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Abstract
We study the solution of the Kardar–Parisi–Zhang (KPZ) equation for the stochastic growth
of an interface of height h(x, t) on the positive half line, equivalently the free energy of the
continuum directed polymer in a half space with a wall at x = 0. The boundary condition
∂xh(x, t)|x=0 = A corresponds to an attractive wall for A < 0, and leads to the binding of the
polymer to the wall below the critical value A = −1/2. Here we choose the initial condition
h(x, 0) to be a Brownian motion in x > 0 with drift −(B + 1/2). When A + B → −1, the
solution is stationary, i.e. h(·, t) remains at all times aBrownianmotionwith the same drift, up
to a global height shift h(0, t). We show that the distribution of this height shift is invariant
under the exchange of parameters A and B. For any A, B > −1/2, we provide an exact
formula characterizing the distribution of h(0, t) at any time t , using twomethods: the replica
Bethe ansatz and a discretization called the log-gamma polymer, for whichmoment formulae
were obtained. We analyze its large time asymptotics for various ranges of parameters A, B.
In particular, when (A, B) → (−1/2,−1/2), the critical stationary case, the fluctuations
of the interface are governed by a universal distribution akin to the Baik–Rains distribution
arising in stationary growth on the full-line. It can be expressed in terms of a simple Fredholm
determinant, or equivalently in terms of the Painlevé II transcendent. This provides an analog
for the KPZ equation, of some of the results recently obtained by Betea–Ferrari–Occelli in
the context of stationary half-space last-passage-percolation. From universality, we expect
that limiting distributions found in both models can be shown to coincide.
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1 Introduction

The Kardar–Parisi–Zhang equation [1] describes the stochastic dynamics of the height field,
h(x, t), of a growing interface in the continuum, as a function of time, or equivalently, of
the free energy of a continuum directed polymer in a random potential as a function of its
length. In one space dimension, x ∈ R, it is at the center of a vast universality class, the KPZ
class, which contains numerous solvable discrete models with the same large scale behavior.
Examples of such solvable models include random permutations and the associated PNG
growth model, interacting particle systems (TASEP, ASEP, and variants), the stochastic six-
vertex model and other stochastic vertex models, and several discrete models of directed
polymers (DP). There has been many papers on the subject and we refer the reader to the
reviews and lecture notes [2–14]. Exact results have also been obtained for the KPZ equation
itself, and its equivalent system, the continuous directed polymer [15–32]. These results have
been obtained on the full line, x ∈ R, and have allowed proving the existing conjectures for
the scaling exponents of the height fluctuations, δh ∼ t1/3 ∼ x1/2, and to predict and classify
the universal probability distributions which arise for various initial conditions.Most notably,
the droplet and flat initial conditions were shown to lead, at large time, to the Tracy–Widom
distributions [33,34] for the height at one point (centered and scaled by t1/3) associated
respectively to the Gaussian unitary and orthogonal ensembles, GUE and GOE, of random
matrix theory. Some of these predictions have been successfully tested in experiments [35–
40].
It is also interesting for applications [41] to study models in the KPZ class restricted to
the half line x ∈ R+, for which fewer results are available at present. For some specific
coupling to the boundary (at x = 0) the solvability properties can sometimes be preserved.
One can usually define a parameter, that we will call A, and which will be defined below in
Eq. (2.3) for the KPZ equation, characterizing this coupling. For the KPZ equation, A = 0
and A = +∞ correspond respectively to Neumann and to Dirichlet boundary conditions.
The half-line KPZ equation is equivalent to a continuum directed polymer on a half-space
with a wall at x = 0, which is repulsive for A > 0, and attractive for A < 0. A remarkable
feature of the half-space problem is the existence of a critical value Ac of the parameter A at
which a phase transition occurs. In the polymer language it corresponds to a binding of the
polymer to the wall if the attraction is strong enough A < Ac. The existence of this transition
was predicted by Kardar in [42] for the continuum directed polymer, using the replica Bethe
ansatz. No prediction for the height distribution was obtained however.
In mathematics, in a pioneering paper in 1999, Baik and Rains [2] proved the existence of a
similar transition in the context of the longest increasing sub-sequences (LIS) of symmetrized
random permutations. There it was shown that, in the unbound phase, for the droplet initial
condition, and near x = 0, the (scaled) height fluctuations obey the Tracy–Widom distribu-
tion associated to the Gaussian symplectic ensemble (GSE). In the bound phase A < Ac, the
fluctuations are simply Gaussian. Exactly at the transition, A = Ac, fluctuations also obey
the Tracy–Widom distribution but the one associated to the Gaussian orthogonal ensemble
(GOE). These results were extended in other models, e.g. a GSE-GUE crossover was shown
as the endpoint position is varied towards the bulk in the PNG model [43]. For the TASEP
in a half-space, equivalent to last passage percolation in a half-quadrant [3], similar results
were obtained in [44,45] using Pfaffian-Schur processes [46], in particular concerning the
crossover as the parameter controlling the boundary is varied simultaneously with the dis-
tance to the boundary. All these half-space models discussed above can be studied via the
framework of Pfaffian point processes and random matrix theoretic techniques (these mod-
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els are free-fermionic). However these models do not converge to the KPZ equation. The
models converging to the KPZ equation such as the asymmetric simple exclusion process
(ASEP) or directed polymers are not directly related to Pfaffian point processes (they are non-
free-fermionic). Among those, ASEP was studied in [47–49] and the half-space log-gamma
polymer was studied in [50–52].
For the KPZ equation in the half-space, a solution for the one-point height distribution near
the wall valid at any time, was obtained for A = +∞, for the droplet initial condition
using the replica Bethe ansatz in [53] (see also [54]). Another solution (also non-rigorous)
was obtained for A = 0 in [55], with related but different methods using nested contour
integral representations. In both cases the large time limit is found to be GSE Tracy–Widom
, consistent with the general picture obtained by Baik and Rains as discussed above. Next,
taking the limit from a half-space ASEP, a rigorous solution for the critical case A = − 1

2 was
obtained [49], leading to GOE Tracy–Widom fluctuations. More recently, in [56], a solution
valid for any time was found using the replica Bethe ansatz for any A > −1/2, and which
leads to the GOETracy–Widom distribution at the critical point A = −1/2. In [57] a solution
from the RBA, taking into account bound states, was obtained, in agreement with the results
of [56].
A remarkable property of the KPZ equation on the full line is that the stationary measure is
the Brownian motion in the sense that if the initial condition h(x, 0) is a two sided Brownian
motion (with the appropriate amplitude) the PDF of the height difference between two space
points is time independent. This leaves a uniform shift h(0, t) whose fluctuations, scaled by
t1/3, was shown to follow the so-called Baik–Rains distribution, which is universal over the
KPZ class. For theKPZ equation, the solution for all timewith Brownian initial conditionwas
found using the RBA in [30] and proved rigorously in [31]. Early investigations on stationary
models in theKPZ universality class startedwith [58] in the context of the polynuclear growth
model, which introduced the Baik–Rains distribution as the limiting distribution of height
fluctuations. For a very similar model (TASEP), the spatial correlations were investigated
in [59]. Outside the class of free fermionic models, besides [30,31] that we have already
discussed, let us also mention [60] which proved the one point convergence of ASEP height
function towards the Baik–Rains distribution.
The aim of the present paper is to address the same problem, but for the half-line.We study the
KPZ equation on the half-line with a boundary parameter A and an initial condition chosen
as a unit one-sided Brownian motion with a drift, which we denote for later convenience as
−(B + 1

2 ). The problem is thus determined by two parameters, A and B and we will study
the phase diagram in the (A, B) plane. As we show, on the line A + B + 1 = 0 the initial
condition is stationary, in the same sense as above, i.e. the PDF of the height difference
between two space points remains at all time the one of the same Brownian motion. We show
furthermore that the distribution of the height shift, h(0, t), is invariant under the exchange
of parameters A and B. We will use two methods to obtain the exact generating function
which characterizes the distribution of h(0, t), at any time t . The first one is the replica
Bethe ansatz and is a generalization of the calculation presented in [56]. The second one
starts from a known moment formula for the so-called log-gamma polymer [61], and takes
the continuum limit to the KPZ equation. The obtained formula is valid for any point in the
quadrant A, B > −1/2. We then study its large time limit, leading to the phase diagram of
Fig. 1. In the (A, B) plane, the point (A, B) = (−1/2,−1/2) plays a special role, as the
system is critical with respect to the boundary, and at the same time stationary, and will be
called critical stationary. At this point, we show that in the large time limit the fluctuations
of the interface are governed by a universal distribution, that we express in terms of a simple
Fredholm determinant, equivalently in terms of the Painlevé II transcendent. In a sense, it is
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the analog for the half-line problem, of the Baik–Rains distribution for the full line. Inside
the quadrant A, B > −1/2 the distribution is obtained as the GSE Tracy–Widom distribution
and on scales A+ 1

2 , B+ 1
2 ∼ t−1/3, there is a universal two-parameter crossover distribution

that we obtain in the quadrant. In the so-called bound phase A < −1/2 or B < −1/2 away
from the critical stationary point (including along the line A + B + 1 = 0), the fluctuations
are expected to be Gaussian, except when A = B < −1/2 where we expect the fluctuations
to be distributed as the maximum eigenvalue of a 2 × 2 GUE matrix. The crossover to this
behavior is however beyond the scope of this paper. Finally, note that our results will be
consistent in the limit B → +∞ with all previous results for the droplet initial condition, in
particular with the ones in [56] for A ≥ −1/2. The level of mathematical rigor of all these
results is discussed in Sect. 2.4.
It is important to mention that very recently Betea et al. [62] studied stationary half-space
KPZ growth for a discrete model, the last-passage-percolation with exponential weights (i.e.
a zero-temperature polymer). They obtained a formula for the asymptotic height distribution,
depending on several parameters controlling the distance to the boundary and the position
on the line A + B + 1 near the critical stationary point. We expect, from the universality
within the KPZ class, that our present result and theirs should match. The Pfaffian formula
of [62, Theorem 2.7] and our formulae (2.25), (2.27) and (2.28) look different. Although we
also have a Pfaffian representation, Eq. (2.20), the associated kernels are different and we
do not have a general method to show the equivalence of the Fredholm Pfaffians. A similar
issue is discussed in [56, Sect. 4.2, Eq. (74)] . Note that our formula allows for a very easy
numerical evaluation of the CDF, given below in Fig. 3, and of the first moments, and allows
us to determine tail estimates.

It would be interesting to study the distribution of h(x, t) when x is at a distance of
order t2/3 from 0, and A, B are scaled close to −1/2. This would correspond to varying the
parameter η in [62]. However, while we can obtain some integral formula for the moments
of Z(x, t) in the case x > 0, see (4.19) below, we do not expect that it can be rewritten as
a Pfaffian formula and the asymptotic analysis would require to develop other methods. We
leave this for future consideration.

Outline

First in Sect. 2 we define the models and make a summary of the main results and formulae
obtained in this paper. In the two following sections we compute the moments of the polymer
partition sum, i.e. the exponential moments of the KPZ field, by two methods. In Sect. 3
we present the derivation using the Bethe ansatz. In Sect. 4 we obtain the moments starting
from the log-gamma polymer, and check that the two moment formulae coincide. In Sect. 5
we obtain, a Pfaffian formula for the Laplace transform generating function by summing up
the moments. This leads to our first result, valid for all times and any A, B > −1/2, for
the generating function as a Fredholm Pfaffian in terms of a matrix kernel. The large time
limit of this formula, and of the matrix kernel, is studied in Sect. 6. In Sect. 7 we extend the
method described in [54] to obtain a formula for the Laplace transform generating function
in terms of a scalar kernel, valid for all times and A, B > −1/2. In Sect. 7.2 we perform the
large time limit on this scalar kernel, which leads to a two parameter family of interpolating
kernels near the point (A, B) = (−1/2,−1/2). From it we obtain various limits, including
our formula for the critical stationary distribution.
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2 Model andMain Results

2.1 Model

In this paper we study the KPZ equation, which reads, in dimensionless units

∂t h(x, t) = ∂2x h(x, t) + (∂xh(x, t))2 + √
2 ξ(x, t) (2.1)

where ξ(x, t) is the standard space-timewhite noise,withE[ξ(x, t)ξ(x ′, t ′)] = δ(x−x ′)δ(t−
t ′). One introduces, via theCole-Hopfmapping, the directed polymer partition sum Z(x, t) =
eh(x,t), where h(x, t) is solution of the KPZ equation (2.1). It satisfies the multiplicative noise
stochastic heat equation (SHE)

∂t Z(x, t) = ∂2x Z(x, t) + √
2 ξ(x, t) Z(x, t) (2.2)

understood here with the Ito prescription. Equation (2.2) means that Z(x, t) can be seen as
a partition sum over continuum directed paths in the random potential −√

2 ξ(x, t), with the
endpoint at time t fixed at position x .

Definition 2.1 We consider the SHE on the half-line x ≥ 0 with boundary parameter A and
(x, t) 	→ Z(x, t) to be the solution to (2.2) (it can be shown that the solution is unique, see
[63,64] and references therein) with the boundary condition

∂x Z(x, t)|x=0 = AZ(0, t). (2.3)

and with the Brownian initial data, in presence of a drift −1/2 − B

Z(x, 0) = eB(x)−(1/2+B)x (2.4)

We have shifted by 1/2 the drift parameter to make more explicit a remarkable symmetry
between parameters A and B. Indeed, we show (see Claim 4.9) that for any A, B ∈ R, we
have the equality in distribution

Z B
A (x = 0, t) = Z A

B (x = 0, t), for any t > 0.

