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Universality

I The large scale behavior of random complex systems is often
universal, meaning that it does not depend on the details of how
these systems are defined microscopically.

I We expect them to converge to universal scale-invariant fixed point
(depending on the characteristic scales at which randomness occurs
and mild properties of the interactions).

I Models sharing the same large scale properties form universality
classes.

Integrability

I Probing the properties of these conjectural fixed points can be
performed via special models within these classes.

I These exactly solvable or integrable models possess an underlying
algebraic structure which allows for precise computations.



Examples of universality in probability

I Gaussian universality class. The sum of independent random
variables, properly rescaled, converge to a Gaussian. The Brownian
motion is the universal scale invariant process (under diffusive
scaling). For space-time processes, the universal fixed point is the
stochastic heat equation.

I Extreme value statistics. The maximum of independent random
variables converge to the Fréchet, Weibull or Gumbel (depending
only on the tail distribution of the random variables).

I Random matrices For matrices of large size, most spectral
properties are independent on the entries distribution.



Deposition of material



Coffee stains
In a coffee stain, before it is dry, particle diffuse and eventually stick to
the boundary. This is why the edges of the stain are darker
[Yunker-Lohr-Still-Borodin-Durian-Yodh 2013].



Propagation phenomena



A mathematical model of deposition

Blocks fall on a one dimensional flat substrate :

Independently on each column

After some time

Blocks have sticky edges

After some time



After a long time

Simulation by [T. Halpin-Healy]. The interface becomes quite smooth,
with strong spatial correlations. Mathematical analysis of the model is an
open problem.



A simple model of propagation

Eden model

I Start with a unit square in the Z2 lattice

I Add the squares in the border of the cluster randomly at exponential
rate 1.

I This is similar to model of a random metric. Assign random
distances to each edge of the Z2 lattice and look at the ball of
radius t.

This model is still too complicated !



An integrable model : corner growth model

I Consider an interface h(x , t), (where x ∈ Z) starting from
h(x , 0) = |x |, and add unit boxes at rate 1 in every valley.

h(x , t)

x

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

I The interface is mapped to an interacting particle system on Z
called TASEP.



Corner growth model ⇐⇒ TASEP

I Consider an interface h(x , t), starting from h(x , 0) = |x |, and add
unit boxes at rate 1 in every valley.

h(x , t)

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

I The interface is mapped to an interacting particle system on Z
called TASEP.



1 : 2 : 3 scaling

The interface h(x , t) grows linearly with t. Fluctuations are of the order
t1/3 and the fluctuations at h(x , t) and h(y , t) have non-trivial
correlations when |y − x | = O(t2/3).

Define the rescaled interface

Hε(x , t) :=
h(ε−1x , ε−3/2t)− (t/2)ε−3/2

(t/2)1/3ε−1/2
.

This is called 1 :2 :3 scaling,
because letting L = ε−1/2, we
consider the fluctuations of
L−1h(L2x , L3t).

What is the limiting process limε→0 Hε(x , t) ?

Theorem (Baik-Deift-Johansson, Johansson 1999)

For the corner growth model with initial condition h(x , 0) = |x |,

P(Hε(0, 1) > −s) −−−→
ε→0

FGUE(s).



Tracy-Widom GUE distribution

Define the Airy function

Ai(x) =

∫ ∞e iπ/3

∞e−iπ/3

ez
3/3−zxdz ,

and the Airy kernel

KAi(x , y) =

∫ +∞

0

Ai(x + s)Ai(y + s)ds,

Then

FGUE(s) = 1 +
∞∑
k=1

(−1)k

k!

∫ +∞

s

dx1 . . .

∫ +∞

s

dxk det (KAi(xi , xj))ki,j

= det(I − KAi)L2(s,+∞)

The Tracy-Widom distribution FGUE governs fluctuations of the largest
eigenvalue of large Hermitian matrices.



KPZ universality

I Numerical data shows that the interface of sticky blocks model,
Eden model, random metric balls, and many more models has the
same fluctuations as in the corner growth model, i.e. Tracy-Widom
GUE on the t1/3. This depends on the initial condition, GUE arises
when starting from a droplet initial shape, and Tracy-Widom GOE
fluctuations arise when starting from a flat interface.

