
ABC needed to maintain the

velocity field (for the ABC runs). Dynamo action is stud-
ied by using a small amplitude random magnetic initial
data (that involves the smallest available wave numbers
k = kbox = 1) and monitoring the magnetic growth rates.

The standard ABC with A = B = C = 1 will be
utilized in all simulations and its total kinetic energy is
given by Eu = 〈u2〉

2 =
∑kmax

k=0 Eu(k) = 3/2. Eu(k) denotes
the kinetic energy spectrum. Similarly Eb(k) denotes the
magnetic energy spectrum and H(k) the kinetic helicity
spectrum. The large-scale kinetic and magnetic Reynolds
numbers are defined, respectively, as Re =

√
2Eu/kboxν

and Rm =
√

2Eu/kboxη.

ABC forcing at 2 different wave numbers. –
When Pm is large enough, the laminar flow u

(k0)
ABC driven

by an ABC forcing remains stable up to the dynamo
threshold. In order to get a first hint about the effect of
velocity fluctuations on the dynamo threshold in a config-
uration that involves both an ABC-type forcing and scale
separation at moderate Prandtl number, we consider a
forcing term that is the sum of 2 ABC flows at k0 = 20
and k0 = 21. The viscosity in this special case is ad-
justed to produce the desired Re, and not a kinetic energy
Eu = 3/2. Figure 1(a) demonstrates that this forcing
generates velocity fluctuations. In addition, despite the
moderate value of Re (Re = 200) their spectrum shows
statistical equilibration at large scales. Indeed, at small
wave numbers k < 20 the kinetic spectrum displays a
range which roughly approximates energy equipartition
E(k) ∼ k2. Although the data are rather scattered at
low k, the behavior of the relative kinetic helicity shown
in fig. 1(b) confirms that the large scales are in absolute
equilibrium (see below eq. (4)). This type of equilibrium
range is well known, in the non-helical case, to be fed by
beating-type interactions between eddies in the energy-
containing range, this being balanced by an eddy viscosity
also coming mostly from the energy containing range [7].
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Table 1: Critical Rm corresponding to ABC forcing at two wave
numbers (both at Re = 200), AE velocity field and single-mode
ABC velocity field.

Type Resolution ζ Critical Rm

Forced: k0 = 20, 21 128 – 10.16
Forced: k0 = 10, 11 64 – 7.908
AE 64 1 10.35
AE 32 1 8.36
ABC 64 0.35 6.93
ABC 64 0.50 7.69
ABC 64 0.75 8.75
ABC 64 1 9.51
ABC 128 0.24 7.82
ABC 128 0.47 10.04
ABC 128 0.71 11.92
ABC 128 0.86 12.71

The critical Rm for dynamo dynamo action in this
forced flow at two different resolutions is shown in table 1
(Rc

m ∼ 10). These results were obtained at a moderate
kinetic Reynolds number (Re = 200 and thus Pm ∼ .05).
First, they show that it can be realistic to model the scales
of the flow larger than the forcing scale as if they were in
absolute equilibrium. Indeed, compare the critical Rm

of forced and AE computations with k0 = kmax = N/3.
Second, velocity fluctuations do not increase much the
dynamo threshold provided that the forcing is helical and
that a wide scale separation is allowed. Indeed, compare
the critical Rm of the two forced runs with the single-mode
ABC runs (described below) with k0 = ζkmax = ζN/3.

Absolute equilibrium. – In the experimental context
of liquid metals, a more “realistic” computation would re-
quire to further decrease the magnetic Prandtl number.
However, a huge resolution would then be needed to per-
form a DNS. Indeed, when Re is increased, modes with
wave numbers beyond the scale separation range (kbox–k0)
become populated by the turbulent cascade that takes
place from forcing wave number k0 down to dissipative
wave number kd ∼ k0Re3/4.

Note that the turbulent dynamo problem is already a
very difficult one, even without a scale separation range.
It was proposed to circumvent the difficulty of resolving
the large range of scales by combining direct numerical
simulations with Lagrangian-averaged model and large-
eddy simulations [2].