When B goes to +∞, we recover a result recently proved in [65, Theorem 1.1].
When A + B + 1 = 0, the model defined in Definition 2.1 is stationary in the sense that

for any fixed time t , the spatial process {Z(x, t)/Z(0, t)}x≥0 has the same distribution as
{Z(x, 0)}x≥0, that is the exponential of a standard Brownian motion with drift −1/2 − B.
Equivalently, the distribution of the slope field ∂xh(x, t) is time-stationary. Let us explain
where this condition A + B + 1 = 0 comes from. In Sect. 4, we consider a discretization
of the KPZ equation, the log-gamma directed polymer. We identify in Sect. 4.2 initial and
boundary conditions for the log-gamma polymer which make increments of the partition
function stationary in time, using a result from [61] which deals with the full-space case.
The log-gamma polymer partition function converges weakly to the stochastic heat equation
from Definition 2.1 at high temperature, see details in Sect. 4.3 (note that we provide only a
sketch of proof of this result based on the combination of results from [66] to [65]). Hence
we may pass to the limit, and taking into account the precise scalings, we obtain that the
spatial process {Z(x, t)/Z(0, t)}x≥0 is stationary when A + B + 1 = 0.

There may exist other initial conditions for the half-space KPZ equation (or equivalently
the stochastic heat equation) such that the slope field ∂xh(x, t) is time-stationary. Indeed,
the KPZ equation arises as a scaling limit of the height function of particle systems such as
ASEP for which other stationary distributions exist (see Refs. [67–71]).
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Before presenting our main results, let us clarify the meaning of the boundary condition
(2.3).As a process in x , Z(x, t)has the same regularity as aBrownianmotion, hence ∂x Z(x, t)
cannot be associated to a real value. To make sense of (2.3), we say [63] that Z(x, t) is a
solution of (2.2) if it satisfies

Z(x, t) =
∫ ∞

0
pA
t (x, y)Z(y, 0)dy +

∫ ∞

0
dy
∫ t

0
pA
t−s(x, y)Z(y, s)ξ(y, s)ds, (2.5)

where the last integral is an Ito integral and pA
t (x, y) is the heat kernel on the positive half-line

(i.e. it solves the equation ∂t u = �u with initial data δy) that satisfies the boundary condition

∂x p
A
t (x, y)

∣∣
x=0 = A pA

t (0, y), t > 0, y > 0. (2.6)

The main consequence that we will use below is that

∂xi E [Z(x1, t) . . . Z(xn, t)]
∣∣∣
xi=0

= A E [Z(x1, t) . . . Z(xn, t)]
∣∣∣
xi=0

, 1 ≤ i ≤ n, (2.7)

which can be obtained by replacing Z(xi , t) using (2.5) inside the expectation and differen-
tiating with respect to xi .

In terms of directed polymers, Z(x, t) can be represented as a partition sum over directed
paths

Z(x, t) = EB

[∫ +∞

0
dy eB(y)−(B+1/2)y

∫ x(t)=x

x(0)=y
Dx(τ )e− ∫ t0 dτ [ 14 ( dxdτ )2−√

2η(x(τ ),τ )+2Aδ(x(τ ))]
]

,

(2.8)
where η is a space-timewhite noise andD denotes the “measure on paths”; more precisely the
path integral is defined as an expectation value over reflected Brownian bridges x(τ ) ∈ R+
(reflected at x = 0) for a given realization of the Brownian initial condition B(y), followed
by an expectation over the Brownian B. The extra δ interaction ensures the proper boundary
condition at x = 0 for Z(x, t), see [55, Sect. 3.2].

2.2 Presentation of theMain Results

Our main results concern the height at x = 0, h(0, t). In general its large time behavior is
expected to be

h(0, t) � vA,B∞ t + tβχ (2.9)

where χ is anO(1) random variable, and β the growth fluctuation exponent. In the quadrant
A, B ≥ −1/2, to which our exact results are restricted, one has β = 1/3 and v

A,B∞ = − 1
12 .

Hence to present these results, we define everywhere the shifted variable

H(t) = h(0, t) + t

12
(2.10)

Note however that in the so-called bound phase, which will not be studied in great detail
here, we expect a different value of v

A,B∞ with β = 1/2 and different distributions for χ

(see Sect. 4.6). In the limit B → +∞, i.e. for the droplet initial condition, it was found
[57] that v

A,+∞∞ = − 1
12 + (A + 1

2 )
2 for A ≤ −1/2. In the general A, B case, we expect

that vA,B∞ = − 1
12 +
(
min
{
A + 1

2 , B + 1
2 , 0
})2

, based on a heuristic argument presented in

Sect. 4.6.
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2.2.1 Finite Time: Fredholm Pfaffian of Matrix Kernel

Our main result valid for all time t ≥ 0 and all A, B > − 1
2 is that the following generating

function defined for ς > 0 can be written as a Fredholm Pfaffian

E

[
exp(−ςWeH(t))

]
= 1 +

+∞∑
ns=1

(−1)ns

ns !
ns∏
p=1

∫
R

drp
ς

ς + e−rp
Pf
[
K (ri , r j )

]
ns×ns

. (2.11)

HereW is a random variable, with an inverse gamma distribution of parameter A+B+1, see
(3.22), independent from H(t), which enters in the construction of the generating function.
The kernel K is matrix valued and represented by a 2 × 2 block matrix with elements

K11(r , r
′) =
∫∫

C2

dw

2iπ
dz

2iπ
w − z

w + z
G(w)G(z) cos(πw) cos(π z)e−rw−r ′z+t w3+z3

3 ,

K22(r , r
′) =
∫∫

C2

dw

2iπ
dz

2iπ
w − z

w + z
G(w)G(z)

sin(πw)

π

sin(π z)

π
e−rw−r ′z+t w3+z3

3 ,

K12(r , r
′) =
∫∫

C2

dw

2iπ
dz

2iπ
w − z

w + z
G(w)G(z) cos(πw)

sin(π z)

π
e−rw−r ′z+t w3+z3

3 ,

K21(r , r
′) = −K12(r

′, r).

(2.12)

where the dependence in parameters A, B only appears in the function

G(z) = �(A + 1
2 − z)

�(A + 1
2 + z)

�(B + 1
2 − z)

�(B + 1
2 + z)

�(2z) (2.13)

and the contour C is an upwardly oriented vertical line parallel to the imaginary axis with
real part between 0 andmin{A+ 1

2 , B+ 1
2 , 1}. The series in (2.11) can also be interpreted as a

Fredholm Pfaffian, see Eq. (5.17) andAppendix B. The kernel (2.12) has a similar structure as
the kernel defining the GSE Tracy–Widom distribution [72]. It is not entirely obvious that the
integrals over the ri in (2.11) are well-defined, but this is the case. Indeed, one can show that
(i) all the entries of K have exponential decay as r , r ′ go too +∞, using a standard contour
shift argument, see e.g. [51, Lemma 6.4] (ii) all entries of K grow at most polynomially with
|r |, |r ′|, which can be shown using a variant of [51, Lemma 7.11].

2.2.2 Finite Time: Result in Terms of a Scalar Kernel

The matrix kernel in (2.12) has the structure of a Schur Pfaffian. Following [54] and
Appendix B, we are able to express the generating function in terms of the Fredholm deter-
minant of a scalar kernel

E

[
exp(−ςWeH(t))

]
=
√
Det(I − K̄t,ς )L2(R+). (2.14)

were the kernel K̄t,ς defined for all (x, y) ∈ R
2+ as

K̄t,ς (x, y) = 2∂x

∫∫
C2

dwdz

(2iπ)2
G(z)G(w)

sin(π(z − w))

sin(π(z + w))
ςw+ze−xz−yw+t w3+z3

3 (2.15)

where the function G(z) is defined in (2.13). Again this formula is valid for for all time t ≥ 0
and all A, B > − 1

2 . In principle from formula (2.11) or (2.14) the PDF of H(t) for any time
t can be extracted, see e.g. [53] for the case A, B = +∞. Here, we only extract the PDF’s
in the large time limit, as we now discuss.
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Remark 2.2 The kernel K̄t,ς can be extended by adding a fictitious variable so that the r.h.s
of (2.14) is a τ -function of the Kadomtsev-Petviashvili (KP) equation, see Appendix E.

Remark 2.3 Other cases where it is possible to transform a matrix-valued kernel into a scalar
kernel have been considered in the random matrix literature, see Refs. [34, Sects. II–III] and
[73, Sect. 3.1].

2.2.3 Large Time Limit and Phase Diagram

The phase diagram in the (A, B) plane in the large time limit is shown in Fig. 1. Qualitatively
there are three regions. In the region A < −1/2 with A < B, we expect, from the results
of [57] for B = +∞, that the polymer is “bound to the wall” and that the (scaled) height
distribution at large time is Gaussian (see also analogous results for other models in [74],
[44, Sect. 6], [51, Sect. 8.1]). By “bound to the wall”, we mean that the polymer path
spends most of its time at the boundary and does not significantly venture into the bulk, this
phenomenon was predicted by Kardar [42] who studied the depinning of the polymer by
the random environment. By symmetry the same can be expected for the region B < −1/2
with B < A, which corresponds to a polymer “bound to the Brownian”. In the special case
where A = B < −1/2, the nature of fluctuations is different, there is a competition between
the boundary and the initial condition and we expect that the fluctuations have the same
distribution as the largest eigenvalue of a 2 × 2 GUE matrix, based on heuristic arguments
presented in Sect. 4.6. We have, however, no exact formula for the region A < −1/2 or
B < −1/2 called the bound phase. Our exact results concern the third region, the quadrant
A, B ≥ −1/2.

The first result is that for any fixed A, B > −1/2, the distribution of the height H(t)
converges at large time to the GSE Tracy–Widom distribution F4

lim
t→∞ P

(
H(t)

t1/3
≤ s

)
= F4(s), A, B > −1/2. (2.16)

When A = −1/2, and for any B > −1/2 we find that the fluctuations are given the GOE
Tracy–Widom distribution.

lim
t→∞ P

(
H(t)

t1/3
≤ s

)
= F1(s), A = −1/2, B > −1/2. (2.17)

By symmetry the same holds for B = −1/2 and any A > −1/2. These results are natural
to expect. Indeed, when B > −1/2, the initial condition has a drift so negative that the
asymptotics of the height function should be the same as for the narrow wedge initial data.
The limiting distribution then depends on the value of the boundary parameter A according
to the Baik–Rains transition discussed in the Introduction, hence the GSE and GOE Tracy–
Widom asymptotics.

To study the “critical stationary” point (A, B) = (−1/2,−1/2) we write1

A + 1

2
= t−1/3a, B + 1

2
= t−1/3b, (2.18)

and consider the large time limit at fixed values of a, b. This corresponds to zooming around
the critical stationary point as represented in Fig. 2. It is natural to expect – and we indeed

1 Note that the parameter A plays the same role as in [49] and [56] but was denoted a in [55] and b in [57].
The parameter that we denote a was denoted ε in [56].
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Fig. 1 Phase diagram indicating the distribution of height fluctuations at large time, as a function of the
parameters A, B. The nature of fluctuations in the dashed area around (A, B) = (−1/2, −1/2) is explained
in Fig. 2

show – that in the large time limit there is a two parameter family of CDFs F (a,b)(s), indexed
by a, b such that

lim
t→∞ P

(
H(t)

t1/3
≤ s

)
:= F (a,b)(s). (2.19)

Here, we first obtain a Fredholm Pfaffian formula for the CDF F (a,b)(s) with a, b > 0,
by taking the large time limit of the matrix kernel formula (2.11). It reads

F (a,b)(s) =
(
1 + ∂s

a + b

)
Pf(J − K (a,b))L2(s,+∞) (2.20)

where the large time matrix kernel K (a,b) is given in (6.5). Equivalently, a more convenient
formula is obtained by taking the large time limit of the scalar kernel formula (2.14). We
then obtain the CDF of the one-point KPZ height H(t) in the critical region, in terms of a
Fredholm determinant, for a, b > 0

F (a,b)(s) =
(
1 + ∂s

a + b

)√
Det(I − K̄ (a,b))L2(s,+∞) (2.21)
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Fig. 2 Zoom into the vicinity of (A, B) = (−1/2, −1/2). The distribution of height fluctuations at large time
is indicated as a function of parameters a = t1/3(A + 1

2 ), b = t1/3(B + 1
2 )

where the scalar transition kernel K̄ (a,b) takes the form

K̄ (a,b)(x, y) =
∫ +∞

0
dλA(a,b)(x + λ)A(a,b)(y + λ)−1

2
A(a,b)(x)

∫ +∞

0
dλ A(a,b)(y + λ) .

(2.22)
Here the function A(a,b)(x) is defined by the integral representation

A(a,b)(x) =
∫

dz

2iπ
a + z

a − z

b + z

b − z
e−xz+ z3

3 , (2.23)

where the contour is a upwardly oriented vertical line with real part between 0 and min{a, b}.
Finally, introducing the operator Âs with kernel Âs(x, y) = A(a,b)(x + y + s), the final
and simplest expression for the cross-over CDF obtained from an algebraic manipulations of
(2.21) is

F (a,b)(s) = 1

2

(
1 + ∂s

a + b

)(
Det(I − Âs)L2(R+) + Det(I + Âs)L2(R+)

)
(2.24)

It is clear on this formula that if a, b → +∞ simultaneously, then A(a,b)(x) con-
verges to the standard Airy function, and K̄ (a,b) to the kernel associated to the GSE
Tracy–Widom distribution (in the form found in [53]). This thus matches smoothly with
the result (2.16) valid for any fixed A, B > −1/2. Another interesting limit, that we call
F (a)(s) = limb→+∞ F (a,b)(s), is the limit b → +∞ at fixed a, which corresponds to the
droplet initial condition in the critical region for the wall parameter. A formula for that CDF
was obtained, for a ≥ 0, using the RBA in [56]. It was conjectured to coincide with the GSE-
GOE-Gaussian crossover introduced by Baik and Rains [74], see also [44,45] in the context
of last passage percolation. This crossover was also studied in the context of spikedmodels of
randommatrices from the GSE [75]. By the A ↔ B symmetry, the case A → +∞ is similar,
and we obtain the same distribution F (b)(s) = lima→+∞ F (a,b)(s), which corresponds to
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the model with Brownian initial data in presence of an infinite repulsive wall (see [64] for a
more mathematical interpretation). This is consistent with Tracy–Widom GOE fluctuations
for any fixed A = −1/2 and B > −1/2 (a = 0, b = ∞) or fixed B = −1/2 and A > −1/2
(b = 0, a = ∞).

A more difficult limit, which we discuss now, is the stationary critical point (A, B) =
(−1/2,−1/2) corresponding to both a, b → 0.

