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ASEP with boundary
This talk is about asymmetric simple exclusion process with boundaries:

▶ ASEP on Z⩾1
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γ

▶ Open ASEP on a segment {1, . . . , ℓ}
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These processes were first studied by [Liggett 1975], who imposed
conditions on the rates:

γ = q(1 − α), δ = q(1 − β)

so that the density parameters are related to the jump rates by

ϱ0 = α, 1 − ϱℓ = β.



Liggett’s condition
It can be reformulated as imposing that at the left boundary,

α = ϱ0, γ = q(1 − ϱ0)

while at the right boundary

β = 1 − ϱℓ, δ = qϱℓ.

“The creation and destruction rates at one depend on only
one parameter ϱ0 ∈ [0, 1], and are chosen in such a way that they
can be viewed as arising from a fictitious state 0 with the property
that η0(t) = 1 with probability ϱ0 and η0(t) is independent of
the process {ηx(t), x ∈ Z⩾1} for all t > 0.”

Ergodic Theorems for the asymmetric exclusion
process, Trans. A.M.S., 1975.

▶ It is not very clear what this sentence means...

▶ The condition is such that the truncation of an unbounded system
behaves very similarly as the bounded system. This is useful to
study stationary measures and convergence towards them.



Outline

Two problems get much simpler under Liggett’s condition:

1 Markov duality for half-line ASEP and open ASEP on a segment.
Joint work with Ivan Corwin
Application: computing moments of the half-line KPZ equation.

2 Stationary measure for open ASEP (works as well for half-line ASEP)
Joint work with Pierre Le Doussal.
Application: Stationary measures of the open KPZ equation.



Part 1: Markov duality for ASEP with
boundaries

Coordinate Bethe ansatz

and the KPZ equation



half-line ASEP
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Recall that we impose Liggett’s condition

γ = q(1 − ϱ), α = ϱ.

The system is described by η = (η1, η2, . . . ) ∈ {0, 1}Z⩾1 . The generator is

LZ>0 f (η) = α(1 − η1)
(
f (η+) − f (η)

)
+ γη1

(
f (η−) − f (η)

)
+

∞∑
x=1

(ηx(1 − ηx+1) + qηx+1(1 − ηx))
(
f (ηx,x+1) − f (η)

)
.



Full-space ASEP duality
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Define

Nx(η) =
+∞∑
i=x

ηx , Qx(η) = qNx (η), Q̃x(η) = ηxq
Nx+1(η)

Define the operator, acting on functions of x1 < · · · < xn,

D(n)f (x⃗) =
∑

1⩽i⩽n
xi−xi−1>1

(
f (x⃗−i ) − f (x⃗)

)
+

∑
1⩽i⩽n

xi+1−xi>1

q
(
f (x⃗+i ) − f (x⃗)

)
,

which describes a n-particle ASEP with exchanged jump parameters.

Theorem ([Borodin-Corwin-Sasamoto 2012])

Let H(η, x⃗) =
∏n

i=1 Qxi (η). Then we have the Markov duality

D(n)H(η, x⃗) = LZH(η, x⃗),

where LZ is the generator of ASEP on Z.

First proved for Q̃x by [Schütz 1997].



Fictitious site

LZ>0 f (η) = ϱ (1 − η1)
(
f (η+) − f (η)

)
+ q(1 − ϱ) η1

(
f (η−) − f (η)

)
+

∞∑
x=1

(ηx(1 − ηx+1) + qηx+1(1 − ηx))
(
f (ηx,x+1) − f (η)

)
.

Introduce a fictitious site η0, Bernoulli random variable with proba ϱ, so
that E [η0] = ϱ. Then, for η ∈ {0, 1}Z⩾1 ,

LZ>0 f (η) = E [L◦f (η)] ,

where

L◦f (η) =
∞∑
x=0

(ηx(1 − ηx+1) + qηx+1(1 − ηx))
(
f (ηx,x+1) − f (η)

)
,

that is the generator of ASEP on Z⩾0 with closed boundary conditions.
This is the correct meaning of Liggett’s sentence...