In the present work we propose to focus instead on the
problem with a large scale separation and to make use of
the special structure of the energy spectrum in the scale
separation range, that can be represented as a so-called
absolute equilibrium. Indeed, as noted above when dis-
cussing fig. 1(b), H(k)/E(k) vs. k2 is almost linear up to
k = 20 which is expected for AE (see eqs. (4) below).

Since the pioneering study of Lee (1952) [11] on the
behavior of conservative systems with Fourier truncation
at k = kmax, the dynamics of the unforced spectrally

Fig. 2: (Colour on-line) Absolute equilibrium kinetic-energy
spectrum and magnetic energy spectrum during the linear
regime of dynamo growth (obtained with a small random initial
magnetic seed) with k0 = 40 and Rm = 20 and resolution 1283

(corresponding to ζ = 0.86 in fig. 3(a)). Eu(k) still remains
in absolute equilibrium as in the initial state, while Eb(k) has
developed a tail and a dominant large-scale mode at k = 1.
The dashed line in (a) represents the fit using eqs. (4) with
α = 1.75 × 106 and β = 4.15 × 104.

truncated Euler equation is known to reach at large times
an absolute equilibrium that is a statistically station-
ary Gaussian exact solution of the associated Liouville
equation [12]. When the flow has a non-vanishing helicity,
the absolute equilibria of the kinetic energy and helicity
were obtained by Kraichnan [13] and explicitly read

Eu(k) =
k2

α

4π

1 − β2k2/α2 , H(k) =
k4β

α2

8π

1 − β2k2/α2

(4)
with α and β determined by the initial kinetic energy and
helicity.

Note that if one intends to directly study the dynamo
problem in the Pm → 0 limit, it amounts to setting ν = 0
and f = 0 in eq. (1). In this limit, the velocity initial data
alone controls the flow on which the dynamo stability is
investigated.

AE dynamo with scale separation at Pm = 0 vs.
single-mode ABC dynamos at large Pm. – We now
turn to the study of the ABC kinematic dynamo problem
with zero forcing and zero viscosity. The initial ABC flow
is at k = k0 with small magnetic seed at k = kbox. As the
ABC flow is an exact but unstable solution of the Euler
equation, the roundoff error grows rapidly and the flow set-
tles into an absolute equilibrium as displayed in fig. 2(a).
The steep rise of Eu(k) at high k is related to the denom-
inator of eqs. (4). Dynamos are clearly present in helical
absolute equilibria with growing large-scale magnetic field
as shown in fig. 2(b).

Figure 3(a) shows the computed growth rate of Eb for
various Rm at resolution of 323, 643 and 1283 with various
values of ζ = k0/kmax, where k0 is the wave number of the
ABC initial data used to generate the absolute equilibrium
of the Euler equation. (Beside scale separation, ζ also
controls the helicity H = 〈u · ∇ × u〉 = 2k0Eu.)

Figure 3(b) shows the critical Rm at which the inception
of dynamo action takes place. The increase in ζ is seen
to result in a decrease in critical Rm. By inspection of
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Fig. 3: (Colour on-line) Comparison of growth rates of mag-
netic energy Eb: (a) absolute equilibrium velocity field at res-
olution 1283. (b) Critical Rm (determined by interpolation)
together with theoretical scaling analysis at resolutions 323,
643 and 1283. (c) Same as (a) but for single-mode ABC flow.
(d) Same as (b) but for single-mode ABC flow and resolutions
643 and 1283.

the magnetic energy spectrum, the wave number kB of
the growing dominant mode is found to be kbox = 1 (see
fig. 2(b)).

Note that maximal-helicity (ζ = 1) absolute equilibrium
has critical Rm that is comparable with that of the forced
ABC case (see table 1). Furthermore, 3D visualizations
of the growing magnetic mode and the kinetic energy ob-
tained for absolute equilibrium (fig. 4(a)) are very similar
to those corresponding to the forced case (fig. 4(b)).

It is apparent in fig. 2(a) that some of the AE kinetic-
energy spectra are rather well peaked at maximum wave
number (as can be expected from eqs. (4)). This natu-
rally leads us to study the problem of a single-mode ABC
dynamo with scale separation. Note that the forcing will
generate a single ABC mode at k = k0 in the limit Re → 0
or large Pm: the opposite limit to that studied with AE
flows.

