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One dimensional KPZ equation

The [Kardar-Parisi-Zhang 1986] equation is a nonlinear stochastic PDE
describing the time evolution of a height h

∂th = 1
2∆h + 1

2

(
∇h
)2

+ ξ,

where ξ is a space-time white noise. In one spatial dimension, the
function h(x , t) satisfies

∂th(x , t) =
1
2∂xxh(x , t) +

1
2

(
∂xh(x , t)

)2
+ ξ(x , t).

[Kardar-Parisi-Zhang] postulated that a variety of phenomena modelled
by the stochastic growth of a rough interface obey universal laws (same
scaling exponents). The KPZ equation was introduced as a toy model.

Initially, it concerned models of deposition of material on a substrate, or
phenomena of propagation. Over the years, the subject has grown to
include more and more unexpected topics (cf talk of Jacqueline Bloch!).



An example of deposition of material



An example of propagation phenomena



A mathematical model of deposition

Blocks fall on a one dimensional flat substrate:

Independently on each column

After some time

Blocks have sticky edges

After some time



After a long time

Simulation by [T. Halpin-Healy]. The interface becomes quite smooth,
with strong spatial correlations.

Mathematical analysis is an open problem.



A mathematical model of propagation

Eden model

▶ Start with a unit square in the Z2 lattice

▶ Add the squares in the border of the cluster randomly at exponential
rate 1.

This model is also too complicated!



Scaling exponents
By renormalization group calculations from [Nelson-Forster-Stephen
1977], [Kardar-Parisi-Zhang] predicted universal exponents (1/3, 2/3) for
the one dimensional KPZ equation (roughness χ = 1/2, dynamical
exponent z = 3/2)

x

h(x , t)

t1/3 fluctuations

t2/3 correlation scale

h(x , t)

This suggests to consider the 1 : 2 : 3 scaling, that is to study

lim
L→+∞

{
1

L
h(L2x , L3t)

}
,

and one may ask about limiting distributions, large deviations, sensitivity
to initial conditions, universality...
But the KPZ equation is not a very tractable model



How mathematicians came into the subject?



A seemingly unrelated mathematical problem
How long it takes to board a plane with n passengers?

For simplicity, we assume that the plane has only one seat per row, and
that people need 1 minute to place their suitcase in the overhead bin
compartment. Passengers 1, 2, . . . n queue up in line at the gate in a
random order.

The total boarding time is the longest increasing subsequence (LIS) of
the permutation

LIS(5326714) = 3, because 5 6 7 or 3 6 7 or 2 6 7 are increasing
subsequences.



Random permutations

For a random permutation σ of {1, 2, . . . , n} [Hammersley 1972,
Logan-Shepp, Vershik-Kerov 1977]

LIS(σ) ∼ 2
√
n.

[Baik-Deift-Johansson (≈ 1998)] found that

P
(
LIS(σ)− 2

√
n

n1/6
⩽ s

)
−−−→
n→∞

F2(s).

Tracy-Widom distribution

Let M be a n × n hermitian matrix with independent complex Gaussian
entries. Then, the largest eigenvalue λ1 is such that

P
(
λ1 − 2

√
n

n1/6
⩽ s

)
−−−→
n→∞

F2(s),

where F2 is a cdf now called the [Tracy-Widom (1994)] distribution



A discrete analogue of the KPZ equation
Let n points distributed uniformly on the square. Label them according
to the vertical coordinate. The horizontal coordinate defines a random
permutation.

5

5

3

3

2

2

6

6

7

7

1

1

4

4

σ = (5326714) LIS(5326714) = 3
(x , t)

x

time t

H(x , t) = maximal number of points

along a broken line joining (0, 0) and (x , t)



(x , t)

x

time t

H(x , t) = maximal number of points

along a broken line joining (0, 0) and (x , t)

The result of [Baik-Deift-Johansson] says that

P
(
H(0, t)− 2t

t1/3
⩽ s

)
−−−→
n→∞

F2(s).

The function H(x , t) is a discrete analogue of the KPZ equation h(x , t).
A similar result is expected to hold for any model in the KPZ universality
class.



What is universal in the KPZ universality
class?



KPZ fixed point

For any model described by a height function H(x , t), there should be a
universal process h(x , t), called the KPZ fixed point, such that

1

L

(
H(xL2, tL3)− f (L, x , t)

)
====⇒
L→∞

h(x , t).