By the full space ASEP duality, for 1 ⩽ x1 < · · · < xn,

L◦H(η, x⃗) = D(n)H(η, x⃗),

so that
LZ>0H(η, x⃗) = E

[
D(n)H(η, x⃗)

]
.



Markov duality for half-line ASEP
Define the operator acting on functions of 1 ⩽ x1 < · · · < xn

D(n,ϱ)f (x⃗) =
∑

2⩽i⩽n
xi−xi−1>1

(
f (x⃗−i ) − f (x⃗)

)
+

∑
1⩽i⩽n

xi+1−xi>1

q
(
f (x⃗+i ) − f (x⃗)

)
+ 1x1>1

(
f (x⃗−1 ) − f (x⃗)

)
− 1x1=1(1 − q)ϱf (x⃗),

This describes an ASEP with n particles where the first particle is killed
at rate (1 − q)ϱ when x1 = 1.

Theorem ([B.-Corwin 2022])

For any η ∈ {0, 1}Z⩾1 and 1 ⩽ x1 < · · · < xn,

LZ>0H(η, x⃗) = D(n,ϱ)H(η, x⃗),

where we recall that LZ>0 is the generator of half-line ASEP and acts on
functions of the variable η.

Other half-line duality results exist [Schütz, previous talk] [Kuan 2021 ]
[Ohkubo 2017]. Similar to [Giardinà-Kurchan-Redig 2007] with
asymmetry.



Duality for open ASEP on a segment
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Theorem ([B.-Corwin, 2022])

Assume Liggett’s condition. For any η ∈ {0, 1}J1,ℓ−1K and
1 ⩽ x1 < · · · < xn ⩽ ℓ− 1,

LJ1,ℓ−1KH(η, x⃗) = D(n,ϱ0,ϱℓ)H(η, x⃗).

D(n,ϱ0,ϱℓ)f (x⃗) =
∑

2⩽i⩽n
xi−xi−1>1

(
f (x⃗−i ) − f (x⃗)

)
+

∑
1⩽i⩽n−1
xi+1−xi>1

q
(
f (x⃗+i ) − f (x⃗)

)
+ 1x1>1

(
f (x⃗−1 ) − f (x⃗)

)
− 1x1=1(1 − q)ϱ0f (x⃗)

+ 1xn<ℓq
(
f (x⃗+1 ) − f (x⃗)

)
+ 1xn=ℓ(1 − q)ϱℓf (x⃗).

This is the “generator” of a non-stochastic system of n particles on J1, ℓK
with some killing/duplication at the boundaries.



System of ODEs
Assume Liggett’s condition. The function

u(t, x⃗) = E [H(η(t), x⃗)] = E

[
n∏

i=1

qNxi
(η(t))

]
is given for x1 < · · · < xn by the solution to:

1 (System of ODEs) For all x⃗ ∈ Zn
⩾1,

d

dt
u(t; x⃗) = ∆1,qu(t; x⃗),

where ∆1,qf (x⃗) =
n∑

i=1

f (x⃗−i ) + qf (x⃗+i ) − (1 + q)f (x⃗);

2 (2-body boundary condition) If xi+1 = xi + 1,

u(t; x⃗−i+1) + qu(t; x⃗+i ) = (1 + q)u(t; x⃗);

3 (Boundary condition at x1 = 1)

u(t; 0, x2, . . . ) = (ϱq + 1 − ϱ)u(t; 1, x2, . . . );

4 (Initial condition)

u(0; x⃗) = H(η(0), x⃗) =
n∏

i=1

qNxi
(η(0)).



