Non-intersecting directed polymers

Guillaume Barraquand

December 8, 2022
Coulomb gases and universality, Jussieu

Non-intersecting paths and random surfaces

The configurations in various statistical mechanics models can be encoded by non-intersecting paths.

- Height function

$$
h(x, y)=\text { number of paths below the point }(x, y)
$$

Non-intersecting paths and the GFF

One of the most well-known models of non-intersecting paths is Dyson's Brownian motion [Dyson 1962]: eigenvalues $\lambda_{1}(t)<\cdots<\lambda_{n}(t)$ of a Hermitian random matrix with Brownian entries

$$
d \lambda_{i}(t)=d B_{i}(t)+\sum_{j \neq i} \frac{d t}{\lambda_{i}(t)-\lambda_{j}(t)}
$$

The $\lambda_{i}(t)$ can be seen as Brownian motions conditioned never to intersect.

- The height function of Dyson Brownian motion on the circle converges to the Gaussian free field [Spohn 1998]. Many extensions and variants exist (cf Gaultier Lambert's talk!);
- Non-intersecting paths from GUE corners process converge to the GFF [Borodin 2010], as well as discrete analogues related to Schur measures [Borodin-Ferrari 2008] and anisotropic KPZ models;
- Height function of lozenge tilings, dimer models [Kenyon 2001], universality for lozenge tilings conjectured in [Kenyon-Okounkov 2003]; more general discrete non-intersecting walks [Gorin-Petrov 2016];
- In Physics, this universality class has been studied in many papers starting with [de Gennes, 1968].

Log-correlated models

At a fixed time, the distribution of Dyson's Brownian motion is the GUE density, that is a $1 d \log$-gas

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{2} \prod_{i} e^{\frac{-\lambda_{i}^{2}}{2 t}}
$$

- This is a determinantal point process. In the bulk, the microscopic behaviour is described by the determinantal point process with sine kernel

$$
K(x, y)=\frac{\sin (\pi(x-y))}{\pi(x-y)} .
$$

- This defines log-correlated fields with universal properties. In particular, the variance of the height (counting) function in the bulk is of order $\log (n)$.

Non-intersecting paths with disorder

Consider non-intersecting paths in a disordered environment (random walks or diffusions in random environment, directed polymer models) [Kardar 1987, Emig-Kardar 2000, ...].
What are the analogues of

- The Gaussian free field ?
- The Sine process?
- log correlations ?
\rightsquigarrow Open problem. Some related models exhibit log squared correlations at small enough temperature [Toner-DiVicenzo 1990].
- The 1d log-gas ?
\rightsquigarrow The partition function

$$
Z\left(x_{1}, \ldots, x_{n} ; t\right)
$$

of n non-intersecting Brownian directed
 polymers in a white noise environment.

Outline

1 Continuous directed polymers
2 Stationary measures of non-intersecting directed polymers
3 Ideas of proofs through an integrable discrete model, the log-gamma polymer

Continuous directed polymers

- The continuous directed polymer model is a probability measure on continuous paths $t \mapsto W_{t}$ proportional to

$$
\exp \left(\int_{0}^{t} d s \xi\left(W_{s}, s\right)\right) \mathcal{W}(W)
$$

where \mathcal{W} is the Brownian measure, and $\xi(x, t)$ is a space-time white noise.

- Define the partition function of a single polymer paths as

$$
Z(x, s \mid y, t)=p_{t-s}(x, y) \mathbf{E}_{\mathcal{W}}\left[e^{\int_{s}^{t} d u \xi\left(W_{u}, u\right)}\right]
$$

where W is a Brownian bridge from x to y, p_{t} is the heat kernel, and $\mathbf{E}_{\mathcal{W}}$ is the expectation w.r.t. to the Brownian bridge measure.

- We define the (quenched) endpoint measure

$$
\mathcal{P}(x)=\frac{Z(0,0 \mid x, t)}{\int_{\mathbb{R}} d y Z(0,0 \mid y, t)}
$$

KPZ equation and universality class

The partition function $Z(0,0 \mid x, t)$ satisfies the multiplicative noise stochastic heat equation

$$
\partial_{t} Z(x, t)=\frac{1}{2} \partial_{x x} Z(x, t)+\xi Z(x, t)
$$

with delta function initial condition.
The function $h(x, t)=\log Z(x, t)$ solves the Kardar-Parisi-Zhang equation

$$
\partial_{t} h=\frac{1}{2} \partial_{x x} h+\frac{1}{2}\left(\partial_{x} h\right)^{2}+\xi,
$$