The KPZ fixed point satisfies the scale invariance, for all λ > 0,

h(x , t)
(d)
= λ−1h(λ2x , λ3t)

and was recently constructed [Matetski-Quastel-Remenik 2017]
[Dauvergne-Ortmann-Virag 2018]. Note: h(x , t) ̸= h(x , t) (the KPZ
equation is not scale invariant).

By the result of [Baik-Deift-Johansson], one should expect

P (h(0, 1) ⩽ s) = F2(s),

as well as many other results about correlations, dependence on the
initial data, regularity, obtained in the past decades.



An integrable model: corner growth model

▶ Consider an interface H(x , t), (where x ∈ Z) starting from
H(x , 0) = |x |, and add unit boxes at rate 1 in every valley.

H(x , t)

x

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

▶ The interface is mapped to an interacting particle system on Z
called TASEP.



Corner growth model ⇐⇒ TASEP

▶ Consider an interface H(x , t), starting from H(x , 0) = |x |, and add
unit boxes at rate 1 in every valley.

H(x , t)

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

▶ The interface is mapped to an interacting particle system on Z
called totally asymmetric simple exclusion process.

▶ KPZ universality class also describes interacting particle systems,
traffic models...



Construction of the KPZ fixed point

[Matetski-Quastel-Remenik 2017] defined the KPZ fixed point h(x , t) as
a Markov process on the space of upper semi-continuous functions, based
on a scaling limit of TASEP

H(x , t)

−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7

They showed that under the 1:2:3 scaling, for arbitrary functions
G1(x),G2(x) that rescale to some function g1(x), g2(x),

P (H(·, t) ⩽ G2|H(·, s) = G1) −−−−−−−−−−→
1:2:3 scaling limit

P (h(·, t) ⩽ g2|h(·, s) = g1)

and proved that there exist a Markov process corresponding to the RHS.



Back to the KPZ equation



∂th(x , t) =
1
2∂xxh(x , t) +

1
2

(
∂xh(x , t)

)2
+ ξ(x , t)

Rigorous solution theories

When ξ is a space-time white noise, ∂xh(x , t) is not a function, it can

only be understood as a distribution, thus
(
∂xh(x , t)

)2
is ill-defined.

Thus one mollifies the noise as ξϵ = ξ ∗ ϕ for some ϕ ∈ C∞
c (R2), consider

∂th
ε = 1

2∂xxh
ε + 1

2

(
∂xh

ε
)2

+ ξε,

and show that the solution hϵ converges as ϵ → 0, cf [Hairer 2011]
[Gubinelli-Imkeller-Perkowski 2012]

It is more convenient to define a solution h as h(x , t) = logZ (x , t) where

∂tZ (x , t) =
1
2∂xxZ (x , t) + Z (x , t)ξ(x , t).

that is

Z (x , t) =

∫
R
dyZ0(y)pt(y , x) +

∫ t

0

ds

∫
R
dypt−s(y , x)Z (y , s)ξ(y , s)

where pt(y , x) is the standard heat kernel.



Directed polymer interpretation
Via the Feynman-Kac formula, a solution of

∂tZ (x , t) =
1
2∂xxZ (x , t) + Z (x , t)ξ(x , t).

with initial condition Z0 can be written as

Z (x , t) = E
[
Z0(B0) :exp:

(∫ t

0

ξ(Bs , s)ds

)]
where the expectation is taken over a Brownian motion B from B0 to
Bt = x .

x

t

ξ(x , t)

Z0(B0)

(x , t)



The distribution of the solution
The probability distribution of Z (0, t) is characterized by the Laplace
transform formula

Theorem

E
[
e−uZ(0,2t)et/12

]
= E

[
k∏

i=1

1

1 + uet1/3ai

]
where a1 > a2 > ... is the Airy point process.

Airy point process

It describes the scaling limit of largest eigenvalues of hermitian random
matrices.
Let M be a n × n Hermitian matrix with independent complex Gaussian
entries with eigenvalues λ1 > λ2 > · · · > λn. Then,(

λi − 2
√
n

n1/6

)
i⩾1

====⇒
n→∞

(ai )i⩾1 .