2.3 Stationary Critical Distribution

At the point (A, B) = (−1/2,−1/2) we have found a remarkable universal distribution,
corresponding to the CDF F(s) := F (0,0)(s). Taking the limit a, b → 0 is delicate (as it is
also to obtain the Baik–Rains distribution) and we found that the representation of the kernel
K̄ (a,b) as in (2.22) was crucial. The limit is performed in Sect. 7.3. We have shown that the
limit is well defined, i.e. independent of the ratio r = b/a. We have obtained the result in
several equivalent forms. We recall that we are characterizing the CDF F(s) such that

lim
t→∞ P

(
H(t)

t1/3
≤ s

)
= F(s), A = B = −1/2. (2.25)

The first form is in terms of the sum of two Fredholm determinants. Defining the following
two kernels acting on functions in L

2(R+),

Ais(x, y) = Ai(s + x + y), Ãis(x, y) = Ai(s + x + y) +
∫ +∞

0
dλAi(s + x + λ),

(2.26)

then
F(s) = ∂s

[
2Det(I + Ãis) + (s − 2)Det(I + Ais)

]
. (2.27)

The second form is expressed in terms of the CDF’s of the GOE and GUE Tracy–Widom
distributions F1 and F2 respectively, as

F(s) = ∂s

[
F2(s)

F1(s)

∫ s

−∞
dt

F1(t)4

F2(t)2

]
. (2.28)

which is very reminiscent of the formula for the Baik–Rains distribution for the full space
stationary problem [recalled in (C.12)]. The third form is expressed in terms of the Hastings–
McLeod solution q(s) to the Painlevé II equation as

F(s) = ∂s

[
e− 1

2

∫ +∞
s dr [(r−s)q2(r)−q(r)]

∫ s

−∞
dr e−2

∫ +∞
r dt q(t)

]
. (2.29)

The first moments and cumulants are given in the Table 1 and we plot in Fig. 3, the CDF
F together with its derivative, the PDF. Finally, we computed and plotted in Appendix D the
asymptotics of the CDF F(s)

• for large positive s

1 − F(s)

= s3/4e− 2s3/2
3

4
√

π

[
1 + 139s−3/2

48
− 11423s−3

4608
+ 3907027s−9/2

663552

−2886147455s−6

127401984
+ o(s−6)

]
(2.30)
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Table 1 Mean, variance, skewness and excess kurtosis of the half-space critical stationary distribution and
comparison with the Tracy–Widom and Baik–Rains distributions (see [76, Sect. 9.4.1] and [77])

Distribution Mean Variance Skewness Excess kurtosis

Half-space stationary 0 1.649 0.266 0.134

Tracy–Widom β = 1 −1.2065 . . . 1.6078 . . . 0.2935 . . . 0.1652 . . .

Tracy–Widom β = 2 −1.7711 . . . 0.8132 . . . 0.2241 . . . 0.0934 . . .

Tracy–Widom β = 4 −2.3069 . . . 0.5177 . . . 0.1655 . . . 0.0492 . . .

Baik–Rains 0 1.1504 . . . 0.3594 . . . 0.2892 . . .

Fig. 3 Left:Critical stationaryCDF F . Right: correspondingPDF.SeeFig. 6 inAppendix.D for the comparison
with the asymptotics (s → ±∞) in true and logarithmic scales

• and for large negative s

F(s) = 2−203/48eζ ′(−1)/2 exp
[− |s|3

24
− |s|3/2√

2
+ 23

16
log |s| + 91

8
√
2 |s|3/2

− 3957

128 |s|3 + 28717

128
√
2 |s|9/2 − 469683

512 |s|6 + o(s−6)
] (2.31)

As we mentioned above, it remains to be shown that our formula is equivalent to the
Fredholm Pfaffian formula obtained in [62, Theorem 2.7] (setting there δ = 0 and u = 0) as
expected from universality.

2.4 Mathematical Aspects

The results presented in this article rely on a combination of physics and mathematics meth-
ods, but we focus in this article on physics results and make clear here that most of our results
are not proved according to the standards of rigor of the mathematics literature (in particular
the results stated as Claims below). It remains a challenge to turn the arguments that we
present here into mathematical theorems. Let us comment further on these aspects for the
mathematically inclined reader.

The first difficulty from the mathematical point of view is that we cannot rigorously
characterize the distribution of the KPZ equation through its moments, because they grow
too fast to uniquely determine the distribution. This is why the moment generating series
that we consider in Sect. 5 are actually divergent series, but the formal power series become
convergent after certain manipulations and exchanges of series/integrals. For the full-space
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KPZ equation, it has been proved (see e.g. [55]) that these manipulations lead to the correct
answer. It could be possible to overcome this issue in our case by working on a model for
which the moment problem is well-defined, and take a scaling limit to the KPZ equation.
Such a strategy has been implemented for instance in [22,31,78,79] for the full-space KPZ
equation and in [49] for the half-space KPZ equation with A = −1/2 and droplet initial data.
Another possible approach is provided by the framework of half-space Macdonald processes
[51] which allows to prove Laplace transform formulae despite the divergence of moments.

The second obstacle is that in order to prove the results of Sect. 3 below, one would need
to prove the completeness of the Bethe ansatz eigenfunctions. Actually, we present in Sect. 4
another approach to obtain the same moment formulae. It relies on rigorous formulae for
the log-gamma polymer from [51], and we take a scaling limit to the KPZ equation. We
obtain a nested contour integral formulae for the moments of Z B

A (x, t) in Claim 4.7. Note
that this formula allows to take x > 0. Then, for x = 0, we may move the contours together
appealing to a combinatorial conjecture from Borodin, Bufetov and Corwin [55, Conjecture
5.2], and a Pfaffian structure appears. Hence we see that assuming completeness of Bethe
ansatz eigenfunctions or using this conjecture leads to the same moment formula. The results
from [80,81] suggest that the two problems are indeed related.

Finally, the asymptotic analysis of Fredholm Pfaffians such as (2.11) is delicate, especially
in the critical stationary regime. In particular, we have first performed a large time limit for
positive a, b, and then let the parameters a, b go to 0. This allowed us to benefit from
the structure of the kernel (2.22), which eventually lead to a very simple formula for the
distribution F(s). It would be interesting to find a generalization of the form (2.22) at finite
time, and prove that the limits commute, i.e. one can take first A, B → −1/2 and then study
the large time limit.

3 Moments from the Replica Bethe Ansatz

3.1 QuantumMechanics and Bethe Ansatz

In this Section we use the replica Bethe ansatz method to calculate the integer moments of
the partition sum. The equal time multi-point moments of the solution of the SHE, Z(x, t),
over the KPZ noise can be expressed [82] as a matrix element of the quantum mechanical
evolution operator in imaginary time of the Lieb–Liniger model [83]

E [Z(x1, t) . . . Z(xn, t)] = 〈x1 . . . xn |e−t Hn |�(t = 0)〉 (3.1)

Here Hn is the Hamiltonian of the Lieb Liniger model [83] for n quantum particles with
attractive delta function interactions of strength c = −c̄ < 0

Hn = −
n∑

i=1

∂2xi − 2c̄
∑

1≤i< j≤n

δ(xi − x j ) (3.2)

with here an below, in our units c̄ = 1. The initial state |�(t = 0)
〉
is such that

E [Z(x1, 0) . . . Z(xn, 0)] = 〈x1 . . . xn |�(t = 0)〉 (3.3)
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Since here we are considering the Brownian initial condition and interested in averages both
over the Brownian and the KPZ noise we must take the initial state |�(t = 0)〉 as

〈x1 . . . xn |�(t = 0)〉 = �0(x1, . . . , xn) := EB

⎡
⎣exp

⎛
⎝ n∑

j=1

B(x j ) − (B + 1/2)x j

⎞
⎠
⎤
⎦

(3.4)

A simple calculation shows that �0(x1, . . . , xn) is the fully symmetric function which in the
sector 0 ≤ x1 < · · · ≤ xn takes the form

�0(x1, . . . , xn) = exp

⎛
⎝ n∑

j=1

1

2
(2n − 2 j + 1)x j − (B + 1/2)x j

⎞
⎠ , (3.5)

We can now rewrite (3.1) at coinciding points using the decomposition of the evolution
operator e−t Hn in terms of the eigenstates of Hn as

E
[
Z(x, t)n

] =∑
μ

�μ(x, . . . , x)〈�μ|�0〉 1

||μ||2 e
−t Eμ (3.6)

Here the un-normalized eigenfunctions of Hn are denoted �μ (of norm denoted ||μ||) with
eigenenergies Eμ. Here we used the fact that only symmetric (i.e. bosonic) eigenstates con-
tribute since the initial and final states are fully symmetric in the xi . Hence the

∑
μ denotes a

sum over all bosonic eigenstates of the Lieb–Liniger model, also called delta Bose gas, and
〈�μ|�0〉 denotes the overlap, i.e. the Hermitian scalar product of the initial state (3.5) with
the eigenstate �μ.

We should remember now that Hn is defined on the half-line x ≥ 0. The boundary
condition at the wall with parameter A translates into the same boundary condition for the
wavefunctions (in each of their coordinate). This half-line quantum mechanical problem can
be solved by the Bethe ansatz for A = +∞, i.e. for Dirichlet boundary condition [47,84,85]
(see also [86, Sect. 5.1]) and this fact was used in [87]. It can also be solved for arbitrary A,
[55,86,88–93] which led to the moment formula in [94], [56] and [57].

From the Bethe ansatz the eigenstates�μ are thus Bethe states, i.e. superpositions of plane
waves over all permutations P of the n rapidities λ j for j ∈ [1, n] with an additional sum-
mation over opposite pairs ±λ j due to the infinite hard wall. The bosonic (fully symmetric)
eigenstates canbeobtained everywhere from their expression in the sector 0 ≤ x1 ≤ · · · ≤ xn ,
which reads

�μ(x1, . . . , xn) = 1

(2i)n
∑
P∈Sn

n∏
p=1

⎛
⎝ ∑

εp=±1

εpe
iεp xpλP(p) A[ε1λP(1), ε2λP(2), . . . , εnλP(n)]

⎞
⎠

A[λ1, . . . , λn] =
∏

n≥�>k≥1

(
1 + ic̄

λ� − λk

)(
1 + ic̄

λ� + λk

) n∏
�=1

(
1 + i

λ�

A

) (3.7)

This wavefunction automatically satisfies both

1. The matching condition arising from the δ(xi − x j ) interaction(
∂xi+1 − ∂xi + c̄

)
�μ(x1, . . . , xn) |xi+1=xi = 0 (3.8)

2. The boundary condition ∂xi �μ(x1, . . . , xn)
∣∣
xi=0 = A�μ(x1, . . . , xn)

∣∣
xi=0 for all i ∈

[0, n].
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The allowed values for the rapidities λi , which parametrize the true physical eigenstates
are determined by the Bethe equations arising from the boundary conditions at x = L as
discussed below. One will find that the normalized eigenstates ψμ = �μ/||μ|| vanish as
(λi − λ j ) or (λi + λ j ) when two rapidities become equal or opposite: hence the rapidities
obey an exclusion principle.

The detailed Bethe equations, which determine the allowed values for the set of rapidities
{λ j }, depend on the choice of boundary condition at x = L . However, in the L → +∞
limit, these details do not matter. For simplicity we choose a hardwall at x = L . The Bethe
equations then read

e2iλ j L = A − iλ j

A + iλ j

∏
��= j

λ j − λ� − ic̄
λ j − λ� + ic̄

λ j + λ� − ic̄
λ j + λ� + ic̄

(3.9)

In the case of the infinite hardwall, these equations are also given in Ref. [85] and their
solutions in the large L limit were studied in Ref. [95]. The structure of the states for infinite
L is found similar to the standard case, i.e. the general eigenstates are built by partitioning
the n particles into a set of ns bound-states formed by m j ≥ 1 particles with n =∑ns

j=1 m j .
Each bound state μ is indexed by a set of {k j ,m j } j=1...ns where the k j ’s are real numbers.
These states are perfect strings [96] , i.e. a set of rapidities

λ j,a = k j + ic̄
2

(m j + 1 − 2a) (3.10)

where a = 1, . . . ,m j labels the rapiditieswithin the string. Such eigenstates havemomentum
and energy

Kμ =
ns∑
j=1

m jk j , Eμ =
ns∑
j=1

m jk
2
j − c̄2

12
m j (m

2
j − 1). (3.11)

The ground-state corresponds to a single n-string with k1 = 0. The difference with the
standard case is that the states are now invariant by a sign change of any of the momenta
λ j → −λ j , i.e. k j → −k j . From now on, we will denote the wavefunctions of the string
states as �{k�,m�}.

It is important to note that although for A = +∞ the strings are the only solutions of
the Bethe equations at large L , for finite A there are other solutions which correspond to
so-called boundary bound states. These solutions have been obtained and studied in details
in [57]. As we will see below we will not need them in this work.

3.2 Moment Formula

To calculate the n-thmoments of Z(x, t) from formula (3.6), we need to perform a summation
over the eigenstates. For A < +∞ these eigenstates contain both the string states and the
boundary bound states mentioned above. Our strategy here will be similar to the one in
[56], i.e. we will calculate the moments for n < 2A + 1 which turn out to be sufficient to
perform the analytic continuation in n and obtain the generating function for any A > −1/2,
using a method similar to the one in [30]. The nice feature is that when n < 2A + 1 there
are no boundary bound states. To see that, consider the Table 1 in [57] which contains the
classification of the boundary bound states for this problem. For A > −1/2, a m particle
boundary bound statemust obeym ≥ �2A�+2 ≥ 2A+1.On the other hand from n < 2A+1,
one must havem ≤ n < 2A+1, which excludes the bound state. Hence we need to consider
only the string states.
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A formula for the inverse of the squared norm of an arbitrary string state was obtained for
A < +∞ in [94] and [57], consistent with the results of [56], as

‖μ‖2 :=
∫ L

0
dx1 . . .