I The spatial covariance structure, under the 1 : 2 : 3 scaling is also
identical.

I The set of models sharing this scaling behaviour and statistics forms
the 1+1 dimensional Kardar-Parisi-Zhang universality class.

I For all these models, the rescaled interface

Hε(x , t) :=
h(ε−1x , ε−3/2t)− at,xε

−3/2

bt,xε−1/2
,

where at,x , bt,x are some model-dependent deterministic constants
should converge to a (conjecturally universal) scale invariant
space-time random field H(x , t), called the KPZ fixed point.



Turbulent liquid crystals
Liquid Crystals with two phases : light gray in the metastable phase and
darker in the stable phase. Initially, crystals are prepared in the
metastable phase. After an excitation with a laser in the middle, crystals
switch to their stable phase , and the stable phase propagates
[Takeuchi-Sano 2010].



Turbulent liquid crystals

Depending on the form of laser beam used for the initial excitation,
propagation may start off any initial profile. Here flat.



KPZ universality

It is conjectured that a 1+1 dimensional interface model belongs to the
KPZ universality class if it possesses the following (vaguely defined)
features :

I local dynamics,

I smoothing mechanism (deep valleys fill up, peaks erode),

I radial growth which is often modeled by a non-linear slope
dependent growth rate,

I the system is driven by a noise which decorrelates at large space
time scales.

KPZ universality goes far beyond growth processes. One can associate a
height field h(x , t) to many statistical physics models.



The KPZ stochastic PDE

I [Kardar-Parisi-Zhang 1986] introduced, as a toy model for interface
growth, a stochastic PDE

∂th(x , t) =
1

2
∂xxh(t, x)︸ ︷︷ ︸
smoothing

+
1

2
(∂xh(x , t))2︸ ︷︷ ︸

non-linear slope dependence

+ ξ(x , t)︸ ︷︷ ︸
uncorrelated noise

,

where ξ(x , t) is a Gaussian space-time white noise (see lecture 2). It
was predicted to have t1/3 fluctuations and t2/3 spatial decorrelation
scale using (non-rigorous !) renormalization group methods of
[Forster-Nelson-Stephen 1977].

I Is it 1 : 2 : 3 scale invariant ? Let hε(x , t) = ε−1/2h(ε−1x , ε−3/2t).
Then

∂thε(x , t) =
1

2
ε1/2∂xxhε(t, x) +

1

2
(∂xhε(x , t))2 + ε1/4ξ(x , t)

I The KPZ equation is not invariant under 1 :2 :3 KPZ scaling ! KPZ
equation is not the KPZ fixed point.



Weak universality

Consider the more general equation

∂th(x , t) = ν ∂xxh(t, x) + λ (∂xh(x , t))2 +
√
Dξ(x , t)

with tunable non-linearity λ and noise variance D. Now consider

hε(x , t) = εbh(ε−1x , ε−z t).

The equation becomes

∂thε(x , t) = ν ε2−z∂xxhε(t, x)+λ ε2−z−b(∂xhε(x , t))2+
√
D εb−z/2+1/2ξ(x , t)

I weak non-linearity scaling : Choose z = 2, b = 1/2 and scale
λ = ε1/2. We recover the KPZ equation.

I weak noise scaling : Choose z = 2, b = 0 and scale D = ε. We
recover the KPZ equation.

Models in the KPZ universality class should converge to the KPZ
equation under weak non-linearity or weak noise scaling. This is the weak
universality conjecture (proved for some type of models).



Optimal paths in random environment

A

B

I [B.-Corwin 2015] : At each intersection, the configuration is either

or with probability 1/2, and the red edge has an exponential
waiting time E(1). All waiting times are independent.

I How long it takes to go from A to B ?

I When the distance d from A to B is large, the minimal passage time
behaves as [B.-Corwin 2015]

T (A→ B) ≈ cd + c ′d1/3χ,

where χ is FGUE distributed (under the assumption that the ratio of
horizontal/vertical steps is not 1, otherwise the passage time is
much smaller).