Detailed knowledge of eigenvalue statistics transfers to the KPZ
equation



Equivalently

E
[
e−uZ(0,2t)et/12

]
= det(I − σuK )L2(R+)

where σu(x) =
1

1+uet
1/3x

and K is an operator on L2(R+) with kernel

K (x , y) =

∫ ∞

0

Ai(x + z)Ai(y + z)dz ,

the so-called Airy kernel.

Proof (≈ 2008):

▶ In Physics: [Calabrese-Le Doussal-Rosso][Dotsenko] via Replica
method + Bethe ansatz

▶ In Maths: [Amir-Corwin-Quastel][Sasamoto-Spohn] via
[Tracy-Widom] Bethe ansatz solution of ASEP

Corollary (by the same groups of authors ≈ 2008)

Recalling that h(x , t) = logZ (x , t), one can deduce

P
(
h(0, 2t)− t/12

t1/3
⩽ s

)
−−−→
n→∞

F2(s).



Stationary measures of the KPZ equation

The KPZ equation is modeling out of equilibrium systems. So, it should
not have admit true stationary measure. Actually, we saw that
h(0, t) ∼ −t

24 , which clearly diverges.

Definition (Non-equilibrium steady-state)

We say that the law of a process hstat(x) is stationary for the KPZ
equation when the following holds:
If h(x , 0) = hstat(x), then for all t > 0,

h(t, x)− h(t, 0)
(d)
= hstat(x)− hstat(0).

For the KPZ equation on R, the Brownian motion with drift µ (µ ∈ R
can be arbitrary) is stationary for the KPZ equation
[Forster-Nelson-Stephen 1977, Bertini-Giacomin 1997, Funaki-Quastel
2014].



Stationary measures of stochastic PDEs

This stationarity of the Brownian motion is far from obvious!

▶ (Linear case) For stochastic PDEs of the form

∂tu = Lu + ξ

where L is a linear differential operator, stationary measures are
Gaussian and there exists a general theory.

▶ (Equilibrium case) The path integral measure

e−S[ϱ]Dϱ

is the stationary measure for the equation

∂tu = −δS [u]

δu
+
√
2ξ.

[Nelson 1966, Parisi-Wu 1981]

▶ The KPZ equation is non linear and out of equilibrium.



ASEP

ASEP (asymmetric simple exclusion process) is a continuous Markov
process on {0, 1}Z, whose transition rates depend on an asymmetry
parameter q.

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

1 q 1 1q

▶ For any ϱ ∈ [0, 1], i.i.d. Bernoulli(ϱ) is a stationary measure.

▶ Define a height function H(x , t) so that

H(x , t)− H(x − 1, t) =

{
1 if site x is occupied.

−1 if site x is empty.

and H(0, t) is the number of particles which have crossed the origin.



Convergence ASEP → KPZ

Theorem ([Bertini-Giacomin 1997])

Let Zt(x) = q
1
2H(x,t)−νt , where ν = (1−√

q)2. For q = e−ε, when
ε → 0

Zϵ−4t(ϵ
−2x) =⇒ Z (x , t),

the solution of
∂tZ = 1

2∆Z + Z ξ.

ASEP height function converges to a solution of KPZ equation.

When occupation variables are i.i.d. Bernoulli, ASEP’s height function
converges to a Brownian motion (with drift), up to a global shift.

Corollary ([Bertini-Giacomin 1997])

For any drift µ ∈ R, the Brownian motion B
(µ)
x is stationary



KPZ equation on a segment

The one dimensional KPZ equation can be considered on R, but also on
R/Z, [0, L], R+...

Consider the KPZ equation on the segment [0, L],

∂th(x , t) =
1
2∂xxh(x , t) +

1
2

(
∂xh(x , t)

)2
+ ξ(x , t), x ∈ [0, L].

For the solution to be unique, one needs to impose boundary conditions.
It is natural to impose a Newman type condition

∂xh(0, t) = u, ∂xh(L, t) = −v ,

where u, v ∈ R are two real parameters.

Physically, ∂xh corresponds to the density in ASEP but h(x , t) is not
differentiable, so some care is needed to define the model.



Stationary measures on [0, L]

On a segment, the KPZ equation stationary measures are not simply
Brownian:

Theorem

For any u, v ∈ R, there exists a unique stationary process hLu,v (x) with law

hLu,v (x)
(d)
= W (x) + X (x)

where W is a Brownian motion on [0, L] and X is a reweighted Brownian
motion

dP(X )

dBrownian
= e−vX (L)

(∫ L

0

e−X (s)ds

)−u−v

.