∫ L

0
dxn |�{k�,m�}(x1, . . . , xn)|2

1

||μ||2 = 1

n! c̄
n−ns2ns

ns∏
i=1

Ski ,mi Hki ,mi

∏
1≤i< j≤ns

Dki ,mi ,k j ,m j L
−ns

Dk1,m1,k2,m2 =
(
4(k1 − k2)2 + (m1 − m2)

2c2

4(k1 − k2)2 + (m1 + m2)2c2

)
×
(
4(k1 + k2)2 + (m1 − m2)

2c2

4(k1 + k2)2 + (m1 + m2)2c2

)

Sk,m = 22m−2

m2

[m/2]∏
p=1

4k2 + c2(m − 2p)2

4k2 + c2(m + 1 − 2p)2

Hk,m =
m∏

a=1

A2

A2 + (k + ic̄
2 (m + 1 − 2a))2

(3.12)

with Sk,1 = 1. Note that we have only kept the leading term in L as L → +∞. Inserting
the norm formula (3.12) into (3.6), we obtain the starting formula for the integer moments
of the partition sum with Brownian weight on the endpoint in the limit L → +∞

E
[
Z(x, t)n

] =
n∑

ns=1

2ns c̄n

ns !c̄ns n!
ns∏
p=1

∑
mp≥1

∫
R

dkp
2π

mpSkp,mp Hkp,mpe
(m3

p−mp)
c̄2 t
12 −mpk2pt

× δn,
∑ns

j=1 m j

ns∏
i< j

Dki ,mi ,k j ,m j �{k�,m�}(x, . . . , x) 〈�{k�,m�}|�0〉
(3.13)

Here the Kronecker delta enforces the constraint
∑ns

j=1 m j = n with m j ≥ 1 and in the

summation over states we used
∑

k j → m j L
∫

R

dk
2π which holds also here in the large L

limit: the momenta sums become continuous and one can use that the string momenta m jk j
correspond to free particles as in Refs. [15,24,25,57,87].

We can simplify the factor �{k�,m�}(x, . . . , x) in (3.13). For the general Bethe state (3.7)
(before insertion of the string solution), the x = 0 limit then reads reads

�μ(0, . . . , 0) = n!
An

n∏
j=1

λ j (3.14)

Inserting the string solution we see that we can replace in (3.13) at the wall x = 0

�{k�,m�}(0, . . . , 0) = n!
An

ns∏
j=1

Ak j ,m j (3.15)

Ak,m =
m∏

a=1

(
k + i

c̄

2
(m + 1 − 2a)

)
= (−ic̄)m

�( 1+m
2 + ik

c̄ )

�( 1−m
2 + ik

c̄ )
(3.16)

To obtain the n-th moment in (3.13) we still need to calculate the overlap 〈�{k�,m�}|�0〉
where �0 is given in (3.5). In general it involves sums over permutations and leads to
complicated expressions but in our case, a simple structure emerges akin to the one known
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in full-space for a few initial conditions (droplet, half-flat, Brownian). Here, as we find in the
Appendix A, the result in the half-space for Brownian initial conditions is quite simple

〈�μ|�0〉 = n!
An

�(A + B + 1)

�(A + B − n + 1)

n∏
j=1

λ j

B2 + λ2j
(3.17)

This holds under the condition that the integral converge, that is n
2 < B + 1

2 , which we
will also assume from now on. Inserting the rapidities λ j of the string state one see that the
denominator in the product in the overlap (3.17) read

Ek, j =
m∏

a=1

1

B2 + (k + i c̄2 (m + 1 − 2a))2

= 1

c̄2m
�( 1−m

2 + B+ik
c̄ )

�( 1+m
2 + B+ik

c̄ )

�( 1−m
2 + B−ik

c̄ )

�( 1+m
2 + B−ik

c̄ )

(3.18)

while the numerator was already calculated in (3.15). We can thus define Ck, j = A2
k, j Ek, j

and putting all together we obtain the starting expression for the integer moments, denoting
here and below Z(0, t) = Z(t)

E
[
Z(t)n

] = �(A + B + 1)

�(A + B − n + 1)

n∑
ns=1

2ns c̄nn!
ns !c̄ns

×
ns∏
p=1

∑
mp≥1

∫
R

dkp
2π

mpCkp,mp Skp,mp Hkp,mpe
(m3

p−mp)
c̄2 t
12 −mpk2pt

δn,
∑ns

j=1 m j

ns∏
i< j

Dki ,mi ,k j ,m j

(3.19)

where we recall the constraint
∑ns

j=1 m j = n. Let us use c̄ = 1 from now on. Denoting

Bk,m = 4m2Ck,mSk,mHk,m

= 2k

π
sinh(2πk)�(2ik + m)�(−2ik + m)

× �( 1−m
2 + A + ik)

�( 1+m
2 + A + ik)

�( 1−m
2 + A − ik)

�( 1+m
2 + A − ik)

�( 1−m
2 + B + ik)

�( 1+m
2 + B + ik)

�( 1−m
2 + B − ik)

�( 1+m
2 + B − ik)

(3.20)
The starting formula for the moments is then

E
[
Z(t)n

] = �(A + B + 1)

�(A + B − n + 1)
n∑

ns=1

n!2ns
ns !

ns∏
p=1

∑
mp≥1

∫
R

dkp
2π

Bkp,mp

4mp
e(m3

p−mp)
t
12−mpk2ptδn,

∑ns
j=1 m j

ns∏
i< j

Dki ,mi ,k j ,m j

(3.21)

where Bk,m is given in (3.20) and Dki ,mi ,k j ,m j is given in (3.12) and where we recall the
constraint

∑ns
j=1 m j = n.

123



G. Barraquand et al.

3.3 DecoratedMoments

As in Refs. [30,97], it is useful to eliminate the Gamma factor �(A+B+1)
�(A+B−n+1) in (3.21). To this

aim we introduce a random variable W ∼ Gamma−1(A + B + 1), independent of the KPZ
height, which is inverse gamma distributed with parameter A + B + 1, in this case

pW (x) = 1

�(A + B + 1)
x−A−B−2e− 1

x �(x) (3.22)

The n-th moment of W is given by

E[Wn] = �(A + B − n + 1)

�(A + B + 1)
(3.23)

As we will see E
[
WnZ(t)n

]
will serve as the basis to form a Fredhom Pfaffian.

3.4 Moments in Terms of a Pfaffian

An important identity, which makes the problem solvable in the end, is that the inverse
norms of the states can be expressed as a Schur Pfaffian. Introducing the reduced variables
X2p−1 = mp + 2ikp and X2p = mp − 2ikp for p ∈ [1, ns], the norm reads

∏
1≤i< j≤ns

Dki ,mi ,k j ,m j =
ns∏
j=1

m j

2ik j
Pf

2ns×2ns

[
Xi − X j

Xi + X j

]
(3.24)

where we recall that the Pfaffian of an anti-symmetric matrix A of size N × N is defined by

Pf(A) = √Det(A) =
∑

σ∈SN ,
σ (2p−1)<σ(2p)

sign(σ )

N/2∏
p=1

Aσ(2p−1),σ (2p) (3.25)

and that the Schur Pfaffian is given by (see Ref. [98])

Pf

[
Xi − X j

Xi + X j

]
=
∏
i< j

Xi − X j

Xi + X j
. (3.26)

Hence the starting formula for the moments now becomes:

E
[
WnZ(t)n

]

=
n∑

ns=1

n!
ns !

ns∏
p=1

∑
mp≥1

∫
R

dkp
2π

Bkp,mp

4ikp
e(m3

p−mp)
t
12−mpk2ptδn,

∑ns
j=1 m j

Pf
2ns×2ns

[
Xi − X j

Xi + X j

]

(3.27)

4 Moments from the Log-Gamma Polymer

In this section we compute again the moments of the solution of the SHE, Z(x, t), taking a
limit of a known formula for the moments of the partition function of the log-gamma polymer
on the half-quadrant square lattice. This method uses the convergence of the log-gamma

123



Half-Space Stationary Kardar–Parisi–Zhang Equation

Fig. 4 An admissible path in the half space log-gamma polymer model, that is a path proceeding by unit steps
rightward and upward in the half quadrant {(i, j) ∈ Z

2
>0 : i ≥ j}

polymer to the KPZ equation at high temperature and a combinatorial conjecture of Borodin-
Bufetov-Corwin [55, Conjecture 5.2]. We also discuss in Sects. 4.5 and 4.6 useful identities
in distribution coming from symmetries in so-called half-space Macdonald processes [51].

4.1 Moment Formula for the Log-Gamma Polymer

Definition 4.1 (Half-space log-gamma polymer) Let α◦, α1, α2, . . . be real parameters such
that αi + α◦ > 0 for all i ≥ 1 and αi + α j > 0 for all i �= j ≥ 1. The half-space log-
gamma polymer is a probability measure on up-right paths confined in the half-quadrant
{(i, j) ∈ Z

2
>0 : i ≥ j} (see Fig. 4), where the probability of an admissible path π between

(1, 1) and (n,m) is given by

1

Z(n,m)

∏
(i, j)∈π

wi, j ,

and where
(
wi, j
)
i≥ j is a family of independent random variables such that for i > j, wi, j ∼

Gamma−1(αi + α j ) and wi,i ∼ Gamma−1(α◦ + αi ). The notation Gamma−1(θ) denotes
the inverse of a Gamma distributed random variable with shape parameter θ . The partition
function Z(n,m) is given by

Z(n,m) =
∑

π :(1,1)→(n,m)

∏
(i, j)∈π

wi, j .

The moments of the partition function were computed using half-space Macdonald pro-
cesses in [51].

Proposition 4.2 ( [51, Corollary 6.36]) For n ≥ m and k ∈ Z>0 such that k < min{2αi , αi +
α◦},

E[Z(n,m)k ] =
∮

dz1
2iπ

· · ·
∮

dzk
2iπ

∏
1≤a<b≤k

za − zb
za − zb − 1

za + zb
1 + za + zb

×
k∏

i=1

2zi
zi − α◦ + 1/2

n∏
j=1

(
1

α j − zi − 1/2

) m∏
j=1

(
1

zi + α j − 1/2

)
,(4.1)
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where the contours are such that for all 1 ≤ c ≤ k, the contour for zc encloses {−α j +
1/2}1≤ j≤m and {zc+1 + 1, . . . , zk + 1}, and excludes the poles of the integrand at α◦ − 1/2
and α j −1/2 (for 1 ≤ j ≤ n). Because the integrand decays at least quadratically at infinity,
one may chose the contours to be all vertical lines such that the contour for the variable zi
is ri + iR where

max
j

{k − α j − 1/2} < rk + k − 1 < · · · < r2 + 2 < r1 < min
j

{α◦ − 1/2, α j − 1/2}.

Note that if k > αi + α j or k > αi + α◦ for some i < j , the k-th moment of Z(n,m) fails
to exist.

Remark 4.3 Onemay also computemixedmoments of the partition functions at several points
along a down-right path.

4.2 Stationary Structure for the Log-Gamma Polymer

In this paragraph, we will need to assume α◦ +α1 = 0. In order to do so, we need to consider
a modified partition function where we have removed the weight w1,1, i.e. we define

Zstat (n,m) = Z(n,m)

w1,1
. (4.2)

Following [61], we define horizontal and vertical increments of the partition function as

Un,m = Zstat (n,m)

Zstat (n − 1,m)
, Vn,m = Zstat (n,m)

Zstat (n,m − 1)
. (4.3)

The partition function satisfies the recurrence

Zstat (n,m) = wn,m(Zstat (n − 1,m) + Zstat (n,m − 1)), (4.4)

where by convention we have assumed that Zstat (n,m) = 0 if (n,m) does not belong to
the half quadrant {(i, j) ∈ Z

2
>0 : i ≥ j}. From there, one may deduce a recurrence for the

increments

Un,m = wn,m

(
1 + Un,m−1

Vn−1,m

)
, Vn,m = wn,m

(
1 + Vn−1,m

Un,m−1

)
. (4.5)

We will need the following lemma from [61] where the stationary structure for the full-space
log-gamma polymer was introduced.

Lemma 4.4 ( [61, Lemma 3.2]) Let U , V , w be independent random variables. Let

U ′ = w

(
1 + U

V

)
, V ′ = w

(
1 + V

U

)
, w′ =

(
1

U
+ 1

V

)−1

. (4.6)

If for some α > 0 and θ ∈ (−α, α), U ∼ Gamma−1(α + θ), V ∼ Gamma−1(α − θ),
w ∼ Gamma−1(2α), then the triples (U , V , w) and (U ′, V ′, w′) have the same distribution.

Coming back to our model Zstat (n,m), when α◦ + α1 = 0 the model is stationary in the
following sense.

Proposition 4.5 Let k ∈ Z≥1. Assume that α2 = α3 = · · · = α > 0 and α◦ + α1 = 0.
Consider a down-right path in the lattice going through the points {(ni ,mi )}1≤i≤k , such that
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Fig. 5 The two types of
elementary local transformations
of down-right paths considered in
the proof of Proposition 4.5. The
thick black path represents an
arbitrary down-right path. The
portions in red represent the local
modifications of the path that we
consider

(ni+1,mi+1) − (ni ,mi ) equals either (0,−1) or (1, 0) (see Fig. 5). We associate to this
down-right path increments

{
I j
}
1≤ j≤k−1 where

I j =
{
Un j+1,m j+1 when n j+1 > n j ,

Vn j ,m j when m j > m j+1.

Then the increments
{
I j
}
1≤ j≤k−1 are all independent and distributed as I j ∼

Gamma−1(α1 + α) when I j is a horizontal U increment, and I j ∼ Gamma−1(α◦ + α)

when I j is a vertical V increment. In particular, for any m, the increments
{
Un,m
}
n≥m+1 are

independent and distributed as Un,m ∼ Gamma−1(α1 + α).

Proof The distribution of increments along the first row is completely constrained by the
definition of the model. Indeed, we have thatZstat(n, 1) =∏n

i=2 wi,1, so that the increments
along the first row are given by Un,1 = wn,1 and the definition of the model implies that
weights wn,1 ∼ Gamma−1(α1 + α) are independent. Hence, for m = 1, the increments{
Un,m
}
n≥2 are independent and distributed as Gamma−1(α1 + α) as claimed.