The scale separation dependence of the single-mode
large Pm number ABC kinematic dynamo is presented in
fig. 3. Figure 3(c) shows the computed growth rate of Eb

for various Rm at resolution of 1283 and at various val-
ues of ζ = k0/kmax. Contrary to the case of the AE flow,
the single-mode ABC initial condition displays an oppo-
site bifurcation trend. An increase in ζ corresponds to an
increase in critical Rm.

Dependence of critical Rm on scale separation. –

Scaling of single-mode ABC dynamo. The scaling of
the critical Rm with scale separation k0/kB can be under-
stood by the following argument. The growth of a large-
scale magnetic field is governed by the electromotive force
(emf) term u × b in the induction equation (2). With a

Fig. 4: (Colour on-line) Visualization of the growing magnetic
field represented by arrows at a resolution of 1283. (a) AE
velocity, (b) forced ABC velocity. The 3D volume rendering
corresponds to the kinetic energy of absolute equilibrium at
maximum intensity.

small scale u = u(k0)
ABC, the magnetic field can be written

as b = B0 + b ′, where B0 is a large scale and b ′ a small
scale. At first order in the small-scale magnetic Reynolds
number b ′ = −(ηΔ)−1∇ × (u × B0) and one finds that
the average emf can be written as

αB0 = 〈u × b ′〉 = − u2

ηk0
B0. (5)

The resulting so-called α-effect evolution equation for B0
is

∂tB0 = α∇ × B0 + ηΔB0 (6)

and implies criticality for ηc = |α|/kB, where kB is the
wave number corresponding to B0. Thus, the critical Rm

is given by

Rc
m =

√
2Eu

kBηc
=

√
k0

kB
. (7)

Note that this theoretical result is valid at first order in
the small-scale Reynolds number in the limit of large scale
separation k0/kB. With the moderate scale separation
values used in the present work the scaling exponent of
Rc

m becomes apparent but the prefactor needs a correc-
tion. The large-scale computations, with resolution larger
than 10243, that are needed to check the convergence of
the prefactor to 1 are left for a future study. Figure 3(d)
shows the comparison of this scaling with the calculated
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critical Rm from numerical computations (at three differ-
ent resolutions of 323, 643, 1283) with an additional factor
of 2.25. The square-root behavior is clearly visible and
is due to the α-effect where the scale separation is more
discernible in the case of large k0.

Scaling of the AE dynamo. Using first-order smooth-
ing approximation, it has been shown [14] that

α = −η

3

∫
k2H(k , ω)
ω2 + η2k4 dkdω, (8)

where H(k , ω) denotes the Fourier transform of the spa-
tiotemporal helicity fluctuations.

On dimensional grounds, the effective viscosity related
to AE is given by

√
Eu/kmax and the velocity correlation

time is given by kmax/
√

Euk2. Thus, the effective inte-
gration range for ω in eq. (8) is limited to values smaller
than

√
Euk2/kmax. As ω/ηk2 ∼ √

Eu/ηkmax � 1 at the
dynamo threshold (in the limit of large scale separation)
the integral over ω yields

α ∼ 1
η

∫
H(k)
k2 dk. (9)

Equations (4) show that, for moderate values of β2k2/α2,
the absolute equilibrium helicity spectrum roughly scales
as H(k) ∼ γk4 and moreover the total helicity H =∫ kmax

0 H(k)dk has a value H ≈ k0Eu. This results in an
approximate expression for γ given by γ ∼ 5k0Eu/k5

max.
Thus, the magnitude of α for absolute equilibrium veloc-
ity field is approximately given by αAE ∼ 5k0Eu/3ηk2

max.
Similar to the case of ABC dynamo, the expression
for the most unstable mode can be written as, kB =
5k0Eu/3k2

maxη
2 which results in the expression for criti-

cal magnetic Rm given by

Rc
m =

√
2Eu

kBηc
≈

√
6k2

max

5kBk0
. (10)

Figure 3(b) shows the comparison of this scaling (with
an additional prefactor of 2.25) with our AE numerical
computations. It is visible that the trend persists up to a
1283 resolution.

