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Non-intersecting paths and random surfaces

The configurations in various statistical mechanics models can be
encoded by non-intersecting paths.

▶ Height function

h(x , y) = number of paths below the point (x , y)



Non-intersecting paths and the GFF
One of the most well-known models of non-intersecting paths is Dyson’s
Brownian motion [Dyson 1962]: eigenvalues λ1(t) < · · · < λn(t) of a
Hermitian random matrix with Brownian entries

dλi (t) = dBi (t) +
∑
j ̸=i

dt

λi (t)− λj(t)

The λi (t) can be seen as Brownian motions conditioned never to
intersect.

▶ The height function of Dyson Brownian motion on the circle
converges to the Gaussian free field [Spohn 1998]. Many extensions
and variants exist (cf Gaultier Lambert’s talk!);

▶ Non-intersecting paths from GUE corners process converge to the
GFF [Borodin 2010], as well as discrete analogues related to Schur
measures [Borodin-Ferrari 2008] and anisotropic KPZ models;

▶ Height function of lozenge tilings, dimer models [Kenyon 2001],
universality for lozenge tilings conjectured in [Kenyon-Okounkov
2003]; more general discrete non-intersecting walks [Gorin-Petrov
2016];

▶ In Physics, this universality class has been studied in many papers
starting with [de Gennes, 1968].



Log-correlated models

At a fixed time, the distribution of Dyson’s Brownian motion is the GUE
density, that is a 1d log-gas∏

i<j

|λi − λj |2
∏
i

e
−λ2

i
2t

▶ This is a determinantal point process. In the bulk, the microscopic
behaviour is described by the determinantal point process with sine
kernel

K (x , y) =
sin(π(x − y))

π(x − y)
.

▶ This defines log-correlated fields with universal properties. In
particular, the variance of the height (counting) function in the bulk
is of order log(n).



Non-intersecting paths with disorder

Consider non-intersecting paths in a disordered environment (random
walks or diffusions in random environment, directed polymer models)
[Kardar 1987, Emig-Kardar 2000, ... ].

What are the analogues of

▶ The Gaussian free field ?

▶ The Sine process ?

▶ log correlations ?
⇝ Open problem. Some related models
exhibit log squared correlations at small
enough temperature [Toner-DiVicenzo
1990].

▶ The 1d log-gas ?
⇝ The partition function

Z (x1, . . . , xn; t)

of n non-intersecting Brownian directed
polymers in a white noise environment.

x1 x2 x3

t
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Continuous directed polymers

▶ The continuous directed polymer model is a probability measure on
continuous paths t 7→ Wt proportional to

exp

(∫ t

0

dsξ(Ws , s)

)
W(W ),

where W is the Brownian measure, and ξ(x , t) is a space-time white
noise.

▶ Define the partition function of a single polymer paths as

Z (x , s|y , t) = pt−s(x , y)EW

[
e
∫ t
s
duξ(Wu,u)

]
where W is a Brownian bridge from x to y , pt is the heat kernel,
and EW is the expectation w.r.t. to the Brownian bridge measure.

▶ We define the (quenched) endpoint measure

P(x) =
Z (0, 0|x , t)∫

R dyZ (0, 0|y , t)
.



KPZ equation and universality class
The partition function Z (0, 0|x , t) satisfies the multiplicative noise
stochastic heat equation

∂tZ (x , t) =
1

2
∂xxZ (x , t) + ξZ (x , t),

with delta function initial condition.
The function h(x , t) = logZ (x , t) solves the Kardar-Parisi-Zhang
equation

∂th =
1

2
∂xxh +

1

2
(∂xh)

2 + ξ,

This is one representative of a large universality class of models of
interface growth described by a height function so that

▶ Var [h(x , t)] grows as t2/3 as t → ∞;

▶ The limiting distribution of h(x,t)−ct
t1/3

depends on the initial condition,
and is often related to random matrix eigenvalue statistics;

▶ Cov(h(x , t), h(y , t)) is non trivial for |x − y | ∝ t2/3.