In other terms, we have seen that the statement of the Proposition is true for the infinite
path going through the points (n, 1) for all n ≥ 1.We will show that the property is preserved
under two types of local transformation of paths, depicted in Fig. 5, that consist in

1. (boundary update) Lifting one unit upwards the starting point of the path along the
boundary;

2. (bulk update) Transforming a down-right step into a right-down step.

It is clear that any infinite down-right path can be obtained by iteration of these local trans-
formations, starting from the path going through the points (n, 1) for all n ≥ 1. Furthermore,
if the statement of the Proposition is true for any infinite down-right path, it is true as well
for any subpath of the form {(ni ,mi )}1≤i≤k as in the statement of the Proposition. Hence we
only need to show that the distribution of increments is preserved under the two local moves.

The distribution of increments on the boundary is constrained by the definition of the
model. We have that Zstat(n, n) = wn,nZstat(n, n − 1), so that Vn,n = wn,n and we recall
that wn,n ∼ Gamma−1(α◦ + αn) is independent from all other weights. Hence, for any
n = m, Vn,m is distributed as Gamma−1(α◦ + αn) and is independent from the increments
{Un′,m′ , Vn′,m′ } form′ < m (since those increments are independent fromwn,n). Hence, after
a boundary update, the distribution of increments is preserved.

In order to show that the property is preserved under bulk update, we use Lemma 4.4.
After a bulk update, the increments are updated according to (4.5), wherewn,m is independent
from the increments on the earlier path and distributed as Gamma−1(2α) (recall that we have
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assumed thatα2 = α3 = · · · = α). Ifα◦+α1 = 0, wemay set θ = α1 = −α◦ and Lemma 4.4
implies that increments along the new path will be distributed asUn,m ∼ Gamma−1(α+α1),
Vn,m ∼ Gamma−1(α+α◦). This shows that the distribution of increments is preserved under
bulk update. Because before the bulk update, the variables (U , V , w) are independent from
the rest of the increments I j by induction, and the new random variables (U ′, V ′) are just
measurable functions of (U , V , w), the new variables are also independent of the other
increments I j . This concludes the proof. ��

One consequence of the stationary structure is that we may compute the expectation of
logZstat(n,m). We assume that parameters αi are chosen as in Proposition 4.5. Observe that
logZstat(n,m) is equal to the sum of the logarithms of increments of the partition function
along any path from (1, 1) to (n,m). These increments are not independent, so that their sum
is a highly non trivial random variable, but we know the expectation of each increment. Since
the vertical increments are distributed as Gamma−1(α◦ + α) and the horizontal increments
are distributed as Gamma−1(α1 + α), we have that (for α◦ + α1 = 0)

E
[
logZstat(n,m)

] = −(n − 1)ψ(α1 + α) − (m − 1)ψ(α◦ + α), (4.7)

where we have used that E[log(Gamma−1(θ))] = −ψ(θ) and ψ is the digamma function.

4.3 Convergence to the Half-Space KPZ Equation

At high temperature (when the parameters of inverse gamma random variables go to infinity
and space-time coordinates are rescaled appropriately), the partition function Z(n,m) con-
verges to the multiplicative noise stochastic heat equation on R≥0 with Robin type boundary
condition [66].

Although the convergence of discrete directed polymers to half-space KPZ equation was
proved rigorously in [66] (based on the full-space analogous result in [99]), we will rederive
(heuristically) this convergence in order to adapt it to our units and initial condition (which
is not covered in [66]). Let us change coordinates and use more natural time and space
coordinates τ = n + m − 2 and κ = n − m. The partition function Zd(κ, τ) := Z(n,m)

satisfies the discrete version of the stochastic heat equation

Zd(κ, τ) = wκ,τ(Zd(κ − 1, τ − 1) + Zd(κ + 1, τ − 1)), κ > 0 (4.8)

where wκ,τ ∼ Gamma−1(γκ,τ) with parameter γκ,τ = αn + βm (independent for each
κ, τ). The boundary condition at κ = 0 is given by

Zd(0, τ) = w0,τZd(1, τ − 1). (4.9)

Let us renormalize Zd and define Zr (κ, τ) = C−τZd(κ, τ). The correct factor to use is
such that Cτ behaves asymptotically as the point to line partition function where weights
would be replaced by their average. Hence we setC = 2E[wκ,τ]. Note that in the following,
we will choose parameters so that E[wκ,τ] does not depend on τ, κ (except along the lines
τ = κ or κ = 0). We may rewrite (4.8) as

∇τZr (κ, τ) = 1+bκ,τ

2 �κZr (κ, τ − 1) + bκ,τZr (κ, τ − 1), (4.10)

where bκ,τ = 2wκ,τ

C −1,∇τ is the discrete time derivative and�κ is the discrete Laplacian.
Let us fix α◦ ∈ R, α1 ∈ R and set αi = 1/2 + √

n/2 for all i ≥ 2 and use the scalings

τ = nt/2, κ = √
nx/2. (4.11)
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In this case, we may choose C = 2/
√
n and the family of random variables wκ,τ rescales to

a white noise in the sense that n bκ,τ ⇒ √
2ξ(x, t).

At τ = κ, we have that for large κ,

Zr (κ, κ) = Gamma−1(α◦ + α1) × eB(x)−α1x + o

(
1

n

)
, (4.12)

where the inverse Gamma random variable (coming from w1,1) and the Brownian motion
B(x) are independent.

It is then natural to define the continuous limit

Z∞(x, t) = lim
n→∞ Zr (κ, τ), (4.13)

so that Z∞ has the initial data Z∞(x, 0) = Gamma−1(α◦ + α1) × eB(x)−α1x . Under the
scalings that we consider, the boundary condition (4.9) becomes

Z∞(0, t) ≈ w

C
Z∞
(

2√
n

, t

)
. (4.14)

Let us take the average on both sides of (4.14). We use that E[w
C ] = 1

1+ 2α◦−1√
n

, and consider

that the weight w is independent from Z∞( 2√
n
, t), as this is true in (4.9). We obtain

E [Z∞(0, t)] =
(
1 − 2√

n
(α◦ − 1/2)

)
E

[
Z∞
(

2√
n

, t

)]
+ o(1/

√
n), (4.15)

which, by Taylor approximation, leads to

∂xE [Z∞(x, t)]
∣∣∣
x=0

= (α◦ − 1/2)E [Z∞(0, t)] . (4.16)

Note that one may also obtain the more general boundary condition (2.7) for mixed moments
by multiplying both sides of (4.14) by Z∞(x2, t) . . . Z∞(xn, t) before taking the average.
Finally, multiplying (4.10) by n we obtain, when taking formally the n → ∞ limit, that
Z∞(x, t) should satisfy the SHE (2.2). Thus, we have arrived at the following.

Claim 4.6 (Combining [66] and [65].) LetZ(n,m) be the partition function of the log-gamma

polymer (seeDefinition 4.1)whereα2 = α3 = · · · =
√
n
2 + 1

2 ,α◦ = A+ 1
2 andα1 = B+ 1

2 . Let
Z(x, t) be the solution of the multiplicative noise stochastic heat equation fromDefinition 2.1
with boundary parameter A and initial drift −1/2− B. Fix t > 0, x ≥ 0. Then the family of
random variables ⎧⎪⎨

⎪⎩
Z
(
nt+√

nx
4 ,

nt−√
nx

4

)
(

2√
n

)nt/2−2

⎫⎪⎬
⎪⎭

t>0,x≥0

(4.17)

converges in distribution to Gamma−1(A + B + 1) × Z(x, t) (in the space of continuous
space-time trajectories), where the inverse Gamma random variable is independent from the
process Z(x, t). Moreover, the partition functionZstat(n,m) from Sect. 4.2 converges, under
the exact same scalings, to Z(x, t) (not multiplied by Gamma−1(A + B + 1)).

Note that the derivation that we presented above is only heuristic. We will not provide a
complete proof of this result, though we indicate where the needed arguments can be found.
The convergence of the polymer partition function for the half-space log-gamma polymer
to the multiplicative noise stochastic heat equation is proved in [66] using a chaos series
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representation of the polymer partition function, see in particular Section 5 therein. However,
the setting of [66] restricts to delta initial data B = +∞ (and Robin type boundary with
arbitrary parameter A). The convergence for Brownian initial data with arbitrary parameter
B was proven in [65, Theorem 2.2], though [65] works only in the case of Dirichlet boundary
condition, that is in the case A = +∞. Hence, one needs to combine the arguments from
[66] and [65] to deduce this result.

Using the stationary structure from Sect. 4.2 together with Claim 4.6, we obtain the
following. Let Z(x, t) be as in Claim 4.6 and assume that A+ B+1 = 0. Then, for any time
t > 0, Z(x, t)/Z(0, t) is the exponential of a Brownian motion with drift −B − 1/2.

Wemay also compute the expectation of h(x, t) = log Z(x, t) in the stationary case when
A + B + 1 = 0. Using (4.7) and plugging there the scalings of Claim 4.6, we obtain that

E [h(x, t)] = − t

12
+
(
B + 1

2

)2
t −
(
B + 1

2

)
x, A + B + 1 = 0. (4.18)

In particular, when A = B = −1/2, we have that E [h(0, t)] = −t/12.

4.4 Moments of the Half-Space KPZ Equation with Brownian Initial Data

Using the moment formula from Proposition 4.2 and the convergence result from Claim 4.6,
we obtain the following moment formula for the half-space stochastic heat equation Z(x, t).
Note that the formula is valid for any x ≥ 0.

Claim 4.7 Let Z(x, t) be the solution to the half-space stochastic heat equation (Defini-
tion 2.1) with Brownian initial data with drift−1/2− B and boundary parameter A. Assume
that B > 0, and A + B > k − 1. Then, we have

E[Z(x, t)k]
= 2k

�(A + B + 1)

�(A + B + 1 − k)

∫
r1+iR

dz1
2iπ

· · ·
∫
rk+iR

dzk
2iπ

∏
1≤a<b≤k

za − zb
za − zb − 1

za + zb
za + zb − 1

×
k∏

i=1

zi
zi + A

1

B2 − z2i
etz

2
i −xzi , (4.19)

where the contours are chosen so that B > r1 > r2 + 1 > . . . ,> rk + k − 1 > k − 1 − A.

Remark 4.8 Onemayalso computemixedmoments of Z(x, t), that isE[Z(x1, t) . . . Z(xk, t)].

Proof We start from the moment formula given in Proposition 4.2. Under the scalings con-
sidered in Claim 4.6, the second line of (4.1) becomes

k∏
i=1

2zi
zi − α◦ + 1/2

1

(α1 − 1/2)2 − z2i

(
1√

n/2 − zi

) nt+√
nx

4 −1 ( 1√
n/2 + zi

) nt−√
nx

4 −1

.

Using dominated convergence, one readily obtains that

lim
n→∞ E

⎛
⎜⎝
Z
(
nt+√

nx
4 ,

nt−√
nx

4

)
(

2√
n

)nt/2−2

⎞
⎟⎠

k

=
∫
r1+iR

dz1
2iπ

· · ·
∫
rk+iR

dzk
2iπ
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∏
1≤a<b≤k

za − zb
za − zb − 1

za + zb
1 + za + zb

k∏
i=1

2zi
zi − A

1

B2 − z2i
etz

2
i +xzi . (4.20)

Using the convergence in distribution fromClaim 4.6 the left hand side in (4.20) converges to
mkE[Z(x, t)k], where mk is the k-th moment of an inverse Gamma random variable with
parameter α◦ + α1 (the convergence in distribution implies the convergence of moments
modulo some tail bounds, which, using Markov inequality, can be proven from our explicit
moment formulae. Details of this argument are provided in a similar case in [100, Sect. 3]).
It is well known that mk = �(α◦ + α1 − k)/�(α◦ + α1), so that

E[Z(x, t)k] = �(A + B + 1)

�(A + B + 1 − k)
× R.H.S. of (4.20) (4.21)

Finally, we have used the change of variables z̃i = −zk−i+1 to obtain the statement of the
Proposition. ��

4.5 Symmetry Between Drift and Boundary Parameters

We now exploit one of the symmetries of the log-gamma polymer, arising frommore general
symmetries of so-called half-space Macdonald processes [51], which, in the KPZ limit,
extends a result of Parekh [65].

Claim 4.9 Let us denote here by Z B
A (x, t) (with explicit dependence in the parameters A, B)

the solution to the multiplicative noise SHE with boundary parameter A and initial drift
−1/2 − B (Definition 2.1). For any fixed t > 0 and A, B ∈ R, we have the equality in
distribution

Z B
A (0, t) = Z A

B (0, t). (4.22)

Proof This is a consequence of [51, Proposition 8.1] which states that the law of the partition
functionZ(n, n) of the half-space log-gamma polymer is invariant under exchanging param-
eters α◦ and α1 (recall Definition 4.1), along with the convergence result from Claim 4.6.

However, [51, Proposition 8.1] assumes that α◦+α1 > 0 as inDefinition 4.1, whichwould
require the condition A + B + 1 > 0. Let us explain why we do not need to assume this
condition. Recall Definition 4.1 and let us denote the partition function by Zα1

α◦(n, n), where
we indicate explicitly the dependence on parameters α◦, α1. The result from [51, Proposition
8.1] implies that for α̃◦, α̃1 such that α̃◦ + α̃1 > 0 we have the equality in distribution

Zα̃1
α̃◦(n, n) = Zα̃◦

α̃1
(n, n).