This is one representative of a large universality class of models of interface growth described by a height function so that

- $\operatorname{Var}[h(x, t)]$ grows as $t^{2 / 3}$ as $t \rightarrow \infty$;
- The limiting distribution of $\frac{h(x, t)-c t}{t^{1 / 3}}$ depends on the initial condition, and is often related to random matrix eigenvalue statistics;
- $\operatorname{Cov}(h(x, t), h(y, t))$ is non trivial for $|x-y| \propto t^{2 / 3}$.
- The large scale space-time fluctuations are described by a (conjecturally) universal process called the KPZ fixed point [Matetski-Quastel-Remenik 2017] [Dauvergne-Ortmann-Virag 2018].

Non-intersecting polymers

Now we define the partition function of n non-intersecting polymers from points

$$
x_{1}<x_{2}<\cdots<x_{n}
$$

at time 0 to points

$$
y_{1}<y_{2}<\cdots<y_{n}
$$

at time t, by the [Karlin-McGregor 1959] determinant

$$
Z_{n}(\vec{x}, 0 \mid \vec{y}, t)=\operatorname{det}\left(Z\left(x_{i}, 0 \mid y_{j}, t\right)\right)_{i, j=1}^{n}
$$

For smooth noise ξ, it satisfies the Feynman Kac representation

$$
Z_{n}(\vec{x}, 0 \mid \vec{y}, t)=\operatorname{det}\left(p_{t}\left(x_{i}, y_{j}\right)\right)_{i, j=1}^{\ell} \mathbf{E}\left[e^{-\int_{0}^{t} d \tau \sum_{j} \xi\left(W_{j}(\tau), \tau\right)}\right]
$$

where the W_{j} are non intersecting Brownian bridges.

O'Connell-Warren multilayer SHE

The partition function $Z_{n}(\vec{x}, 0 \mid \vec{y}, t)$ satisfies (formally) the stochastic PDE

$$
\partial_{t} Z_{n}=\sum_{i=1}^{n} \frac{1}{2} \partial_{y_{i} y_{i}} Z_{n}+Z_{n} \sum_{i=1}^{n} \xi\left(y_{i}, t\right)
$$

on the Weyl chamber

$$
\mathbb{W}_{n}=\left\{\vec{y} \in \mathbb{R}^{n} ; y_{1}<y_{2}<\cdots<y_{n}\right\},
$$

with the boundary condition that $Z_{n}=0$ whenever any $y_{j}=y_{j+1}$. For each n, this is a Markov process on $C\left(\mathbb{W}_{n}, \mathbb{R}\right)$.
[O'Connell-Warren 2011] noticed that defining,

$$
\begin{aligned}
M_{n}(x, 0 \mid y, t): & =\lim _{\vec{x} \rightarrow x} \frac{Z_{n}(\vec{x}, 0 \mid \vec{y}, t)}{\prod_{i<j}\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)} \\
= & c_{n, t} \operatorname{det}\left(\partial_{x}^{i} \partial_{y}^{j} Z(x, 0 \mid y, t)\right)_{i, j=1}^{n},
\end{aligned}
$$

the family of processes $(M(x, 0 \mid y, t))_{1 \leqslant i \leqslant n, y \in \mathbb{R}}$ is also a Markov process on $C\left(\mathbb{R}, \mathbb{R}^{n}\right)$, that satisfies a hierarchy of stochastic PDEs, now called the O'Connell-Warren multilayer stochastic heat equation.

Asymptotics

It is known that

$$
\frac{\log Z_{1}(0,0 \mid 0,2 t)+t / 12}{t^{1 / 3}} \underset{t \rightarrow \infty}{ } \lambda_{1}
$$

where the random variable λ_{1} follows the Tracy-Widom GUE distribution function [Amir-Corwin-Quastel, Calabrese-Le Doussal-Rosso, Sasamoto-Spohn, Dotsenko, $\approx 2011]$.

Conjecture

For each $n \geqslant 1$,

$$
\frac{\log M_{n}(0,0 \mid 0,2 t)+n t / 12}{t^{1 / 3}} \xlongequal[t \rightarrow \infty]{\Longrightarrow} \lambda_{1}+\cdots+\lambda_{n}
$$

where the λ_{i} have the distribution of the n first eigenvalues of the GUE in the large scale limit at the edge of the spectrum.