Random walks in random environment
Let Xt be a random walk on Z, starting from 0, such that when Xt = x ,

Xt+1 =

{
x + 1 with probability px,t ,

x − 1 with probability 1− px,t .

If px,t ≡ 1/2, the model is well-understood. If px,t are disordered, say
independent and uniform in (0, 1), then

Theorem (B.-Corwin 2015)

Consider n independent walks in the same environment X
(1)
t , . . . ,X

(n)
t ,

then for n = ect ,

max
i∈{1,...,n}

{
X

(i)
t

}
≈ c ′t + c ′′t1/3χ,

where χ is FGUE distributed.

The statement can be rephrased in terms of large deviations as

− log
(
P
(
Xt > xt

∣∣{py ,s})) ≈ I (x) · t + c ′′ · t1/3 · χ.



Random tilings

Tile an hexagon using three types of lozenges , and and consider
a configuration picked uniformly at random.

The picture can be seen as a
surface.

The configuration can be encoded
via an ensemble of
non-intersecting paths.



Arctic circle

I At large scale, disordered regions and
frozen regions are delimited by a circle, the
arctic circle [Cohn-Larsen-Propp 1998].

I Fluctuations of the boundary of the frozen
region around the arctic circle are
Tracy-Widom GUE distributed on the n1/3

scale
[Baik-Kriecherbauer-McLaughlin-Miller
2007, Petrov 2012].

I It corresponds to the extremal paths in the
non-intersecting paths interpretation.
Further, the second highest path converges
to the second eigenvalue of the Airy
process, and so on.



Stochastic six-vertex model

Consider collections of up right paths in the first-quadrant of Z2, starting
from each point of the vertical axis.

At each vertex, there are six types of configurations,

, , , , , .



We assign weights to each conf. They are stochastic [Gwa-Spohn 1992]
in the sense that at every vertex, if we fix the configuration of incoming
paths, the weights define a probability distribution on outgoing
configurations.

P
( )

= P
( )

= 1,

P
( )

+ P
( )

= 1,

P
( )

+ P
( )

= 1.

Let 0 < b2 < b1 < 1. We
set

P
( )

= b1 ∈ (0, 1),

P
( )

= 1− b1,

P
( )

= b2 ∈ (0, 1),

P
( )

= 1− b2.



Associate a height function h(x , y) (numbers in red on the picture). The
bottom right part has height 0, and each time we cross a path upward or
leftward, height increases by 1.

0

1
2

2

3
4

0 < b2 < b1 < 1.

P
( )

= b1,

P
( )

= 1− b1,

P
( )

= b2,

P
( )

= 1− b2.



Stochastic six-vertex model

The first path has slope 1−b1

1−b2
. By

symmetry, disorder is located in a cone
between slopes 1−b1

1−b2
and 1−b2

1−b1
.

Theorem (Borodin-Corwin-Gorin
2014)

For 1−b1

1−b2
< x

y <
1−b2

1−b1
,

h(xt, yt) ≈ ct + c ′t1/3χ,

where χ is FGUE distributed.

Simulation by [Leo Petrov,
https ://lpetrov.cc/research/gallery/]



Integrable probability

I Integrable probability is an area of research at the interface
between probability theory, mathematical physics, combinatorics and
representation theory. It refers to the study of probabilistic models
that are exactly solvable.

I The notion of exact solvability or integrability is somewhat vague.
A model is called exactly solvable when observables of interest can
be computed by a formula involving well-known functions (rational
functions, exp, sin, Γ), so that the complexity of the formula does
not increase as parameters go to ∞.



A simple example
Consider the simplest particle system.

−4 −3 −2 −1 0 1 2 3 4

p1− p

X (t)

I We can associate a difference operator

∆f (x) = p f (x − 1) + (1− p)f (x + 1),

so that ψt(x) := P(X (t) = x) solves ψt+1(x) = ∆ψt(x).

I For any z ∈ C \ {0}, functions x 7→ zx are eigenfunctions. We may
consider the Fourier transform

f̂ (z) =
∑
x∈Z

f (x)zx ,

which can be inverted via

f (x) =
1

2iπ

∮
|z|=1

f̂ (z)
dz

z1+x
.