Notice that by Definition 4.1, we have

Zα̃1
α̃◦(n, n) = w1,1Z

α̃1,stat
α̃◦ , Zα̃◦

α̃1
(n, n) = w1,1Z

α̃◦,stat
α̃1

,

whereZα1,stat
α◦ is defined as in Sect. 4.2 and w1,1 has the same distribution in both cases. This

implies that we have also the equality in distribution

Zα̃1,stat
α̃◦ (n, n) = Zα̃◦,stat

α̃1
(n, n). (4.23)

The distribution of the random variable in (4.23) depends on parameters α̃◦, α̃1, α2, . . . , αn .
The equality in distribution can be analytically extended to all parameters such that αi +α j >

0 for any 2 ≤ i < j ≤ n, α̃1 +αi > 0 for any 2 ≤ i ≤ n, and α̃◦ +αi > 0 for any 2 ≤ i ≤ n.
In particular, we do not require anymore that α̃◦ + α̃1 > 0. Passing to the limit in (4.23) using
Claim 4.6, we obtain the desired result. ��
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4.6 Another Conjectural Identity in Law

The symmetry between parameters A and B stated in Claim 4.9 relies on a similar property
for the log-gamma polymer (symmetry between α◦ and α1) based on the theory of half-space
Macdonald processes ans stated as [51, Proposition 8.1]. This result was stated in [51] for
the log-gamma polymer model where α2 = · · · = αn . However, the same property actually
holds for general half-space Macdonald process and for any choice of parameters, see [51,
Proposition 2.6], as long as we restrict to the partition function on the boundary. Furthermore,
the law of Z(n, n) is symmetric with respect to permutation of the parameters αi . Thus, we
claim that one can also exchange the roles of the parameter α◦ and the parameter α2.

When scaling parameters to the (multiplicative noise) stochastic heat equation in

Claim 4.6, we set α◦ = A − 1
2 , α1 = B − 1

2 and αi =
√
n
2 . If we exchange parameters

α◦ and α2, we expect that we will obtain the stochastic heat equation with boundary param-
eter equal to +∞ (i.e. with Dirichlet boundary condition Z(0, t) = 0) and initial condition
given by

Z(x, 0) =
∫ x

0
exp (B1(y) + B2(x) − B2(y)) dy, (4.24)

where B1 and B2 are independent Brownian motions with respective drifts −(B + 1/2) and
−(A + 1/2). Let us call Z A,B

Dir the solution to the heat equation with Dirichlet boundary
condition and the initial condition given above in (4.24). We refer to [64] regarding the exact
meaning of the Dirichlet boundary condition in this context. Following similar arguments as
in the proof of [64, Theorem 1.1], we conjecture that for any t > 0, we have the identity in
distribution

Z B
A (0, t) = lim

x→0

Z A,B
Dir (x, t)

x
. (4.25)

The identity in law (4.25) allows to predict the law of large numbers for h(0, t) =
log Z B

A (0, t) in the bound phase. Recall that we expect that h(0, t) follows the asymptotics

h(0, t) � vA,B∞ t + tβχ (4.26)

where χ is an O(1) random variable, and β the growth fluctuation exponent. Using (4.25),

log
Z A,B
Dir (x,t)

x should also follow the same asymptotics.When A < −1/2 or B < −1/2,we see

that Z A,B
Dir (x, 0) grows as emax{|A+ 1

2 |,|B+ 1
2 |}x . Hence, the polymer partition function will be

dominated by paths from (x, 0) to (0, t)where x is of order t . More precisely, since the point

to point free energy from (x, 0) to (0, t) behaves asymptotically as − t
12 − x2

4t , the partition

function will be dominated by paths leaving from x = x∗
t , where x

∗
t = argmaxx>0(− x2

4t +
max{A + 1

2 , B + 1
2 }x) = 2max{|A + 1

2 |, |B + 1
2 |}t . Thus, we have that for general A, B,

vA,B∞ = − 1

12
+
(
min
{
A + 1

2
, B + 1

2
, 0
})2

.

We can even predict the fluctuation exponent β and the nature of fluctuations. When
A < −1/2 or B < −1/2 with A �= B (say A < B for simplicity), the initial condition for
Z A,B
Dir (x, t) in (4.24)will essentially be theBrownianmotion, i.e.B2(x)with drift−(A+1/2).

The fluctuations of the initial condition at the optimal point x∗
t are thus≈ B2(x∗

t ) i.e. Gaussian
on the scale t1/2, and they will dominate the fluctuations in the partition function, hence we
find that β = 1/2 and χ is Gaussian. The situation is completely similar when B < A.
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When A = B < −1/2, the situation is a bit more delicate since we cannot approximate
the initial condition (4.24) by a Brownian motion. Instead, we notice that (4.24) can be
interpreted as the partition function in the O’Connell-Yor directed polymer model [101]. For
large values of x , it behaves as

log Z A,B
Dir (x, 0) = log

∫ x

0
exp (B1(y) + B2(x) − B2(y)) dy (4.27)

≈
∣∣∣∣B + 1

2

∣∣∣∣ x + √
x max
0≤y≤1

{B1(y) + B2(1) − B2(y)} . (4.28)

It was proved [102,103] that the latter quantity behaves asymptotically as the largest eigen-
value of a 2 × 2 GUE matrix in the scale x1/2. We must now evaluate this quantity at the
optimal point x = x∗

t = |2B + 1|t , hence we find that β = 1/2 and that χ has the same
distribution as the top eigenvalue of a 2×2 GUEmatrix, discussed for instance in [101, Sect.
6].

4.7 Residue Expansion

In this section, we restrict to x = 0 and denote Z(0, t) = Z(t) as in the previous sections. The
moment formula (4.19) is not convenient for asymptotic analysis because the contours are
different for each variable, so that the complexity of the formula significantly increases with
k. To overcome this issue, one has to deform the contours to all lie on a fixed vertical line and
take into account the residues encountered during this contour deformation. This procedure
was implemented in [55], but the computation of residues is very involved and the result
relies on a conjectural combinatorial simplification. Applying this result [55, Conjecture 5.2]
to the moment formula (4.19), we conjecture that for A > k − 1 and B > k − 1, we have

E[Z(t)k] = 2k
�(A + B + 1)

�(A + B + 1 − k)

∑
λ�k

λ=1m1 2m2 ...

(−1)�(λ)

m1!m2! . . .
∫
iR

dw1

2iπ
. . .

∫
iR

dw�(λ)

2iπ

×
�(λ)∏
j=1

(w j + 1/2)λ j−1

4(w j )λ j

Pf

[
ui − u j

ui + u j

]2�(λ)

i, j=1

×E(w1, w1 + 1, . . . , w1 + λ1 − 1,

w2, . . . , w2 + λ2 − 1, . . . , w�(λ), . . . , w�(λ) + λ�(λ) − 1), (4.29)

wherewe use the Pochhammer notation for rising factorials (w)λ = w(w+1) . . . (w+λ−1),
we define variables ui for 1 ≤ i ≤ 2�(λ) as

(u1, . . . , u2�(λ))

= (−w1 + 1
2 , w1 − 1

2 + λ1,−w2 + 1
2 , w2 − 1

2 + λ2, . . . ,−w�(λ) + 1
2 , w�(λ) − 1

2 + λ�(λ)),

(4.30)

and where

E(z1, . . . , zk) =
k∏

i=1

etz
2
i

B2 − z2i

∑
σ∈BCk

σ

⎛
⎝ ∏

1≤ j<i≤k

zi − z j − 1

zi − z j

zi + z j − 1

zi + z j

k∏
i=1

zi
zi + A

⎞
⎠ .

(4.31)
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It turns out that the symmetrization can be performed using [55, Equation (54)], relying on
the theory of BC-symmetric Hall-Littlewood polynomials [104], and one finds

E(z1, . . . , zk) = 2kk!
k∏

i=1

etz
2
i

B2 − z2i

z2i
z2i − A2

. (4.32)

Remark 4.10 It is now apparent that the moment formulae are invariant with respect to the
transformation (A, B) 	→ (B, A).

Performing explicitly the evaluation into strings, we obtain

E[Z(t)k] = 4kk! �(A + B + 1)

�(A + B + 1 − k)

∑
λ�k

λ=1m1 2m2 ...

(−1)�(λ)

m1!m2! . . .
∫
iR

dw1

2iπ
. . .

∫
iR

dw�(λ)

2iπ

× Pf

[
ui − u j

ui + u j

]2�(λ)

i, j=1

�(λ)∏
j=1

etG(wi+λi )

etG(wi )

(w j + 1/2)λ j−1

4(w j )λ j

(
�(wi + λi )

�(wi )

)2

× �(B − w j − λ j + 1)�(B + w j )

�(B − w j + 1)�(B + w j + λ j )

�(w j − A)�(w j + A)

�(w j + λ j − A)�(w j + λ j + A)
,

(4.33)

where

G(w) = w3

3
− w2

2
+ w

6
,

so that
G(w + �) − G(w) = w2 + (w + 1)2 + · · · + (w + � − 1)2. (4.34)

Note that B2−z2 = (±B−z)(±B+z) and z2− A2 = −(±A−z)(±A+z), so that many
choices are possible for the evaluation of E(z1, . . . , zk) into strings. The most convenient
choice seems to be the following formula.

Claim 4.11 (based on [55, Conjecture 5.2]) For A > k − 1 and B > k − 1, we have

E[Z(t)k] = 4kk! �(A + B + 1)

�(A + B + 1 − k)

∑
λ�k

λ=1m1 2m2 ...

(−1)�(λ)

m1!m2! . . .
∫
iR

dw1

2iπ
. . .

∫
iR

dw�(λ)

2iπ

×Pf

[
ui − u j

ui + u j

]2�(λ)

i, j=1

�(λ)∏
j=1

etG(wi+λi )

etG(wi )

(w j + 1/2)λ j−1

4(w j )λ j

�(−w j + 1)�(w j + λ j )

�(−w j − λ j + 1)�(w j )

×�(B − w j − λ j + 1)�(B + w j )

�(B − w j + 1)�(B + w j + λ j )

�(A − w j − λ j + 1)�(A + w j )

�(A − w j + 1)�(A + w j + λ j )
. (4.35)

Comparing with the formula (3.27) obtained from the replica Bethe ansatz, we see that (4.35)
and (3.27) agree after the substitutions

w j → ik j + 1 − m j

2
, �(λ) → ns, λ j → m j . (4.36)

Indeed, under this change of variables, we have

(u1, u2, . . . , u2�(λ)−1u2�(λ)) = (X2, X1, . . . , X2ns , X2ns−1) (4.37)
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where X j = mp + 2ikpfor j = 2p − 1, X j = mp − 2ikp for j = 2p. Thus we have that

(−1)�(λ)Pf

[
ui − u j

ui + u j

]2�(λ)

i, j=1
= Pf

2ns×2ns

[
Xi − X j

Xi + X j

]
. (4.38)

One may also check that eG(wi+λi )−G(wi ) = e(m3
j−m j )

t
12−m j k2j t . Using the reflection formula

for theGamma function,wemaywrite the hyperbolic sine in the definition of Bk,m in (3.20) as
a product of Gamma functions so that we have (dropping indices of variables k j ,m j , λ j , w j )

Bk,m

4ik
= 1

2

�(2w − 2λ − 1)�(1 − 2w)

�(2w + λ)�(1 − 2w − λ)

�(B − w − λ + 1)�(B + w)

�(B − w + 1)�(B + w + λ)

�(A − w − λ + 1)�(A + w)

�(A − w + 1)�(A + w + λ)
.

(4.39)
Using the duplication formula for the Gamma function and the reflection formula a few times,
we arrive at

Bk,m

4ik
= 22λ

(w + 1/2)λ−1

4(w)λ

�(−w + 1)�(w + λ)

�(−w − λ + 1)�(w)

×�(B − w − λ + 1)�(B + w)

�(B − w + 1)�(B + w + λ)

�(A − w − λ + 1)�(A + w)

�(A − w + 1)�(A + w + λ)
. (4.40)

Thus, we have shown that (4.35) and (3.27) agree as claimed.

5 Generating Function in Terms of a Fredholm Pfaffian

We will now write the moment generating function of Z(t). We define, for ς > 0,

g(ς) = E

[
exp(−ςe

t
12 WZ(t))

]
. (5.1)

Ignoring the fact that the summation over n cannot be exchanged with the expectation due
to the divergence of moments, we will consider the following formal power series

1 +
∞∑
n=1

(−ςe
t
12 )n

n! E
[
WnZ(t)n

]
,

that we will again denote by g(ς).

Remark 5.1 Following [97], we may informally write

E[Wn]ςn = �(A + B − n + 1)

�(A + B + 1)
ςn = �(A + B − ς∂ς + 1)

�(A + B + 1)
ςn (5.2)

so that

E

[
exp(−ςe

t
12 Z(t))

]
= �(A + B + 1)

�(A + B + 1 − ς∂ς )
E

[
exp(−ςe

t
12 WZ(t))

]
, (5.3)

where the operator �(A+B+1)
�(A+B+1−ς∂ς )

should be understood in the following sense: If

�(A + B + 1)

�(A + B + 1 − z)
=

+∞∑
n=0

anz
n,
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in a neighborhood of z = 0, then

�(A + B + 1)

�(A + B + 1 − ς∂ς )
=

+∞∑
n=0

an(ς∂ς )n .

Equation (5.3) is a positive temperature analogue of [105, Eq. (4.5)] which we will use in the
next section. This type of arguments can be traced back to the work of Baik and Rains [58].

Remark 5.2 Alternatively, one may use the density of the inverse Gamma distribution and
write

g(ς) =
∫ +∞

0

du

�(A + B + 1)
u−A−B−2e−1/u

E

[
exp(−ςue

t
12 Z(t))

]
. (5.4)

We may rewrite this equation using the following representation of the Bessel function
∫ +∞

0
du u−νe1/u−x2u = 2xνKν(2x), (5.5)

for x > 0, where Kν denotes the modified Bessel K function. Exchanging the expectation
with the integral over u in (5.4), and using this integral representation, we arrive at

E

[
2
(
ς Z(t)e

t
12

) 1+A+B
2

K1+A+B

(
2
√

ς Z(t)e
t
12

)]
= g(ς)�(1 + A + B), (5.6)

where Kν(z) denotes the modified Bessel K function. Note that similar integral transforms
involving the modified Bessel function K appear in [31, Theorem 2.9]. It is plausible that
this expression can be inverted to compute the distribution of Z(t). For A + B + 1 = 0,
an inversion formula is provided in [31, Appendix E]. We will see in Sect. 6 that we will
actually not need to perform this inversion.