Tail bounds are derived in [De Luca-Le Doussal 2017]. The conjecture is expected to hold universally for any $(1+1)$-dim polymer model under some moments assumptions on the noise (proved for some zero temperature models [Borodin-Okounkov-Olshanski 1999]).

Stationary measure and long polymers

Let us go back to a single polymer model. To understand the behaviour of the endpoint measure

$$
\mathcal{P}(x)=\frac{Z_{1}(0,0 \mid x, t)}{\int_{\mathbb{R}} d y Z_{1}(0,0 \mid y, t)}
$$

for large t, it is enough to know that

$$
\lim _{t \rightarrow \infty} \frac{Z_{1}(0,0 \mid y, t)}{Z_{1}(0,0 \mid z, t)} \stackrel{(d)}{=} \frac{e^{B_{1}(y)}}{e^{B_{1}(z)}},
$$

where B_{1} is a standard Brownian motion [Das-Zhu 2022].
This comes from the non-trivial fact that the Brownian motion is a stationary measure for the KPZ equation [Bertini-Giacomin 1997]: if a solution of

$$
\partial_{t} Z(x, t)=\frac{1}{2} \partial_{x x} Z(x, t)+\xi Z(x, t)
$$

is such that $Z(x, t=0)=e^{B_{1}(x)}$, then for all $t>0$,

$$
\frac{Z(x, t)}{Z(z, t)} \stackrel{(d)}{=} \frac{e^{B_{1}(x)}}{e^{B_{1}(z)}} .
$$

Question: What is the analogue for n non-intersecting polymers ?

Stationary measure for non-intersecting polymers

[B.-Le Doussal 2022] For any fixed \vec{x},

$$
\frac{Z_{n}(\vec{x}, 0 \mid \vec{y}, t)}{Z_{n}(\vec{x}, 0 \mid \vec{z}, t)} \Longrightarrow \frac{Z_{n}^{\text {stat }}(\vec{y})}{Z_{n}^{\text {stat }}(\vec{z})}
$$

where $Z_{1}^{\text {stat }}(y)=e^{B_{1}(y)}$, and more generally, $Z_{n}^{\text {stat }}(\vec{y})$ is defined as a partition function
$Z_{3}^{\text {stat }}(\vec{y})=\int \prod_{i, j} d z_{i}^{j} \exp$

where the z_{i}^{j} interlace, i.e. $z_{i}^{k+1} \leq z_{i}^{k} \leq z_{i+1}^{k+1}$, and the weight is the sum over all thick segments of a Brownian increment, i.e.

$$
\sum_{i, j} B_{j}\left(z_{i}^{j}\right)-B_{j}\left(z_{i-1}^{j-1}\right) .
$$

- If we average over the noise,

$$
\mathbb{E}\left[Z_{n}^{\text {stat }}(\vec{y})\right]=\prod_{i<j}\left|y_{i}-y_{j}\right| \prod_{i=1}^{n} e^{y_{i} / 2}
$$

We recover the 1d log gas.

- In the small-scale limit, $y_{i}=\epsilon \tilde{y}_{i}$,

$$
Z_{n}^{\text {stat }}(\vec{y}) \propto \prod_{i<j}\left|\tilde{y}_{i}-\tilde{y}_{j}\right| .
$$

- In the large-scale or zero temperature limit, i.e. $\xi \rightarrow \beta \xi$, we obtain a similar result with

$$
\log \int \prod_{i, j} d z_{i}^{j} \exp (\ldots) \rightarrow \sup _{z_{i}^{j}}(\ldots) .
$$

Generalization

If $x_{i}=-a_{i} t$ for all $1 \leqslant i \leqslant n$,

$$
\frac{Z_{n}(\vec{x}, 0 \mid \vec{y}, t)}{Z_{n}(\vec{x}, 0 \mid \vec{z}, t)} \Longrightarrow \frac{Z_{n}^{\text {stat }}(\vec{y} ; \vec{a})}{Z_{n}^{\text {stat }}(\vec{z} ; \vec{a})}
$$

where now, the Brownian motions $B_{i}(t)$ are replaced by $B_{i}(t)-a_{i} t$.