▶ The large scale space-time fluctuations are described by a
(conjecturally) universal process called the KPZ fixed point
[Matetski-Quastel-Remenik 2017] [Dauvergne-Ortmann-Virag 2018].



Non-intersecting polymers

Now we define the partition function of
n non-intersecting polymers from points

x1 < x2 < · · · < xn

at time 0 to points

y1 < y2 < · · · < yn

at time t, by the [Karlin-McGregor 1959]
determinant

Zn(x⃗ , 0|y⃗ , t) = det (Z (xi , 0|yj , t))ni,j=1

y1 y2 y3

x1 x2 x3

t

For smooth noise ξ, it satisfies the Feynman Kac representation

Zn(x⃗ , 0|y⃗ , t) = det (pt(xi , yj))
ℓ
i,j=1 E

[
e−

∫ t
0
dτ

∑
j ξ(Wj (τ),τ)

]
,

where the Wj are non intersecting Brownian bridges.



O’Connell-Warren multilayer SHE
The partition function Zn(x⃗ , 0|y⃗ , t) satisfies (formally) the stochastic PDE

∂tZn =
n∑

i=1

1

2
∂yiyiZn + Zn

n∑
i=1

ξ(yi , t)

on the Weyl chamber

Wn = {y⃗ ∈ Rn; y1 < y2 < · · · < yn} ,

with the boundary condition that Zn = 0 whenever any yj = yj+1. For
each n, this is a Markov process on C (Wn,R).
[O’Connell-Warren 2011] noticed that defining,

Mn(x , 0|y , t) := lim
x⃗ → x
y⃗ → y

Zn(x⃗ , 0|y⃗ , t)∏
i<j(xi − xj)(yi − yj)

= cn,t det
(
∂ ix∂

j
yZ (x , 0|y , t)

)n
i,j=1

,

the family of processes (M(x , 0|y , t))1⩽i⩽n,y∈R is also a Markov process
on C (R,Rn), that satisfies a hierarchy of stochastic PDEs, now called the
O’Connell-Warren multilayer stochastic heat equation.



Asymptotics
It is known that

logZ1(0, 0|0, 2t) + t/12

t1/3
====⇒
t→∞

λ1,

where the random variable λ1 follows the Tracy-Widom GUE distribution
function [Amir-Corwin-Quastel, Calabrese-Le Doussal-Rosso,
Sasamoto-Spohn, Dotsenko, ≈ 2011].

Conjecture

For each n ⩾ 1,

logMn(0, 0|0, 2t) + nt/12

t1/3
====⇒
t→∞

λ1 + · · ·+ λn,

where the λi have the distribution of the n first eigenvalues of the GUE
in the large scale limit at the edge of the spectrum.

Tail bounds are derived in [De Luca-Le Doussal 2017]. The conjecture is
expected to hold universally for any (1 + 1)−dim polymer model under
some moments assumptions on the noise (proved for some zero
temperature models [Borodin-Okounkov-Olshanski 1999]).



Stationary measure and long polymers
Let us go back to a single polymer model. To understand the behaviour
of the endpoint measure

P(x) =
Z1(0, 0|x , t)∫

R dyZ1(0, 0|y , t)
,

for large t, it is enough to know that

lim
t→∞

Z1(0, 0|y , t)
Z1(0, 0|z , t)

(d)
=

eB1(y)

eB1(z)
,

where B1 is a standard Brownian motion [Das-Zhu 2022].

This comes from the non-trivial fact that the Brownian motion is a
stationary measure for the KPZ equation [Bertini-Giacomin 1997]: if a
solution of

∂tZ (x , t) =
1

2
∂xxZ (x , t) + ξZ (x , t),

is such that Z (x , t = 0) = eB1(x), then for all t > 0,

Z (x , t)

Z (z , t)

(d)
=

eB1(x)

eB1(z)
.

Question: What is the analogue for n non-intersecting polymers ?