The constraint
∑ns

i=1 mi = n in (3.27) can then be relaxed by reorganizing the series
according to the number of strings:

g(ς) = 1 +
∞∑

ns=1

1

ns ! Z(ns, ς) (5.7)

where Z(ns, ς) is the partition sum at fixed number of strings ns , calculated below. We now
show that one can write the generating function as a Fredholm Pfaffian. It will be possible
thanks to the Schur Pfaffian identity, (3.24), given above. The partition sum at fixed number of
strings, expressed in terms of the reduced variables X2p−1 = mp+2ikp and X2p = mp−2ikp
for p ∈ [1, ns], reads

Z(ns, ς) =
ns∏
p=1

∑
mp≥1

∫
R

dkp
2π

(−ς)mp
Bkp,mp

4ikp
e−tm pk2p+ t

12m
3
p Pf
2ns×2ns

[
Xi − X j

Xi + X j

]
(5.8)

where Bk,m was given in (3.20). The summation over the variables mp can be done using
the Mellin-Barnes summation trick similarly to Refs. [30,97]. The barrier A > (n − 1)/2 is
overcome exactly as in Ref. [97] (see Lemma. 6 and the discussion therein) from an analytic
continuation of Gamma functions included in the Bk,m factor, the introduction of a particular
contour C0 and a final requirement for the drift A + 1/2 > 0. Indeed, define the contour
C0 = a + iR with a ∈ (0,min{2B + 1, 2A + 1, 1}), then for any holomorphic function f
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having sufficient decay at infinity and in particular denoting the summand of Eq. (5.8) by the
function f (mp), we have

∑
m≥1

(−ς)m f (m) = −
∫
C0

dw

2iπ
ςw π

sin πw
f (w) = −

∫
R

dr
ς

ς + e−r

∫
C0

dw

2iπ
f (w)e−wr .

(5.9)

For each mp we therefore introduce two variables rp and wp and we redefine the reduced
variables X2p and X2p−1 under the minimal replacementmp → wp imposed by the Mellin-
Barnes formula, which we will apply despite the presence of poles on the right of the contour
C0. This is an a priori illegal step, but it will exactly turn the diverging moment generating
series into a well-defined and converging series equal to the Laplace transform. We refer to
[55, Sect. 6] where this procedure and its degree of rigor is discussed in great details. This
leads to the following rewriting of the coefficient Z(ns, ς) as (see section 5 in [54] for similar
manipulations)

Z(ns, ς) =(−1)ns
ns∏
p=1

∫
R

drp
ς

ς + e−rp

∫∫
C2
0

dX2p−1

4iπ
dX2p

4iπ

sin( π
2 (X2p − X2p−1))

2π

× �(A + 1
2 − X2p

2 )

�(A + 1
2 + X2p

2 )

�(A + 1
2 − X2p−1

2 )

�(A + 1
2 + X2p−1

2 )

�(B + 1
2 − X2p

2 )

�(B + 1
2 + X2p

2 )

�(B + 1
2 − X2p−1

2 )

�(B + 1
2 + X2p−1

2 )

× �(X2p−1)�(X2p)e
−(X2p−1+X2p)

r p
2 +t(

X32p−1
24 + X32p

24 ) Pf
2ns×2ns

[
Xi − X j

Xi + X j

]

(5.10)

Remark 5.3 Note that the contour C0 passes to the left of the poles of the Gamma function
at X = 2A + 1, 2B + 1.

We observe that the integrals are almost separable in X2p and X2p−1 except for the sine
function which couples them. By anti-symmetrization and similarly to [54, Sect. 5], we can
proceed to the replacement2

sin
(π
2

(X2p − X2p−1)
)

→ 2 sin
(π
2
X2p

)
cos
(π
2
X2p−1

)
. (5.11)

The last manipulations consist in rescaling all variables X by a factor 2 and replacing the
contours of integration by C = a

2 + iR. Hence we have

Z(ns, ς) =(−1)ns
ns∏
p=1

∫
R

drp
ς

ς + e−rp

∫∫
C2

dX2p−1

2iπ
dX2p

2iπ
sin(πX2p) cos(πX2p−1)

π

× �(A + 1
2 − X2p)

�(A + 1
2 + X2p)

�(A + 1
2 − X2p−1)

�(A + 1
2 + X2p−1)

�(B + 1
2 − X2p)

�(B + 1
2 + X2p)

�(B + 1
2 − X2p−1)

�(B + 1
2 + X2p−1)

× �(2X2p−1)�(2X2p)e
−(X2p−1+X2p)rp+t(

X32p−1
3 + X32p

3 ) Pf
2ns×2ns

[
Xi − X j

Xi + X j

]

(5.12)

2 This replacement is done using the trigonometric identity sin(x− y) = sin(x) cos(y)−sin(y) cos(x) and the
antisymmetry of the Schur Pfaffian upon the relabelling X2p ↔ X2p−1. Note that similarly to [54], we could
have the more general decomposition sin

(
π
2 (X2p − X2p−1)

) → 2 sin
(
π
2 X2p + θ

)
cos
(
π
2 X2p−1 + θ

)
.

valid for all θ ∈ R but we do not make use of it here.
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There are a few last steps beforewe introduce the FredholmPfaffian. First define the functions

φ2p(X) = sin(πX)

π
�(2X)

�(A + 1
2 − X)

�(A + 1
2 + X)

�(B + 1
2 − X)

�(B + 1
2 + X)

e−rp X+t X
3
3

φ2p−1(X) = cos(πX)�(2X)
�(A + 1

2 − X)

�(A + 1
2 + X)

�(B + 1
2 − X)

�(B + 1
2 + X)

e−rp X+t X
3
3

(5.13)

Using a known property of Pfaffians (see De Bruijn [106]), we can rewrite the partition sum
at fixed number of strings itself as a Pfaffian, i.e. we use that

2ns∏
�=1

∫
C

dX�

2iπ
��(X�) Pf

2ns×2ns

[
Xi − X j

Xi + X j

]
= Pf

2ns×2ns

[∫∫
C2

dw

2iπ
dz

2iπ
�i (w)� j (z)

w − z

w + z

]

(5.14)
This leads to the definition of a 2ns × 2ns matrix M such that

Mi j =
∫∫

C2

dw

2iπ
dz

2iπ
�i (w)� j (z)

w − z

w + z
(5.15)

Since a variable rp will be shared between four elements of this matrix, it is more convenient
to view M as composed of 2 × 2 blocks which we denote K , whose elements are presented
in Eqs. (2.12). Finally, the string-replicated partition function is given by an infinite series of
Pfaffians

g(ς) = 1 +
∞∑

ns=1

(−1)ns

ns !
ns∏
p=1

∫
R

drp
ς

ς + e−rp
Pf

ns×ns
(K (rk, r�)) (5.16)

This series is a Fredholm Pfaffian,

g(ς) = E

[
exp(−ςWeH(t))

]
= Pf(J − σς K )L2(R), (5.17)

where K is given in (2.12), the function σς is given by σς (r) = ς

ς+e−r and the 2×2 kernel J

is given by J (r , r ′) =
(

0 1
−1 0

)
1r=r ′ . For the precise definition and properties of Fredholm

Pfaffians see Section 8 in [107], as well as e.g. Section 2.2. in [44], Appendix B in [108] and
Appendix G in [24,25].

6 Large Time Limit of the Fredholm Pfaffian and the Distribution of the
KPZ Height: Crossover Kernel

We will now study the large time limit of our kernel. To understand the scaling required at
large time, let us recall the expression of the partition sum at fixed number of strings

Z(ns, ς) = (−1)ns
ns∏
p=1

∫
R

drp
ς

ς + e−rp

∫∫
C2

dX2p−1

2iπ
dX2p

2iπ
sin(πX2p) cos(πX2p−1)

π

× �(A + 1
2 − X2p)

�(A + 1
2 + X2p)

�(A + 1
2 − X2p−1)

�(A + 1
2 + X2p−1)

�(B + 1
2 − X2p)

�(B + 1
2 + X2p)

�(B + 1
2 − X2p−1)

�(B + 1
2 + X2p−1)

× �(2X2p−1)�(2X2p)e
−(X2p−1+X2p)rp+ t

3 (X3
2p−1+X3

2p) Pf
2ns×2ns

[
Xi − X j

Xi + X j

]

(6.1)
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At large time, we want to eliminate the time factor in the exponential, hence we perform the
change of variables

X = t−1/3 X̃ , r = t1/3r̃ , A + 1

2
= at−1/3, B + 1

2
= bt−1/3. (6.2)

In the large time limit, the Gamma, cosine and sine functions simplify using that for small
positive argument

�(x) � 1

x
, cos(x) � 1, sin(x) � x . (6.3)

Under these simplifications, the partition sum at fixed number of strings reads in the limit
t → +∞ (dropping all tildes)

Z(ns, ς)

= (−1)ns
ns∏
p=1

∫
R

drp
ς

ς + e−t1/3rp

∫∫
C2

dX2p−1

2iπ
dX2p

2iπ
1

4X2p−1

a + X2p

a − X2p

a + X2p−1

a − X2p−1

× b + X2p

b − X2p

b + X2p−1

b − X2p−1
e−(X2p−1+X2p)rp+

X32p−1
3 + X32p

3 Pf
2ns×2ns

[
Xi − X j

Xi + X j

]

(6.4)

The contours C have now to be understood as C = ã + iR, where ã ∈ (0,min{a, b}). We
emphasize that the contours all lie at the left of the poles at X = a and X = b. We may now
use (5.14) and (5.16) to write the Laplace transform g(ζ ) under the scalings in (6.2) as the
Pfaffian Pf[J − σζ K (a,b)]L2(R). The matrix valued kernel K (a,b) reads in this limit

K (a,b)
11 (r , r ′) = 1

4

∫∫
C2

dw

2iπ
dz

2iπ
w − z

w + z

1

wz

a + w

a − w

a + z

a − z

b + w

b − w

b + z

b − z
e−rw−r ′z+ w3+z3

3

K (a,b)
22 (r , r ′) = 1

4

∫∫
C2

dw

2iπ
dz

2iπ
w − z

w + z

a + w

a − w

a + z

a − z

b + w

b − w

b + z

b − z
e−rw−r ′z+ w3+z3

3

K (a,b)
12 (r , r ′) = 1

4

∫∫
C2

dw

2iπ
dz

2iπ
w − z

w + z

1

w

a + w

a − w

a + z

a − z

b + w

b − w

b + z

b − z
e−rw−r ′z+ w3+z3

3

(6.5)

Remark 6.1 The kernel K (a,b) has a particular structure, indeed its elements are related
through derivative identities: K (a,b)

22 (r , r ′) = ∂r∂r ′K (a,b)
11 (r , r ′), K (a,b)

12 (r , r ′) = −∂r ′

K (a,b)
11 (r , r ′) and K (a,b)

22 (r , r ′) = −∂r K
(a,b)
12 (r , r ′).

Remark 6.2 The kernel K (a,b) can be obtained equivalently from the kernel (2.12) by rescal-
ing, as in [56].

Finally, choosing thevariableς asς = e−st1/3 , at large timewehave limt→+∞ σς (r t1/3) =
�(r − s), where � is the Theta Heaviside function. The Fredholm Pfaffian formula for the
generating function then becomes in the limit

lim
t→+∞ g(ς = e−st1/3) = Pf(J − K (a,b))L2(s,+∞). (6.6)

On the other hand, at large time, the Laplace transform of the distribution of the exponential of
the KPZ height converges towards the cumulative probability of the height (see [78, Lemma
4.1.39]), i.e.
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g(ς = e−st1/3) = E

[
exp(−WeH(t)−st1/3)

]
�t→+∞ E

[
�(st1/3 − H(t) − logW )

]

�t→+∞ P

(
H(t) + logW

t1/3
≤ s

) (6.7)

where � is the Theta Heaviside function.
Note that since W is an inverse Gamma random variable with parameter A + B + 1 =

t−1/3(a + b), the random variable log(W )/t1/3 weakly converges to an exponential random
variable with parameter a + b.

At this point, we obtain that for any a, b > 0,

lim
t→+∞ P

(
H(t)

t1/3
≤ s − E

)
= Pf(J − K (a,b))L2(s,+∞) (6.8)

where E is an exponential random variable with parameter a+b independent from H(t), and
the matrix kernel K (a,b) is given in (6.5). Using the density of the exponential distribution,

and denoting F (a,b)(s) = limt→∞ P

(
H(t)
t1/3

≤ s
)
, we may rewrite (6.8) as

∫ +∞

0
dx (a + b)e−x(a+b)F (a,b)(s − x) = Pf(J − K (a,b))L2(s,+∞). (6.9)

Following [105, Eq. (4.3)] (see also Remark 5.1), we differentiate in s in (6.9) and use
integration by parts in the left hand side. We obtain

∂sPf(J − K (a,b))L2(s,+∞) = (a + b)F (a,b)(s) − (a + b)2
∫ +∞

0
dx e−x(a+b)F (a,b)(s − x)

= (a + b)F (a,b)(s) − (a + b)Pf(J − K (a,b))L2(s,+∞).

Finally, we can write

lim
t→+∞ P

(
H(t)

t1/3
≤ s

)
=
(
1 + ∂s

a + b

)
Pf(J − K (a,b))L2(s,+∞) := F (a,b)(s). (6.10)

In the next sections, we show that the distribution F (a,b) interpolates between various known
distribution as b or a goes to infinity. The most interesting case, corresponding to stationary
growth, is when b, a go to zero and will be studied in details in Sect. 7.

Remark 6.3 Performing the large time limit at any fixed A > −1/2 and B > −1/2 corre-
sponds – modulo an exchange of limits – to the scaling considered above with a, b = +∞.
One can show that in the limit a, b → +∞, the kernel (6.5) converges to the GSE matrix
kernel, by the same manipulations as in [56, Sect. 4.1]. Indeed, as the contours of kernel
K (a,b) are parallel to the imaginary axis and cross the real axis between 0 and min{a, b},
we can take the limit a, b → ∞ in the integrand without affecting the contours. All rational
functions involving the parameter a, b in the large time limit of the kernel K (a,b) in (6.5)
converge to the value −1. Hence in this limit we obtain the kernel K∞ given in [56, Eq.
(113)], which is precisely the kernel associated to the Gaussian Symplectic Ensemble (GSE)
of randommatrices as also given in Lemma 2.7. of [44]. Hence this shows that the distribution
of the height at x = 0 converges at large time for boundary conditions such that a, b → ∞
(e.g. for any fixed A, B > −1/2) to the GSE Tracy–Widom distribution, as we will also
show below.