(isometry between `2(Z) and L2(T, dzz ))



Recall ψ0(x) = P(X (0) = x), and consider the identity

ψ0(x) =
1

2iπ

∮
|z|=1

ψ̂0(z)
dz

z1+x
.

Acting t times with ∆ on both sides, we obtain (recall
ψt+1(x) = ∆ψt(x))

P(X (t) = x) =
1

2iπ

∮
|z|=1

pz + (1− p)z−1︸ ︷︷ ︸
eigenvalue


t ∑

y∈z
zyP(X (0) = y)︸ ︷︷ ︸

ψ̂0(z)

dz

z1+x
.

The last expression can be analyzed asymptotically using standard
techniques of asymptotic analysis for contour integrals.



More complicated cases

I For more complicated systems, eigenfunctions will not be as simple
as zx but typically functions of many variables z1, z2, z3, ...

I If we have now several particles jumping on Z with at most one
particle per site and p = 1, all of this goes through, but the
functions x 7→ zx are replaced by so-called Grothendieck polynomials

G~x(z1, . . . , zn) =
det
(
z
xj
i (1− 1/zi )

1−j)n
i,j=1

det
(
zn−ji

)n
i,j=1

.



Sources of integrability

I Integrability is often rooted in properties of certain families of
symmetric functions with many remarkable properties
(orthogonality, summation/integral identities, eigenfunctions of
certain operators). They can sometimes be interpreted as
multivariate Fourier bases.
Ex : Schur functions.

I In Physics, (quantum) integrability often comes from solutions of a
Yang-Baxter equation (some sort of commutation relation
between operators having a nice pictorial interpretation...)

A large part of modern representation theory is about dealing with those
structures.



Summary

I Under mild assumptions, random growth models are in the
Kardar-Parisi-Zhang universality class, meaning that the interface
fluctuates in the t1/3 scale with spatial decorrelation in the t2/3

scale, and Tracy-Widom fluctuations (for certain initial conditions).
All these models are conjectured to converge to a scale invariant
universal process called the KPZ fixed point.

I Besides random growth, there are many more type of models in the
KPZ class and many more conjectured to be.

I In order to study phenomena occurring in this universality class and
refine its scope, one studies integrable models such as the corner
growth model (TASEP).



Part II : The KPZ fixed point and sample
covariance matrices

1 Sample covariance matrices and the Baik-Ben Arous-Péché phase
transition

2 Sample covariance matrices and TASEP

3 The KPZ fixed point



Sample covariance matrices

Consider m independent complex Gaussian vectors y1, . . . , ym in Rn with
covariance matrix Σ and mean ~µ. Let Y = 1

m

∑m
i=1 be the sample mean.

Form the matrix
X =

(
y1 − Y , . . . , ym − Y

)
and define the sample covariance matrix

S =
1

m
XX ∗.

Denote
`1 > · · · > `n > 0

the eigenvalues of Σ and

λ1 > · · · > λn > 0

the eigenvalues of S .



Asymptotics : null case

Let m, n go to infinity in such a way that m
n → γ2 > 1, and assume

Σ = I . The eigenvalue density converges to

γ2

2πx

√
(b − x)(x − a)

for some explicit a, b. Almost surely

λ1 −−−−−→
n,m→∞

(
1 + γ−1

)2
.

Further,

lim
m→∞

P

(
λ1 −

(
1 + γ−1

)2

cst ·m−2/3
6 x

)
= FGUE(x).



BBP transition
Q : What happens if Σ 6= I ? For some r , fix `r+1 = · · · = `n = 1.

Subcritical case : If `1 < 1 + γ−1, then noting happens.

Supercritical case : If `1 > · · · > `r > 1 + γ−1, then we have r outliers
in the spectrum of S . The fluctuations of λ1, . . . , λr occur on the

√
m

scale and are distributed as a k × k GUE, where k it the multiplicity of `1

in Σ.