Convergence ASEP → KPZ

Let
Zt(x) = qNx (t)+

x
2−t(1−√

q2)

For q = 1 − ε, when ε → 0, [Bertini-Giacomin 1997] showed that

Zϵ−4t(ϵ
−2x) =⇒ Z (t, x),

the solution of the stochastic PDE

∂tZ (t, x) = 1
2∆Z (t, x) + Z (t, x) ξ(t, x),

where ξ is a space-time white noise. Then, h(t, x) = logZ (t, x) is, by
definition, a solution to the [Kardar-Parisi-Zhang 1986] equation

∂th(t, x) =
1

2
∂xxh(t, x) +

1

2
((∂xh(t, x))2 + ξ(t, x)



Moments of the half-line KPZ equation
Half-line ASEP converges to the KPZ equation on R>0 with boundary
condition [Corwin-Shen 2016]

∂xh(t, x)
∣∣∣
x=0

= u,

Let Z (t, x) = eh(t,x). Solving explicitly the system of ODEs and letting
q → 1, we obtain

Theorem ([B.-Corwin, 2022])

For any 0 ⩽ x1 ⩽ . . . ⩽ xn,

E

[
n∏

i=1

Z (t, xi )

]
= 2n

∫
r1+iR

dz1
2iπ

· · ·
∫
rn+iR

dzn
2iπ∏

i<j

zi − zj
zi − zj + 1

zi + zj
zi + zj − 1

n∏
i=1

e
tz2i
2 −xzi

zi
u + 1/2 + zi

where 0 = r1 < r2 − 1 < · · · < rn − n + 1.

The formula was conjectured earlier [Borodin-Bufetov-Corwin 2014].



Part 2: Stationary measures of open ASEP



Matrix product ansatz
Consider ASEP on {0, 1}ℓ with boundary parameters α,β,γ, δ.
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1 2 3

. . .
ℓ

1 q 1 1qα

γ

β

δ

We describe the state of the system by η ∈ {0, 1}ℓ. The stationary
measure P can be written as [Derrida-Evans-Hakim-Pasquier 1993]

P(η) =
1

Zℓ
⟨w |

ℓ∏
i=1

(ηiD + (1 − ηi )E ) |v⟩

where
Zℓ = ⟨w | (E + D)ℓ |v⟩

and E ,D are infinite matrices, and ⟨w | , |v⟩ are row/column vectors such
that

DE − qED = D + E

⟨w | (αE − γD) = ⟨w |
(βD − δE ) |v⟩ = |v⟩



Representations of the MPA

▶ Finding representations, i.e. matrices E ,D and explicit vectors u, v
satisfying the relations, is non trivial. Special cases are worked out in
[Derrida-Evans-Hakim-Pasquier 1993].

▶ For TASEP, q = γ = δ = 0, we may take

D =


1 1 0

0 1 1
. . .

0 0 1
. . .

...
. . .

. . .

 ,E =


1 0 0 . . .
1 1 0

0 1 1
. . .

...
. . .

. . .


and easily find eigenvectors ⟨w | , |v⟩.

▶ [Sandow, 1995] proposed a representation in the most general case.
The vectors ⟨w | , |v⟩ are complicated.

▶ Several families of orthogonal polynomials appear. In the most
general case, [Uchiyama-Sasamoto-Wadati, 2003] found a
representation using Askey-Wilson orthogonal polynomials.

▶ Another very simple representation was proposed in [Enaud-Derrida,
2003]



Enaud-Derrida’s representation
Enaud-Derrida found a very simple representation for any parameters
q,α,β,γ, δ. Under Liggett’s condition, it becomes :

D =


[1]q [1]q 0 0 0 · · ·
0 [2]q [2]q 0 0 · · ·
0 0 [3]q [3]q 0 · · ·
...

... 0
. . .

. . .
. . .

 , E =


[1]q 0 0 0 · · ·
[2]q [2]q 0 0 · · ·
0 [3]q [3]q 0

0 0
. . .

. . .
. . .


where [n]q = 1−qn

1−q .

Denoting by {|n⟩}n⩾1 the vectors of the associated basis, let

⟨w | =
∑
n⩾1

(
1 − ϱ0
ϱ0

)n

⟨n| , |v⟩ =
∑
n⩾1

(
ϱℓ

1 − ϱℓ

)n

[n]q |n⟩ .