Stationary measure for non-intersecting
polymers
[B.-Le Doussal 2022] For any fixed x⃗ ,

Zn(x⃗ , 0|y⃗ , t)
Zn(x⃗ , 0|z⃗ , t)

====⇒
t→∞

Z stat
n (y⃗)

Z stat
n (z⃗)

where Z stat
1 (y) = eB1(y), and more generally, Z stat

n (y⃗) is defined as a
partition function

Z stat
3 (y⃗) =

∫ ∏
i,j

dz ji exp

 B3

B2

B1

z11

z21 z22

y2 y3y1

0

0

0


where the z ji interlace, i.e. zk+1

i ≤ zki ≤ zk+1
i+1 , and the weight is the sum

over all thick segments of a Brownian increment, i.e.∑
i,j

Bj(z
j
i )− Bj(z

j−1
i−1 ).



▶ If we average over the noise,

E
[
Z stat
n (y⃗)

]
=

∏
i<j

|yi − yj |
n∏

i=1

eyi/2.

We recover the 1d log gas.
▶ In the small-scale limit, yi = ϵỹi ,

Z stat
n (y⃗) ∝

∏
i<j

|ỹi − ỹj |.

▶ In the large-scale or zero temperature limit, i.e. ξ → βξ, we obtain a
similar result with

log

∫ ∏
i,j

dz ji exp (. . . ) → sup
z ji

(. . . ) .

Generalization
If xi = −ai t for all 1 ⩽ i ⩽ n,

Zn(x⃗ , 0|y⃗ , t)
Zn(x⃗ , 0|z⃗ , t)

====⇒
t→∞

Z stat
n (y⃗ ; a⃗)

Z stat
n (z⃗ ; a⃗)

where now, the Brownian motions Bi (t) are replaced by Bi (t)− ai t.



Case n = 2, explicit computations

If we condition over the value of the first polymer endpoint y1, and
assume that the drifts a1 = a2 = −a < −1/2, the endpoint measure
becomes normalizable

P(y1, y2) =
Z stat
2 (y1, y2)∫ +∞

y1
Z stat(y1, y2)dy2

.

We can compute the cumulants of the difference between the two
endpoints [B.-Le Doussal 2022]

E [κk(y2 − y1)] = (−2)k(2kψk(4a)− 3ψk(2a)),

where κk denotes the kth cumulant of the measure P and the function
ψk(z) = ∂kz log Γ(z) is the polygamma function (it uses results of
[Fitzgerald-Warren 2020]).

Open problem Analyze the endpoint measure P(y1, . . . , yn), and the
associated height function as n goes to infinity.



Proof ideas
1 Z stat

n (y⃗) is the stationary measure of the stochastic PDE

∂tZn(y⃗ , t) =
1

2
∆Zn(y⃗ , t) + Zn(y⃗ , t)

n∑
i=1

ξ(yi , t),

with Dirichlet boundary condition on ∂Wn, in the sense that if
Zn(y⃗ , t = 0) = Z stat(y⃗), for all t,

Zn(y⃗ , t)

Zn(z⃗ , t)

(d)
=

Z stat
n (y⃗)

Z stat
n (z⃗)

.

For n = 1 this is not obvious, though well-known [Bertini-Giacomin
1997]

2 We show that a discrete analogue of Z stat(y⃗) is a stationary
measure for a discrete variant model that is integrable, the
log-gamma polymer.

3 The stationary process can be determined either using results on the
geometric RSK correspondance [Corwin-O’Connell-Seppäläinen,
O’Connell-Warren 2011] or using a general argument based on the
symmetries of the model [B.-Corwin 2022].



Log-gamma directed polymer

The model was introduced by
[Seppäläinen (2012)]. Let weights wi,j

be i.i.d. inverse Gamma random
variables with parameter θ, i.e. with
density

1w⩾0

Γ(θ)
w−θ−1e−1/w . s

t

For s, t ∈ Z2, define the partition function

Z(s|t) =
∑
π:s→t

∏
(i,j)∈π

wi,j ,

where the sum is over upright paths from s to t.
Similarly, for n-tuples of points s1, . . . , sn and t1, . . . , tn, we define

Zn(s1, . . . , sn|t1, . . . , tn) =
∑

non-intersecting paths

∏
wij = det (Z(si |tj))ni,j=1

the partition function for n non intersecting paths.



