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Stationary measures of open boundary systems

The stationary measure of ASEP with boundary parameters α, β, γ, δ can
be obtained using Matrix Product Ansatz (MPA)
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The stationary measure P(η), η ∈ {0, 1}N can be written as
[Derrida-Evans-Hakim-Pasquier 1993]

P(η) =
1

ZN
⟨w |

N∏
i=1

(ηiD + (1− ηi )E ) |v⟩

provided the matrices E ,D and the vectors ⟨w | , |v⟩ satisfy

DE − qED = D + E

⟨w | (αE − γD) = ⟨w |
(βD − δE ) |v⟩ = |v⟩

and ZN = ⟨w | (E + D)N |v⟩ < ∞.



Stationary measures of open boundary systems

The MPA applies as well for systems with multiples species and other
interacting particle systems.

For quantum systems, it is common to search for ground states in the
form of matrix product states, or more general tensor networks.

MPA representations are related to

▶ Askey-Wilson orthogonal polynomials [Uchiyama-Sasamoto-Wadati
2004],

▶ Combinatorial structures, e.g. staircase tableaux [Corteel-Williams
2010],

▶ Algebraic Bethe Ansatz

▶ Families of symmetric functions [Cantini-De Gier-Wheeler 2015].



In this talk
Joint work with Ivan Corwin and Zongrui Yang

For models related to Schur or Macdonald processes, and integrable
stochastic vertex models, stationary measures can be written as a
marginal of a Gibbs measure on a larger state space, related to the
branching structure of underlying symmetric functions.

This method

▶ yields a probabilistic description, suitable for large scale asymptotics,

▶ allows the full range of boundary parameters (shock phase),

▶ works well for models on infinite state spaces, even continuous.
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Plan

1 Illustrate the method for the simplest model: Last Passage
Percolation on a strip (Schur case)

2 Extensions to the log-gamma polymer (Whittaker) and the KPZ
equation (scaling limit)

3 Connection with Matrix Product Ansatz.



Geometric LPP on a strip
Consider the strip {(x , y) ∈ Z2; y ⩽ x ⩽ y + N}.

π(0)

P
p0 p1

(n,m)

π

ωi,i ∼ Geom(ac1)

ωi,j ∼ Geom(a2)

ωi+N,i ∼ Geom(ac2)

Fix a reference down-right path (orange) P = (p0, . . . ,pN), and some
initial condition G (pj) = G0(j).
Define the Last Passage Percolation time

G (n,m) = max
π:P→(n,m)

G (π(0)) +
∑

(i,j∈π)

wi,j





Recurrence relation

G0(j)

P
p0 p1

(n,m)

(n, n)

(n + N, n)

It satisfies the recurrence

G (n,m) = ωn,m+


max(G (n − 1,m),G (n,m − 1)) if 0 < m < n < m + N,

G (n,m − 1) if n = m,

G (n − 1,m) if n = m + N,

On the path P = (p0, . . . ,pN), G (pj) = G0(j).



Stationary measures
Denote by τk the translation by (k , k).

P
p0 p1

τkP
τkp0 τkp1

Consider the increments process

Gk(j) :=
(
G (τkpj)− G (τkp0)

)
1⩽j⩽N

This defines a discrete time Markov process on ZN (infinite state space).

Definition

The law of G0 is stationary if the law of Gk is the same for all k.



Stationary measure for Geometric LPP

Assume that P is horizontal (for simplicity).

Let
(
L1(j)

)
0⩽j⩽N

and
(
L2(j)

)
0⩽j⩽N

be random walks starting from

L1(0) = L2(0) = 0 with i.i.d increments

Li (j)− Li (j − 1) ∼ Geom(a).

Denote by PRW the associated probability measure.

Define the reweighted random walk measure

Pa,c1,c2
Geo (L1,L2) :=

1

Za,c1,c2
Geo

(c1c2)
max1⩽j⩽N

(
L2(j)−L1(j−1)

)
c
L1(N)−L2(N)
2 PRW(L1,L2),

Theorem ([B.-Corwin-Yang 2023])

For any parameters a, c1, c2, the law of L1 under Pa,c1,c2
Geo is the unique

stationary measure.