Case $n=2$, explicit computations

If we condition over the value of the first polymer endpoint y_{1}, and assume that the drifts $a_{1}=a_{2}=-a<-1 / 2$, the endpoint measure becomes normalizable

$$
\mathcal{P}\left(y_{1}, y_{2}\right)=\frac{Z_{2}^{\text {stat }}\left(y_{1}, y_{2}\right)}{\int_{y_{1}}^{+\infty} Z^{\text {stat }}\left(y_{1}, y_{2}\right) d y_{2}}
$$

We can compute the cumulants of the difference between the two endpoints [B.-Le Doussal 2022]

$$
\mathbb{E}\left[\kappa_{k}\left(y_{2}-y_{1}\right)\right]=(-2)^{k}\left(2^{k} \psi_{k}(4 a)-3 \psi_{k}(2 a)\right),
$$

where κ_{k} denotes the k th cumulant of the measure \mathcal{P} and the function $\psi_{k}(z)=\partial_{z}^{k} \log \Gamma(z)$ is the polygamma function (it uses results of [Fitzgerald-Warren 2020]).
Open problem Analyze the endpoint measure $\mathcal{P}\left(y_{1}, \ldots, y_{n}\right)$, and the associated height function as n goes to infinity.

Proof ideas

$1 Z_{n}^{\text {stat }}(\vec{y})$ is the stationary measure of the stochastic PDE

$$
\partial_{t} Z_{n}(\vec{y}, t)=\frac{1}{2} \Delta Z_{n}(\vec{y}, t)+Z_{n}(\vec{y}, t) \sum_{i=1}^{n} \xi\left(y_{i}, t\right),
$$

with Dirichlet boundary condition on $\partial \mathbb{W}_{n}$, in the sense that if $Z_{n}(\vec{y}, t=0)=Z^{\text {stat }}(\vec{y})$, for all t,

$$
\frac{Z_{n}(\vec{y}, t)}{Z_{n}(\vec{z}, t)} \stackrel{(d)}{=} \frac{Z_{n}^{\text {stat }}(\vec{y})}{Z_{n}^{\text {stat }}(\vec{z})}
$$

For $n=1$ this is not obvious, though well-known [Bertini-Giacomin 1997]
2 We show that a discrete analogue of $Z^{\text {stat }}(\vec{y})$ is a stationary measure for a discrete variant model that is integrable, the log-gamma polymer.
3 The stationary process can be determined either using results on the geometric RSK correspondance [Corwin-O'Connell-Seppäläinen,
O'Connell-Warren 2011] or using a general argument based on the symmetries of the model [B.-Corwin 2022].

Log-gamma directed polymer

The model was introduced by [Seppäläinen (2012)]. Let weights $w_{i, j}$ be i.i.d. inverse Gamma random variables with parameter θ, i.e. with density

$$
\frac{\mathbb{1}_{w} \geqslant 0}{\Gamma(\theta)} w^{-\theta-1} e^{-1 / w}
$$

For $\mathbf{s}, \mathbf{t} \in \mathbb{Z}^{2}$, define the partition function

$$
\mathcal{Z}(\mathbf{s} \mid \mathbf{t})=\sum_{\pi: \mathbf{s} \rightarrow \mathbf{t}} \prod_{(i, j) \in \pi} w_{i, j}
$$

where the sum is over upright paths from \mathbf{s} to \mathbf{t}. Similarly, for n-tuples of points $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}$ and $\mathbf{t}_{1}, \ldots, \mathbf{t}_{n}$, we define

$$
\mathcal{Z}_{n}\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n} \mid \mathbf{t}_{1}, \ldots, \mathbf{t}_{n}\right)=\sum_{\text {non-intersecting paths }} \prod w_{i j}=\operatorname{det}\left(\mathcal{Z}\left(\mathbf{s}_{i} \mid \mathbf{t}_{j}\right)\right)_{i, j=1}^{n}
$$

the partition function for n non intersecting paths.

As the polymer length $L=\|\mathbf{t}-\mathbf{s}\|_{1} \rightarrow \infty$,

$$
\frac{\log \mathcal{Z}(\mathbf{s} \mid \mathbf{t})-c_{1} L}{c_{2} L^{1 / 3}} \underset{L \rightarrow \infty}{\Longrightarrow} \lambda_{1}
$$

where λ_{1} has the Tracy-Widom dist. [Borodin-Corwin-Remenik 2012, Krishnan-Quastel 2016, B.-Corwin-Dimitrov 2020]. Many other results exist about spatial correlations, properties of geodesics, etc.