As the polymer length L = ∥t− s∥1 → ∞,

logZ(s|t)− c1L

c2L1/3
====⇒
L→∞

λ1,

where λ1 has the Tracy-Widom dist. [Borodin-Corwin-Remenik 2012,
Krishnan-Quastel 2016, B.-Corwin-Dimitrov 2020]. Many other results
exist about spatial correlations, properties of geodesics, etc.

(cL, L)

(cL, L− 1)

(cL, L− 2)

(1, 1)

(1, 2)

(1, 3)

For si = (1, i) and ti = (cL, L− n + i), it is conjectured that

logZn(s1, . . . , sn|t1, . . . , tn)− nc1L

c2L1/3
====⇒
L→∞

λ1 + · · ·+ λn.

[Johnston-O’Connell 2019] conjectured a law of large numbers as the
number of non-intersecting polymers grow, i.e. for n = αL,

lim
L→∞

1

L2
logZn(s1, . . . , sn|t1, . . . , tn) = F (c , α),

through the solution of a minimization problem, and prove bounds.



discrete polymers → continuous polymers

The partition function satisfies the recurrence,

Z(0|n,m) = wn,m (Z(0|n − 1,m) + Z(0|n,m − 1)) .

This is a discrete analogue of the stochastic PDE

∂tZ =
1

2
∂xxZ + ξZ .

and scaling θ, n,m → ∞ appropriately,

Z(0|n,m) ======⇒
n,m,θ→∞

Z (x , t)

(this is a general result of convergence of discrete polymers at high
temperature [Alberts-Khanin-Quastel 2010]).

Partition functions for non-intersecting polymers converge as well thanks
to the Karlin-McGregor theorem.



Log-gamma polymer with inhomogeneities

Let α1, α2, . . . , and
β1, β2, . . . be positive real
numbers and take

wi,j ∼ Gamma−1(αi + βj).

(1, 1)

(n,m)

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

β1

β2

β3

β4

β5

β6

β7

[Corwin-O’Connell-Seppaläinen-Zygouras 2011] proved that(
Zi

(
(1, 1) . . . (1, i)|(n,m − i + 1), . . . , (n,m)

))
1⩽i⩽n

has the same distribution as the random vector (x1, . . . , xn) with density

1

C (α, β)
ψα1,...,αn(x)ψ̃β1,...,βm(x)dx

where ψα1,...,αn(x) and ψ̃β1,...,βm(x) are Whittaker functions. They are
invariant under permutations of the αi or the βi .



Symmetry argument
A stationary model is obtained by letting

αi = βi = 0 for 1 ⩽ i ⩽ n

αi = α for i > n

βi = β for i > n

p1 p2 p3 p1 p2 p3

weight( ) ∼ Gamma−1(α+ β), weight( ) ∼ Gamma−1(0) = +∞

weight( ) ∼ Gamma−1(β), weight( ) ∼ Gamma−1(α)

Using the symmetry w.r.t. to inhomogeneity parameters, one can
exchange rows, so that the partition functions on both sides have the
same distribution.



Discrete stationary process → Z stat

This leads to a discrete stationary process Zstat
3 (p1, p2, p3) defined as the

partition function of

p1 p2 p3

which, under appropriate scaling (α, β → ∞, pi → ∞) becomes

Z stat
3 (y⃗) =

∫ ∏
i,j

dz ji exp

 B3

B2

B1

z11

z21 z22

y2 y3y1

0

0

0





Conclusion

Motivation: The height function associated to non-intersecting directed
polymers defines a random surface that should fall in a new universality
class.

Main result: We have shown (with P. Le Doussal) that the stationary
measure associated to n non-intersecting directed polymers is an explicit
functional of n Brownian motions. It can be shown using a symmetry
argument recently employed to study stationary measures of the KPZ
equation with boundaries [B.-Le Doussal 2021, B.-Corwin 2022]

For large n, the endpoint measure remains to be studied.



Thank you