Theorem (Baik-Ben-Arous-Péché 2004)

Assume that for all 1 6 i 6 r , we scale the population eigenvalues close
to the critical threshold as `i = 1 + γ−1 + cst ·m−1/3ui . Then, for all
x ∈ R,

lim
m→∞

P

(
λ1 −

(
1 + γ−1

)2

cst ·m−2/3
6 x

)
= FBBP,~u(x),

where
FBBP,~u(x) = det(I − KBBP,~u)L2(x,∞),

and KBBP,~u is a deformation of the Airy kernel.



TASEP

I Consider an interface h(x , t), and add unit boxes at rate 1 in every
valley.

h(x , t)

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7



Last passage percolation

I Let wi,j be independent
exponential variables with
parameter ai + bj . Define

L(n,m) = max
π

∑
(i,j)∈π

wi,j ,

where the sum runs over
up-right paths
π : (1, 1)→ (n,m).

I The border of the set of n,m
such that L(n,m) 6 t defines
an interface growth model.

w1,1

w1,2

w1,3

w1,4

w1,5

w2,1

w2,2

w2,3

w2,4

w2,5

w3,1

w3,2

w3,3

w3,4

w3,5

w4,1

w4,2

w4,3

w4,4

w4,5

w5,1

w5,2

w5,3

w5,4

w5,5

I When ai + bj ≡ 1, the model is equivalent to TASEP.



An identity

Let X be a m × n complex random matrix with Gaussian entries

Xi,j ∼ N
(

1
ai+bj

)
. Let λ1 be the largest eigenvalue of XX ∗.

Theorem (Borodin-Péché, 2007)

For all x ∈ R,
P (λ1 6 x) = P (L(n,m) 6 x) .

It can be shown (using IZHC and RSK) that both quantities equal∏
i,j

(ai + bj)

∫
x>x1>···>xn

S~x(~a)S~x(~b),

where S~x(~a) is a continuous Schur function

S~x(~a) =
det (e−xiai )

n
i,j=1

det
(
xn−ji

)n
i,j=1

.



BBP transition in LPP

I Let wi,j be independent exponential
variables with parameter ai + bj .
Define

L(n,m) = max
π

∑
(i,j)∈π

wi,j ,

where the sum runs over up-right
paths π : (1, 1)→ (n,m).

I Set ai = bj ≡ 1 except

a1 = 2−1/3n−1/3u1

(so that weights on the first column
are larger).

w1,1

w1,2

w1,3

w1,4

w1,5

w1,6

w1,7

w2,1

w2,2

w2,3

w2,4

w2,5

w2,6

w2,7

w3,1

w3,2

w3,3

w3,4

w3,5

w3,6

w3,7

w4,1

w4,2

w4,3

w4,4

w4,5

w4,6

w4,7

w5,1

w5,2

w5,3

w5,4

w5,5

w5,6

w5,7

w6,1

w6,2

w6,3

w6,4

w6,5

w6,6

w6,7

w7,1

w7,2

w7,3

w7,4

w7,5

w7,6

w7,7

Then,

lim
n→∞

P
(
L(n, n)− 4n

21/3n1/3
6 x

)
= FBBP,u1 (x).



KPZ fixed point

Let us go back to the interface h(x , t) defined by TASEP.

h(x , t)

−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7

Definition (Matetski-Quastel-Remenik 2016)

The KPZ fixed point H(t, x) is a Markov process on upper-semi
continuous functions which is the ε→ 0 limit of

Hε(x , t) :=
h(ε−1x , ε−3/2t)− (t/2)ε−3/2

(t/2)1/3ε−1/2
.



KPZ fixed point and the Airy sheet

There exist a process A(x , y) [Dauvergne-Ortmann-Virág 2018] such that
for any initial condition H0(x), the distribution of the KPZ fixed point at
time 1 is given by

H(t, y) = sup
x
{H0(x) +A(x , y)} .

In order to know the distribution of the KPZ fixed point,

P (∀y ∈ R,H(t, y) 6 g(y)) .

we need to understand the distribution of

sup
x,y
{f (x) +A(x , y) + g(y)} ,

for all functions f , g .