Inhomogeneity parameters

Let a1, a2, . . . , aN be inhomogeneity parameters, assigned to the
horizontal and vertical edges in a periodic way

c1a5 a1a5 a2a5 a3a5 a4a5 c2a5

c1a1 a2a1 a3a1 a4a1 a5a1 c2a1

c1a2 a3a2 a4a2 a5a2 a1a2 c2a2

c1a3 a4a3 a5a3 a1a3 a2a3 c2a3

a1 a2 a3 a4 a5

a2 a3 a4 a5 a1

a3 a4 a5 a1 a2

a4 a5 a1 a2 a3

a1 a1 a1 a1 a1

a2 a2 a2 a2 a2

a3 a3 a3 a3 a3

We assume now that the weights are
ai

aj

aiaj

wi,j ∼ Geom(aiaj)

ai

c1ai

wi,i ∼ Geom(c1ai )

ai c2ai

wi+N,i ∼ Geom(c2ai )



Two-layer Gibbs measures
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We assign a weight wt(λ) taking the product of Boltzmann weights

wt


y

x
a

 = wt


y

x
a

 = ax−y1x⩾y

wt


y

x
 = wt


y

x
 = 1x⩾y .

wt

 x

y

c1

 = cx−y
1 , wt

 x

y

c2

 = cx−y
2 ,



Two-layer Gibbs measure
wt(λ) defines an infinite measure on Z2N+2 (because wt(λ) is invariant
by translation).
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When c1c2 < 1, for λ
(0)
1 fixed,

Z =
∑

λ\{λ(0)
1 }∈Z2N+1

wt(λ) < ∞

so that wt(λ) defines a probability measure on differences

λ
(x)
i − λ

(0)
1 .



Infinite Schur measure

Signn := {λ ∈ Zn, λ1 ⩾ . . . ⩾ λn} .

Define skew Schur functions by

sλ/µ(a) = 1µ≺λa
|λ|−|µ|,

where |λ| =
∑n

i=1 λi , slightly extending the usual definition. Then,

wt(λ) = c
λ
(0)
1 −λ

(0)
2

1 sλ(1)/λ(0)(ai1)× sλ(2)/λ(1)(ai2)× · · · × c
λ
(N)
1 −λ

(N)
2

2

The structure is similar with the (Pfaffian) Schur measure [Borodin-Rains
2005] on partitions and the free boundary Schur measure
[Betea-Bouttier-Nejjar-Vuletic 2017], except that

▶ The measure is infinite!

▶ The signatures are not necessarily nonnegative and have all length 2.

We will need two summation identities for these Schur functions indexed
by signatures.



(I) (skew) Cauchy identity

One may extend the definition of Schur functions through the branching
rule.
For any a = {a1, . . . , ak}, b = {b1, . . . , bk} with |aibj | < 1,∑

κ∈Signn

sλ/κ(a)sµ/κ(b) =
∑

π∈Signn

sπ/λ(b)sπ/µ(a),

This is different from the usual Cauchy identity. There is no
normalization

∏
1

1−aibj
.

Pictorially,

∑
κ1,κ2∈Z

wt



µ1

µ2

λ1

λ2

b

b

a

a

κ1

κ2

 =
∑

π1,π2∈Z
wt


µ1

µ2

λ1

λ2

π2

π1

a

a

b

b

 .



Other Cauchy identities
Identities of the form∑

κ∈Signn

fλ/κ(a)gµ/κ(b) =
∑

π∈Signn

gπ/λ(b)fπ/µ(a),

were proved for
▶ Hall-Littlewood polynomials [Bufetov-Matveev 2018]
▶ Spin Hall-Littlewood functions [Bufetov-Petrov 2019]

Such identity can be proved using a Yang-Baxter zipper argument.

a

b

−4 −3 −2 −1 0 1 2 3 4 5
λ
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κ

b

a

−4 −3 −2 −1 0 1 2 3 4 5
λ
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π



(II) (skew) Littlewood identity

Let
τλ(c) := c

∑n
j=1(−1)j−1λj = cλ1−λ2+λ3−λ4+....

For even n, and parameters such that |aiaj | < 1 and |aic | < 1,∑
λ∈Signn

τλ(c)sκ/λ(a) =
∑

π∈Signn

τπ(c)sπ/κ(a),

Pictorially, for any fixed κ

∑
λ1,λ2∈Z

wt

 κ2

κ1

λ2

λ1

a

a

c

 =
∑

π1,π2∈Z
wt


κ2

κ1

π2

π1

a

a

c

 .



Dynamics

We will define dynamics of λ corresponding to evolving paths by the
elementary moves

7−→ 7−→ 7−→

One needs to show that

▶ There exists Markov dynamics λ → λ′ such that∑
λ

wtP(λ)P(λ → λ′) = wtP
′
(λ′)

▶ The marginal on λ1 of those dynamics corresponds to last passage
percolation as one evolves the down-right path from P to P ′.