The beating mechanism explained above for ABC flow
with a single mode acts on a wider scale for the AE spec-
trum since it possesses energy at varying length of the
eddies. Thus, the interaction of high-energy small eddies
in velocity results in the formation of tail-like feature in
Eb(k) as seen in fig. 2(b). It is also the interaction of these
small scales that results in the growth of a large-scale mag-
netic field.

Now, in order to bring out the similarity between single-
mode ABC and AE flow, we consider specific scenarios in
both cases. From eqs. (4) it is visible that the spectrum be-
comes more pointed towards kmax for high initial helicity.
This spectrum is in some sense similar to the single-mode
ABC flow with k0 close to kmax. To wit, we compare the
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Fig. 5: (Colour on-line) (a) Evolution of kinetic and magnetic
energy with time indicating saturation when k0 = 20 at resolu-
tion 643. (b) Ratio of helicity to kinetic energy vs. time during
the saturation and the decay of the magnetic field.

behavior of the dynamo generation due to both ABC flow
and AE initial condition with maximum possible helicity
at a given resolution. Figures 3(b) and (d) show that the
critical Rm for both the scenarios are close to each other
at high k0 where ABC flow and AE behave equivalently in
generating a dynamo. Strikingly, in eqs. (7) and (10), the
corresponding analytical expressions for critical Rm, have
similar proportional behavior only when kmax = k0 with
equivalent α-effect as well.

Nonlinear saturation of the magnetic field for the
AE dynamo. – The exponential growth of a magnetic
field above the dynamo threshold first saturates because
of the Lorentz-force back reaction on the flow. In a sec-
ond stage, the magnetic field is observed to decay to zero
exponentially in time (fig. 5(a)). This results from the
absence of flow forcing (only a given initial amount of ki-
netic energy is present in the initial data). Although there
is no viscous dissipation, the magnetic diffusivity alone is
able to significantly dissipate the total energy (when the
magnetic field has grown enough). Non-trivial effects are
however found to take place in this framework.

Both H and Eu decrease in time and saturate to con-
stant values in the long time limit. Figure 5(b) shows
that the long-time saturation value of H/Eu strongly de-
pends on Rm. For small supercriticality (Rm ≤ 30)
H/Eu is almost unchanged, whereas its saturation value
decreases monotonously towards zero at larger Rm. The
large Rm decrease of the saturation value is readily ex-
plained as follows. In the limit Rm → ∞ there is no
dissipation and magnetic absolute equilibrium can take
place. There are 3 invariants: total energy, magnetic helic-
ity and cross-helicity, that completely define the magnetic
equilibrium [15]. As the initial values of magnetic helic-
ity and cross-helicity are very small, it is easy to show
(see eq. (25) in reference [15]) that such equilibration will
destroy the kinetic helicity. It is remarkable that the satu-
ration value of the relative kinetic helicity H/Eu behaves
monotonously with respect to the distance to the dynamo
threshold Rm − Rc

m (see fig. 5(b)).

Conclusion. – Using the results of our study we can
conclude by proposing a new configuration for a future
dynamo experiment. The idea is to drive a sodium flow
in a cubic meter of liquid sodium using a Roberts flow
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forcing as in the Karlsruhe experiment but without con-
straining the flow in a periodic array of pipes. A Roberts
flow forcing can be achieved using a square array of coun-
terrotating vertical spindles, each of them fitted with sev-
eral propellers. Both vertical and azimuthal flows are
driven around each spindle, in a manner similar to a screw
spindle pump. Both the vertical and azimuthal velocities
change sign from one spindle to its neighbours. In con-
trast to the Karlsruhe experiment, a large-scale flow up
to the size of the container, involving turbulent fluctua-
tions, can develop in this device. From the hydrodynamic
viewpoint, it will be of fundamental interest to charac-
terize these hydrodynamic fluctuations and to check that
their spectrum at wave numbers below the forcing scale
do correspond to statistical equilibrium. To the best of
our knowledge, the experimental study of turbulent spec-
tra in this range has never been performed. The present
study has shown that this type of flow involving both he-
lical forcing and scale separation can provide an efficient
way to reach a dynamo regime generated by a turbu-
lent flow without geometrical constraints. This configu-
ration can be an alternative to dynamo experiments us-
ing turbulent flows without scale separation [16–18] that
have not displayed the dynamo effect so far, except when
ferromagnetic impellers are used [19].
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