Then, E ,D, ⟨w | , |v⟩ satisfy

DE − qED = D + E

⟨w | (αE − γD) = ⟨w |
(βD − δE ) |v⟩ = |v⟩



Sum over paths

Due to the bidiagonal structure, the normalization constant
Zℓ = ⟨w | (D + E )ℓ |v⟩ can be written as a sum over lattice paths
n⃗ = (n0, n1, . . . , nℓ) ∈ Nℓ of the form

Zℓ =
∑
n⃗

Ω(n⃗)

where

Ω(n⃗) =

(
1 − ϱ0
ϱ0

)n0 ( ϱℓ
1 − ϱℓ

)nℓ ℓ∏
i=1

v(ni−1, ni )
ℓ∏

i=0

[ni ]q,

with

v(n, n′) =


2 if n = n′,

1 if |n − n′| = 1

0 else.

▶ This introduces a natural probability measure on random walk paths
n⃗. The stationary measure P(η) can be recovered from this measure.



Open ASEP invariant measure

Following arguments similar as [Derrida-Enaud-Lebowitz 2004], one
arrives at

Theorem ([B.-Le Doussal 2022])

Under the stationary measure P(τ), ASEP height function
H(x) =

∑x
j=1(2ηi − 1) is such that

(H(i))1⩽i⩽ℓ

(d)
= (ni − n0 + mi )1⩽i⩽ℓ ,

where (ni ,mi )0⩽i⩽ℓ is a two dimensional random walk on Z2, starting
from (n0, 0), distributed as

P(n⃗, m⃗) =
1n0>0

4−ℓZℓ

(
1 − ϱ0
ϱ0

)n0 ( ϱℓ
1 − ϱℓ

)nℓ ℓ∏
i=0

[ni ]q × PSSRW
n0,0 (n⃗, m⃗),

where PSSRW
n0,0

denotes the probability measure of the symmetric simple

random walk (SSRW) on Z2 starting from (n0, 0).



Scaling limit to the KPZ equation
Under the scalings such that ASEP’s height function converges to KPZ,
in particular

q = 1 − ε, ℓ = ε−2, ϱ0 =
1

2
(1 + uε), ϱℓ =

1

2
(1 − vε)

we find, denoting by Yx the rescaled version of the random walk ni

ℓ∏
i=0

[ni ]q → e−
∫ L
0
e−2Ys ds

(
1 − ϱa
ϱa

)n0 ( ϱb
1 − ϱb

)nℓ

→ e−2uY0−2vYL

so that
(mi , ni ) =⇒ (Wx ,Yx)

where Wx is a Brownian motion and Yx is absolutely continuous to the
Brownian measure with Radon Nikodym derivative

1

Zu,v
e−2uY0−2vYLe−

∫ L
0
e−2Ys ds .



Liouville field theory in dimension 1

Theorem

The KPZ equation on [0, L] with boundary parameters u and v with
u + v > 0 has a unique stationary measure

hLu,v (x) = Wx + Yx − Y0,

where

▶ W is a Brownian motion,

▶ Y is independent from W , and its law is absolutely continuous w.r.t.
to that of a Brownian motion with free starting point. The
Radon-Nikodym derivative is

1

Zu,v
exp

(
−2uY0 − 2vYL −

∫ L

0

e−2Ysds

)
It was originally proved by [Bryc-Kuznetsov-Wang-Weso lowski 2021], [B.-
Le Doussal 2021] using results from [Corwin-Knizel 2021]. Uniqueness
was later proved by [Knizel-Matetski 2022].



Conclusion

Half-line ASEP is Markov dual to a n-particles ASEP on the
half-line with killing at the boundary. This leads to a system of
ODEs for q-moments of the current, that is solvable by (a variant
of) coordinate Bethe ansatz.

Stationary measures for open ASEP on a segment are given by
reweighted random walks. In the KPZ limit, we obtain a one
dimensional analogue of Liouville CFT.

Thank you