Push-block dynamics
For bulk moves, we want transition probabilities U (π|λ, κ, µ) such that

∑
κ∈Sign2

U (π|λ, κ, µ)wt


µ1

µ2

λ1

λ2

b

b

a

a
κ1

κ2

 = wt

 µ1

µ2

λ1

λ2

π2

π1

a

a

b

b


Assuming U (π|λ, κ, µ; a, b) does not depend on κ, there is a unique
solution (similar to push-block dynamics [Borodin-Ferrari 2008])

U (π|λ, µ) =

wt

 µ1

µ2

λ1

λ2

π2

π1

a

a

b

b



∑
κ∈Sign2

wt


µ1

µ2

λ1

λ2

b

b

a

a
κ1

κ2





First layer marginals

U (π|λ, µ) is a valid transition matrix thanks to the Cauchy identity.

Similarly, one defines transition matrices U (π|κ) and U (π|κ) using the
Littlewood identity.

The marginal dynamics of the first layer are Markov, and the Schur
weights and boundary weights are chosen precisely so that

U (π1|λ1, µ1) ∝ (ab)π1−max{λ1,µ1}1π1⩾max{λ1,µ1},

U (π1|κ1) ∝ (ac1)
π1−κ11π1⩾κ1

U (π1|κ1) ∝ (ac2)
π1−κ11π1⩾κ1

first layer marginal dynamics correspond to geometric LPP



Final trick

Let
Li (x) = λ

(x)
i − λ

(0)
i ,

and ∆ = λ
(0)
1 − λ

(0)
2 .

All the differences λ
(x)
i − λ

(0)
1 are encoded by L1, L2 and ∆ but we are

interested in the marginal law of L1.

An simple calculation shows that∑
∆

wt(λ) ∝ (c1c2)
max1⩽j⩽N

(
L2(j)−L1(j−1)

)
c
L1(N)−L2(N)
2 PRW(L1,L2)

where PRW(L1,L2) denotes geometric random walk probabilities.
This proves the theorem for c1c2 < 1.

For c1c2 > 1, the two-layer Gibbs measure is useless, but the probability
measure on L1 still makes sense. The stationarity can be obtained by
analytic continuation.



Other models



Log-gamma polymer on a strip

π(0)

P
p0 p1

(n,m)

π

ωi,i ∼ Gamma−1(α+ u)

ωi,j ∼ Gamma−1(2α)

ωi+N,i ∼ Gamma−1(α+ v)

Fix some initial condition h(pj) = h0(j). Define the free energy

h(n,m) = log
∑

π:P→(n,m)

eh(π(0))
∏

(i,j∈π)

wi,j


It can also be defined by a recurrence relation as for LPP where (max,+)
becomes (+,×).



Two-layer Gibbs measure: Whittaker case

λ
(0)
2

λ
(1)
2

λ
(2)
2

λ
(3)
2

λ
(N)
2

λ
(0)
1

λ
(1)
1

λ
(2)
1

λ
(3)
1

λ
(N)
1

wt


x

y

u

 = e−u(x−y), wt


x

y

v

 = e−v(x−y),

wt


y

x
α

 = wt


y

x
α

 = e−α(x−y)−e−(x−y)

wt


y

x
 = wt


y

x
 = e−e−(x−y)



Log-gamma polymer stationary measure

Assume now that L1,L2 are random walks with

Li (j)− Li (j − 1) ∼ logGamma−1(α).

Define the reweighted random walk measure Pα,u,v
LG as

Pα,u,v
LG (L1,L2) :=

1

Zα,u,v
LG

 N∑
j=1

eL2(j)−L1(j−1)

−(u+v)

e−v(L1(N)−L2(N))Pα,α
RW(L1,L2),

Theorem ([B.-Corwin-Yang 2023])

For any parameters α, u, v, the law of L1 under Pα,u,v
LG is the unique

stationary measure.



Open KPZ equation

Consider the KPZ equation

∂th(t, x) =
1
2∂xxh(t, x) +

1
2

(
∂xh(t, x)

)2
+ ξ(t, x), t ⩾ 0, x ∈ [0, L]

with boundary conditions [Corwin-Shen 2016]

∂xh(t, x)
∣∣∣
x=0

= u, ∂xh(t, x)
∣∣∣
x=L

= −v .

and initial condition h(t, x) = h0(x).