BBP transition and the Airy sheet

I Let wi,j be independent exponential
variables with parameter ai + bj .
Set ai = bj ≡ 1 except

a1 = 2−1/3n−1/3u1

(so that weights on the first column
are larger).

w1,1

w1,2

w1,3

w1,4

w1,5

w1,6

w1,7

w2,1

w2,2

w2,3

w2,4

w2,5

w2,6

w2,7

w3,1

w3,2

w3,3

w3,4

w3,5

w3,6

w3,7

w4,1

w4,2

w4,3

w4,4

w4,5

w4,6

w4,7

w5,1

w5,2

w5,3

w5,4

w5,5

w5,6

w5,7

w6,1

w6,2

w6,3

w6,4

w6,5

w6,6

w6,7

w7,1

w7,2

w7,3

w7,4

w7,5

w7,6

w7,7

L(n, n)− 4n

21/3n1/3
===⇒
n→∞

sup{B1(x) + u1x +A(x , 0)}.

The large scale limit is the KPZ fixed point with Brownian initial
data



BBP transition and the Airy sheet II

I Let wi,j be independent exponential
variables with parameter ai + bj .
Set ai = bj ≡ 1 except

a1 = 2−1/3n−1/3u1,

a2 = 2−1/3n−1/3u2.

w1,1

w1,2

w1,3

w1,4

w1,5

w1,6

w1,7

w2,1

w2,2

w2,3

w2,4

w2,5

w2,6

w2,7

w3,1

w3,2

w3,3

w3,4

w3,5

w3,6

w3,7

w4,1

w4,2

w4,3

w4,4

w4,5

w4,6

w4,7

w5,1

w5,2

w5,3

w5,4

w5,5

w5,6

w5,7

w6,1

w6,2

w6,3

w6,4

w6,5

w6,6

w6,7

w7,1

w7,2

w7,3

w7,4

w7,5

w7,6

w7,7

L(n, n)− 4n

21/3n1/3
===⇒
n→∞

sup
x
{B1 ◦ B2(x) +A(x , 0)}.

The large scale limit is the KPZ fixed point with initial data

B1 ◦ B2 : x 7→ sup
z
{B1(z) + B2(x)− B2(z)}

where B1,B2 are Brownian motions with drifts u1, u2.



BBP transition and the Airy sheet III

I More generally, the distribution of

sup
x
{B1 ◦ B2 ◦ · · · ◦ Bk(x) +A(x , 0)}

is given by the BBP distribution FBBP,~u.

I The distribution of

sup
x,y
{B1 ◦ B2 ◦ · · · ◦ Bk(x) +A(x , y) + Bk+1 ◦ · · · ◦ Bk+r (y)}

is also given by the BBP distribution FBBP with parameters
u1, . . . , uk+r .

I Recall that the KPZ fixed point is characterized by

sup
x,y
{f (x) +A(x , y) + g(y)} ,

for all functions f , g .



Virág’s characterization theorem

Let Hε(t, x) be the height function of some model depending on a
parameter ε, to which we associate a ε Airy sheet Aε.

Theorem (Virág 2020)

Assume that we have a family of compositions laws ◦ε and a family of
“initial data” Bεu (x) such that

1 Symmetry property : Bεu1
◦ε Bεu2

= Bεu2
◦ε Bεu1

and
Bεu1
◦ε Aε = Aε ◦ε Bεu1

.

2 If h(0, x) = Bεu (x), then h(t, x)− Bεu (x) is tight in ε.

3 Bεu has drift u and sublinear fluctuations, uniformly as ε→ 0.

4 Bεu converges as ε→ 0 to a Brownian motion with drift u.

5 BBP asymptotics for the initial data

Bεu1
◦ε · · · ◦ε Bεuk

Then,

Hε converges to the KPZ fixed point H.



Summary

I The laws of the distribution of outliers in the BBP transition near
the critical threshold appear in last passage percolation (and
presumably all models in the KPZ class).

I These deformations of the Tracy-Widom distribution are not very
relevant (yet) in statistics, but turn out to be fundamental in
characterizations of the KPZ fixed point.