▶ When u + v = 0, hLu,v is a Brownian motion with drift −v .

▶ When u, v → +∞, hLu,v is the sum of a Brownian motion and a
Brownian excursion, similar to [Derrida-Enaud-Lebowitz 2004].

▶ Letting L → ∞, one obtains stationary measures for the KPZ
equation on R+ [B.-Le Doussal 2021][B.-Corwin 2022].



Proof
▶ The first proof was restricted to the case u + v ⩾ 0 and involved

▶ The characterization of open ASEP stationary measure via the
matrix product ansatz [Derrida-Evans-Hakim-Pasquier 1993]

1 2 3
. . .

ℓ

1 q 1 1qα

γ

β

δ

▶ A representation of the matrix product ansatz
[Uchiyama-Sasamoto-Wadati 2004] and its relation to Askey-Wilson
processes [Bryc-Wesolowski 2015]

▶ [Corwin-Knizel 2021] Proved existence, and characterized the
distribution through (complicated) formula for the distribution

▶ [Bryc-Kuznetsov-Wang-Weso lowski 2022] and [B.- Le Doussal 2022]
worked out inversion.

▶ [Matetski-Knizel 2023, Parekh 2023] Uniqueness of the stationary
process using ideas of [Hairer-Mattingly 2015]

▶ There exists a simpler derivation, still restricted to u + v ⩾ 0 [B.-Le
Doussal 2022], using ideas from [Derrida-Enaud-Lebowitz 2004].

▶ And more recently, for any u, v , yet another method, inspired by
symmetric functions theory rather than the matrix product ansatz
[B.-Corwin 2022], [B.-Corwin-Yang 2023]



Liouville quantum mechanics

The reason for the restriction to u + v ⩾ 0 in most works is that the
process X (x) is written as

X (x) = Y (x)− Y (0),

where Y is a reweighted Brownian motion

dP(Y )

dBrownian
= exp

(
uY (0)− vY (L)−

∫ L

0

e−Y (s)ds

)
.

The process Y can only be defined for u + v > 0. In terms of path
integral,

P(Y ) = exp

(
−uY (0)− vY (L)−

∫ L

0

e−Y (s)ds −
∫ L

0

(
dY (s)

ds

)2

ds

)
D(Y )

This is a one dimensional analogue of Liouville field theory. The initial
proof of the theorem came from recognizing Liouville quantum mechanics
in exact formulas...



Another type of models in the KPZ class



Random walks in random environment
Let Xt be a random walk on Z, starting from 0, such that when Xt = x ,

Xt+1 =

{
x + 1 with probability px,t ,

x − 1 with probability 1− px,t .

If px,t ≡ 1/2, the model is well-understood. If px,t are disordered, say
independent and uniform in (0, 1), then

Theorem (B.-Corwin 2015)

Consider n independent walks in the same environment X
(1)
t , . . . ,X

(n)
t ,

then for n = ect , c ∈ (0, 1),

P

(
maxi∈{1,...,n} −t

√
c(2− c)

σ(c)t1/3
⩽ s

)
−−−→
t→∞

F2(s).

The statement can be rephrased in terms of large deviations as

− log
(
P
(
Xt > xt

∣∣{py ,s})) ≈ I (x) · t + c ′′ · t1/3 · χ

where P(χ ⩽ s) = F2(s).



Random walks in random environment
Consider n independent walks in the same environment X

(1)
t , . . . ,X

(n)
t . If

one lets t → ∞ and then take n large, the maximum would behave as
the maximum of Gaussian variables, following well known extreme value
statistics (and have much smaller fluctuations).

lim
t→∞

max
i∈{1,...,n}

{
X

(i)
t√
t

}
≈
√
log(n) +

1√
2 log(n)

(
G − 1

2
log log(n)

)
,

where G follows the Gumbel distribution.

Theorem ([B.-Le Doussal 2019])

Consider n independent walks in the same environment X
(1)
t , . . . ,X

(n)
t

and scale n = e
√
tτ ,

max
i∈{1,...,n}

{
X

(i)
t√
t

}
≈
√
log(n) +

1√
2 log(n)

(
G + h(0, τ)− 1

2
log log(n)

)
where G follows the Gumbel distribution and h(0, τ) is distributed as in
the KPZ equation.



Thank you