We say that the law of h0 is stationary if for any t > 0 the law of

h(t, x)− h(t, 0)

is the same as h0.



Open KPZ equation stationary measure

Let PBrownian be the probability measure of two independent standard
Brownian motions L1(x), L2(x) on [0, L]. Defined the reweighted
Brownian measure Pu,v

KPZ on C ([0, L],R) as

dPu,v
KPZ

dPBrownian
(L1,L2) =

1

Zu,v
KPZ

(∫ L

0

dse−(L1(s)−L2(s))

)−u−v

e−v(L1(L)−L2(L)).

Theorem ([B.-Corwin-Yang 2023])

Assume the convergence of the log-gamma free energy to the open KPZ
equation.
For any u, v ∈ R, the law of L1 under Pu,v

KPZ is the unique stationary
measure.

Uniqueness: [Knizel-Matetski, Parekh 2023]
The result was conjectured in [B.-Le Doussal 2021].



Liouville quantum mechanics

When u + v ⩾ 0, the result was already known.

Using exact formulas of [Corwin-Knizel 2021] coming from Askey-Wilson
representations of the MPA, the open KPZ stationary measure can be
written as [Bryc-Kuznetsov-Wang-Wesolowski, B.-Le Doussal 2021]

L1(x) = Λ1(x)− Λ1(0)

where Λ1,Λ2 are reweighted Brownian motions with starting points
distributed as Lebesgue measure,

dPu,v
KPZ

dPBrownian
(Λ1,Λ2) ∝

exp

(
−
∫ L

0

dse−(Λ1(s)−Λ2(s))

)
e−u(Λ1(0)−Λ2(0))e−v(Λ1(L)−Λ2(L))

This is the continuous version of the two-layer Gibbs measure.

Integrating over ∆ = Λ1(0)− Λ2(0), yields the previous description
[B.-Le Doussal 2021].



Back to Matrix Product Ansatz



From 2-layer Gibbs measure to MPA
The two-layer Gibbs weight wt(λ) can be written in matrix product form.
Let

M→
x [a](n, n′) = wt


λ′
1

λ′
2

λ1

λ2

a

a


∣∣∣∣∣∣∣∣∣∣λ1 − λ2 = n
λ′
1 − λ′

2 = n′

λ′
1 − λ1 = x

M↓
x [a](n, n

′) = wt


λ1

λ2

a

a

λ′
1

λ′
2


∣∣∣∣∣∣∣∣∣∣λ1 − λ2 = n
λ′
1 − λ′

2 = n′

λ1 − λ′
1 = x

.

Then the stationary probability can be written as

1

Z
wt

(
N∏
i=1

M→,↓
xi [bi ]

)
v

with wt = (1, c1, c
2
1 , . . . ) and vt = (1, c2, c

2
2 , . . . ).



This yields a representation of the MPA relations

M→
x [a]M↓

y [b] = (ab)min{x,y}(1− ab)
∑

z⩾max{0,y−x}

M↓
z [b]M

→
x−y+z [a],

wtM↓
x [a] = (ac1)

x(1− ac1)
∑
y⩾0

wtM→
y [a],

M→
x [a]v = (ac2)

x(1− ac2)
∑
y⩾0

M↓
y [a]v.

Similarly, in the log-gamma case, the matrices become operators and the
two-layer Gibbs measure yields a representation of the required algebra.



MPA for ASEP
In the case of ASEP, the 2-layer Hall-Littlewood Gibbs measures
[Borodin-Bufetov-Wheeler 2016, Corwin-Dimitrov 2016] yields
representations of

DE − qED = D + E

⟨w | (αE − γD) = ⟨w |
(βD − δE ) |v⟩ = |v⟩

given by

D =
1

1− q


1 1 0

0 1 1
. . .

0 0 1
. . .

...
. . .

. . .

 E =
1

1− q


1 0 0 . . .

1− q2 1 0

0 1− q3 1
. . .

...
. . .

. . .


Boundary vectors ⟨w | and |v⟩ are given by three term recurrence
relations, that are solved by Rogers-Szegö polynomials.
The same polynomials arise as boundary weights of the associated two
layer Gibbs measure (based on the results that [Jimmy He] will present
on Thursday).



Conclusion

1 Two-layer Gibbs measures yield probabilistic descriptions of
stationary measures for open boundary KPZ integrable models;

2 The method is based on Cauchy and Littlewood type identities and
should extend to other Yang-Baxter integrable models;

3 Schur/Macdonald/etc. processes yield representations of the matrix
product ansatz.