For $\mathbf{s}_{i}=(1, i)$ and $\mathbf{t}_{i}=(c L, L-n+i)$, it is conjectured that

$$
\frac{\log \mathcal{Z}_{n}\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n} \mid \mathbf{t}_{1}, \ldots, \mathbf{t}_{n}\right)-n c_{1} L}{c_{2} L^{1 / 3}} \underset{L \rightarrow \infty}{\Longrightarrow} \lambda_{1}+\cdots+\lambda_{n}
$$

[Johnston-O'Connell 2019] conjectured a law of large numbers as the number of non-intersecting polymers grow, i.e. for $n=\alpha L$,

$$
\lim _{L \rightarrow \infty} \frac{1}{L^{2}} \log \mathcal{Z}_{n}\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n} \mid \mathbf{t}_{1}, \ldots, \mathbf{t}_{n}\right)=F(c, \alpha)
$$

discrete polymers \rightarrow continuous polymers

The partition function satisfies the recurrence,

$$
\mathcal{Z}(\mathbf{0} \mid n, m)=w_{n, m}(\mathcal{Z}(\mathbf{0} \mid n-1, m)+\mathcal{Z}(\mathbf{0} \mid n, m-1)) .
$$

This is a discrete analogue of the stochastic PDE

$$
\partial_{t} Z=\frac{1}{2} \partial_{x x} Z+\xi Z
$$

and scaling $\theta, n, m \rightarrow \infty$ appropriately,

$$
\mathcal{Z}(\mathbf{0} \mid n, m) \underset{n, m, \theta \rightarrow \infty}{ } Z(x, t)
$$

(this is a general result of convergence of discrete polymers at high temperature [Alberts-Khanin-Quastel 2010]).

Partition functions for non-intersecting polymers converge as well thanks to the Karlin-McGregor theorem.

Log-gamma polymer with inhomogeneities

Let $\alpha_{1}, \alpha_{2}, \ldots$, and $\beta_{1}, \beta_{2}, \ldots$ be positive real numbers and take
$w_{i, j} \sim \operatorname{Gamma}^{-1}\left(\alpha_{i}+\beta_{j}\right)$.

[Corwin-O'Connell-Seppaläinen-Zygouras 2011] proved that

$$
\left(\mathcal{Z}_{i}((1,1) \ldots(1, i) \mid(n, m-i+1), \ldots,(n, m))\right)_{1 \leqslant i \leqslant n}
$$

has the same distribution as the random vector $\left(x_{1}, \ldots, x_{n}\right)$ with density

$$
\frac{1}{C(\alpha, \beta)} \psi_{\alpha_{1}, \ldots, \alpha_{n}}(\mathbf{x}) \tilde{\psi}_{\beta_{1}, \ldots, \beta_{m}}(\mathbf{x}) d \mathbf{x}
$$

where $\psi_{\alpha_{1}, \ldots, \alpha_{n}}(\mathbf{x})$ and $\tilde{\psi}_{\beta_{1}, \ldots, \beta_{m}}(\mathbf{x})$ are Whittaker functions. They are invariant under permutations of the α_{i} or the β_{i}.

Symmetry argument

A stationary model is obtained by letting

$$
\begin{cases}\alpha_{i}=\beta_{i}=0 & \text { for } 1 \leqslant i \leqslant n \\ \alpha_{i}=\alpha & \text { for } i>n \\ \beta_{i}=\beta & \text { for } i>n\end{cases}
$$

weight $(\bullet) \sim \operatorname{Gamma}^{-1}(\alpha+\beta), \quad$ weight $(\square) \sim \operatorname{Gamma}^{-1}(0)=+\infty$

$$
\text { weight }(\bullet) \sim \operatorname{Gamma}^{-1}(\beta), \quad \text { weight }(\bullet) \sim \operatorname{Gamma}^{-1}(\alpha)
$$

Using the symmetry w.r.t. to inhomogeneity parameters, one can exchange rows, so that the partition functions on both sides have the same distribution.

Discrete stationary process $\rightarrow Z^{\text {stat }}$

This leads to a discrete stationary process $\mathcal{Z}_{3}^{\text {stat }}\left(p_{1}, p_{2}, p_{3}\right)$ defined as the partition function of

which, under appropriate scaling ($\alpha, \beta \rightarrow \infty, p_{i} \rightarrow \infty$) becomes

Conclusion

Motivation: The height function associated to non-intersecting directed polymers defines a random surface that should fall in a new universality class.

Main result: We have shown (with P. Le Doussal) that the stationary measure associated to n non-intersecting directed polymers is an explicit functional of n Brownian motions. It can be shown using a symmetry argument recently employed to study stationary measures of the KPZ equation with boundaries [B.-Le Doussal 2021, B.-Corwin 2022]
For large n, the endpoint measure remains to be studied.

Thank you