Remark 6.4 In the limit b → +∞, the kernel K (a,b) in (6.5) converges to the kernel K ε

with ε = a obtained in [56, Eq. (64)] in the study of the droplet initial condition. The
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Fredholm Pfaffian F (a)(s) := Pf(J − K (a,+∞))L2(s,+∞) interpolates between the CDF of
the GSE Tracy–Widom distribution, F4(s), (at a → +∞) and CDF of the GOE Tracy–
Widom distribution function, F1(s), (at a = 0). Note that the GOE kernel obtained in [56,
Eq. (83)] was found to provide a new representation of the GOE Tracy–Widom distribution.
If instead we take a → +∞ for fixed b, we obtain again the same kernel Kb because of the
symmetry a ↔ b. Physically, it describes the CDF of the distribution of the rescaled height
of the KPZ equation with Brownian initial data and Dirichlet boundary condition.

7 From aMatrix Valued Kernel to a Scalar Kernel

7.1 Solution for the KPZ Generating Function at All Times for Generic A, B in Terms
of a Scalar Kernel

The general kernel we have obtained in (2.12) has a particular structure in the form of a
Schur Pfaffian. With this structure, the kernel verifies the hypothesis of Proposition B.2 of
[54] recalled in Lemma B.2 in Appendix B. This proposition states that we can transform
the Fredholm Pfaffian of (5.17) which involves a matrix valued kernel, into a Fredholm
determinant of a scalar kernel. To proceed, let us first define the functions

G(w) = �(A + 1
2 − w)

�(A + 1
2 + w)

�(B + 1
2 − w)

�(B + 1
2 + w)

�(2w)

fodd(r) =
∫
C

dw

2iπ
G(w) cos(πw)e−rw+t w3

3

feven(r) =
∫
C

dz

2iπ
G(z)

sin(π z)

π
e−r z+t z

3
3

(7.1)

and the kernel K̄t,ς such that for all (x, y) ∈ R
2+

K̄t,ς (x, y) = 2∂x

∫
R

dr
ς

ς + e−r
[ feven(r + x) fodd(r + y) − fodd(r + x) feven(r + y)]

= 2∂x

∫
R

dr
ς

ς + e−r

×
∫∫

C2

dwdz

(2iπ)2
G(z)G(w)

sin(π(z − w))

π
e−xz−yw−rw−r z+t w3+z3

3

= 2∂x

∫∫
C2

dwdz

(2iπ)2
G(z)G(w)

sin(π(z − w))

sin(π(z + w))
ςw+ze−xz−yw+t w3+z3

3

(7.2)
Then, the Laplace transform of the one-point distribution of the exponential of the KPZ

height admits the following representation:

g(ς) = E

[
exp(−ςWeH(t))

]
= Pf(J − σς K )L2(R) =

√
Det(I − K̄t,ς )L2(R+). (7.3)

7.2 Large Time Limit of the Scalar Kernel

To deduce the large time asymptotics of H(t) from the determinantal formula (7.3), one
performs the same rescaling as in Sec. 6, namely one chooses ς = e−t1/3s and one rescales
(w, z) → t−1/3(w, z), r → t1/3r . The kernel K̄t,ς becomes
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K̄ (a,b)(x, y) = 1

2

∫∫
C2

dwdz

(2iπ)2

a + w

a − w

b + w

b − w

a + z

a − z

b + z

b − z

w − z

w + z

1

w
e−xz−yw+ w3+z3

3 , (7.4)

where the contour C is an upwardly oriented vertical line with real part between 0 and
min{a, b} as previously. Then, using the defintion of F (a,b) from (6.10), the determinantal
formula (7.3) implies the following: for any a, b > 0,

F (a,b)(s) = lim
t→+∞ P

(
H(t)

t1/3
≤ s

)
=
(
1 + ∂s

a + b

)√
Det(I − K̄ (a,b))L2(s,+∞)

where K̄ (a,b) is defined in (7.4). Using 1
2

w−z
(w+z)w = 1

w+z − 1
2w , we obtain that

K̄ (a,b)(x, y) =
∫ +∞

0
dλA(a,b)(x + λ)A(a,b)(y + λ) − 1

2
A(a,b)(x)

∫ +∞

0
A(a,b)(y + λ) dλ,

(7.5)
where the function A(a,b)(x) is defined by

A(a,b)(x) =
∫

dz

2iπ
a + z

a − z

b + z

b − z
e−xz+ z3

3 , (7.6)

where the contour is a vertical line with real part between 0 and min{a, b}. Note that the
function A(a,b) has exponential decay at +∞, that is for any c ∈ (0,min{a, b}), there exist
C ∈ R such that

∣∣A(a,b)(x)
∣∣ ≤ Ce−cx . Let us introduce an operator Âs acting on L

2(0,+∞)

with kernel
Âs(x, y) = A(a,b)(x + y + s), (7.7)

and an operator K̄ (a,b)
s acting onL

2(0,+∞)with kernel K̄ (a,b)
s (x, y) := K̄ (a,b)(x+s, y+s).

Claim 7.1 For any s ∈ R, and a, b > 0,√
Det(I − K̄ (a,b)

s ) = 1

2

(
Det(I − Âs) + Det(I + Âs)

)
, (7.8)

where all operators act on L
2(0,+∞).

Proof Equation 7.5 implies that, as operators acting on L
2(0,+∞), we have

K̄ (a,b)
s = Â2

s − 1

2
| Âsδ〉〈1 Âs |.

At this point, we recognize that the operator K̄ (a,b)
s has the same structure as in [87] and we

may apply the same steps as Equations (32)–(35) therein. More precisely, we may use the
matrix determinant Lemma to obtain that

Det
(
I − K̄s

) = Det
(
I − Â2

s

)(
1 + 1

2
〈1| Â2

s

I − Â2
s

|δ〉
)

. (7.9)

Then, we use the decomposition

Â2
s

I − Â2
s

= −I + 1

2

(
I

I − Âs
+ I

I + Âs

)
,

and recall that 〈1|I |δ〉 = 1. Using (the proof of) [109, Proposition 1] we have

〈1| I

I ± Âs
|δ〉 =

Det
(
I ∓ Âs

)

Det
(
I ± Âs

) . (7.10)
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Plugging (7.10) into (7.9) yields the statement of the Lemma. ��

Remark 7.2 The identity (7.10) is true for any kernel of the type Bs(x, y) = B(x + y + s)
such that B has sufficient decay at +∞ so that Det(I ± Bs) and 〈1| I

I+Bs
|δ〉 converges to 1 as

s goes to +∞ (see the proof of [109, Proposition 1] for details). In our case, this condition
is satisfied due to the exponential decay of the function A(a,b) for fixed a, b > 0).

Hence one has

F (a,b)(s) = 1

2

(
1 + ∂s

a + b

)(
Det(I − Âs) + Det(I + Âs)

)
(7.11)

7.3 Limit a, b → 0: The Critical Stationary Case

7.3.1 CDF in Terms of a Fredholm Determinant

Moving the contour to the right in the definition of A(a,b) in (7.6), we obtain

A(a,b)(x) = Ã(a,b)(x) + 2
a + b

a − b
(hb(x) − ha(x)), (7.12)

with hb(x) = be−xb+b3/3 and

Ã(a,b)(x) =
∫

dz

2iπ
a + z

a − z

b + z

b − z
e−xz+z3/3 = Ai(x)+2(a+b)

∫ +∞
x

dλAi(λ)+O(b2, a2, ba),

(7.13)
where in the integral over z, the contour passes to the right of b, a. We introduce the operator
Ãs acting on L

2(0,+∞) with kernel

Ãs(x, y) = Ã(a,b)(s + x + y).

We thus write

Âs(x, y) = Ãs(x, y) + 2
a + b

a − b
(| fb(x)〉〈 fb(y)| − | fa(x)〉〈 fa(y)|), (7.14)

with fb(x) = √
beb

3/6−bs/2−bx . Using the matrix determinant lemma, we have

Det(I ∓ Âs) = Det(I ∓ Ãs)

((
1 ∓ 2

a + b

a − b
Ib,b

)(
1 ± 2

a + b

a − b
Ia,a

)
+ 4

(
a + b

a − b

)2
Ib,a Ia,b

)

(7.15)
where

Iα,β = 〈 fα| fβ〉 ± 〈 fα| Ãs

I ∓ Ãs
| fβ〉. (7.16)

We now consider the limit b, a → 0 with a fixed arbitrary ratio r = a/b. We use the exact
expressions for the scalar products

〈 fα| fβ〉 =
√

αβ

α + β
e

α3
6 + β3

6 − α+β
2 s (7.17)
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as well as
〈
fα| Ãs

I ∓ Ãs
| fβ
〉
= √αβe

α3
6 + β3

6 e− α+β
2 s
〈
e−αx | Ãs

I ∓ Ãs
|e−βx

〉
(7.18)

One has

Ib,b = e−bs
(
1

2
± bR∓

s + O(b2)

)
, R∓

s =
〈
1| Ãs

I ∓ Ãs
|1
〉

(7.19)

Ia,a = e−as
(
1

2
± aR∓

s + O(a2)

)
(7.20)

Ib,a = Ia,b = √
abe−(b+a)s/2

(
1

a + b
± R∓

s + O(a, b)

)
(7.21)

Plugging these asymptotics in (7.15) we obtain

Det(I − Âs) = O(b2) (7.22)

Det(I + Âs) = Det(I + Ãs) × 2b(1 + r)(2R+
s + s) + O(b2). (7.23)

Furthermore, if we keep only the first order in b, we may replace Ãs(x, y) by Ai(x + y + s)
as a, b → 0. Thus, we have found that

F(s) := F0,0(s) = ∂s
[
Det(I + Ais)(2R

+,0
s + s)

]
(7.24)

where

R+,0
s =

〈
1| Ais

I + Ais
|1
〉

(7.25)

and Ais is the operator with kernel Ai(x + y + s). Using the Sherman-Morrison formula,
we have that〈

1| Ais
I + Ais

|1
〉
=
〈
1| I

I + Ais
|Ais1

〉
= Det(I + Ais + |Ais1〉〈1|)

Det(I + Ais)
− 1. (7.26)

which yields the following alternative formula in terms of Fredholm determinants

F(s) = ∂s [2Det(I + Ais + |Ais1〉〈1|) + (s − 2)Det(I + Ais)] . (7.27)

which is given in the Introduction in (2.26).

7.3.2 CDF in Terms of the Solution of the Painlevé II Equation

In this Section, we show that the distribution F(s) can also be written in terms of the Tracy–
Widomdistributions F1(s) and F2(s)only.Wealso provide formulae in termsof theHastings–
McLeod solution of Painlevé II equation (see Appendix C). Define q(s) to be the solution of
the Painlevé II equation for s ∈ R,

q ′′(s) = sq(s) + 2q(s)3 (7.28)

which satisfies the asymptotic condition q(s) ∼s→+∞ Ai(s). This solution is called the
Hastings–McLeod solution of the Painlevé II equation [110].

Let us first recall some results from [111]. Combining the formula 4.18 and the one just
below 4.52 in [111] we can write

〈
1| I

I + Ais
|δ
〉
= e− ∫ +∞

s dt q(t), (7.29)
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Remark 7.3 One has, see [111, Eq. 4.22], q(s) =
〈
δ| Ais

1−KAi,s
|δ
〉
.

Another result is obtained combining Remark 7.2 and (7.29) as

〈
1| I

I ± Ais
|δ
〉
= Det(I ∓ Ais)

Det(I ± Ais)
= e∓ ∫ +∞

s dt q(t) =
(
F1(s)2

F2(s)

)±1

. (7.30)

where the last identity is from [112].
The next result allows to rewrite the resolvant R+,0

s appearing in (7.24) and (7.25) in terms
of q .

Proposition 7.4 We have
〈
1| Ais

I + Ais
|1
〉
= 1

2

(∫ s

−∞
dr e−2

∫ +∞
r dt q(t) − s

)
. (7.31)

Proof Before proving this proposition, we need the following known lemma.

Lemma 7.5 ([109, Lemma 3]) We have the following relation

∂s
Ais

I + Ais
= − Ais

I − KAi,s
D − Ais

I − KAi,s
|δ
〉 〈

δ| I

I + Ais
(7.32)

where D is the derivative operator.

Since D |1
〉
= 0 we have

∂s

〈
1| Ais

I + Ais
|1
〉
= −
〈
1| Ais

I − KAi,s
|δ
〉 〈

δ| I

I + Ais
|1
〉

= −1

2

〈
1|
(

I

I − Ais
− I

I + Ais

)
|δ
〉 〈

δ| I

I + Ais
|1
〉

= −1

2

(
Det(I + Ais)

Det(I − Ais)
− Det(I − Ais)

Det(I + Ais)

)
× Det(I − Ais)

Det(I + Ais)

= −1

2

(
1 − F1(s)4

F2(s)2

)

(7.33)

Using the expressions of F1 and F2 in terms of the Painlevé II equation, we have

∂s

〈
1| Ais

I + Ais
|1
〉
= −1

2

(
1 − e−2

∫ +∞
s dt q(t)

)
(7.34)

Recalling the notation R+,0
s =

〈
1| Ais

1+Ais
|1
〉
, we have

∂s(2R
+,0
s + s) = e−2

∫ +∞
s dt q(t) = F1(s)4

F2(s)2
(7.35)

We integrate the last quantity between −∞ and s using that q(s) → +∞ for s → −∞ as
in (C.4) and obtain

2R+,0
s + s =

∫ s

−∞
dr e−2

∫ +∞
r dt q(t) + κ. (7.36)

Since R+,0
s → 0 in the limit s → +∞, and using (C.2) and the asymptotics (C.5) and (C.6),

we obtain that κ = 0, which concludes the proof. ��
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Using Proposition 7.4 we arrive at the following equivalent expressions for F(s) (defined
in (7.24)). The first one reads

F(s) = ∂s

[
F2(s)

F1(s)

∫ s

−∞
dt

F1(t)4

F2(t)2

]
. (7.37)

where the first line was given in (2.28). The second formula is expressed in terms of the
Hastings–McLeod solution of the Painlevé II equation (see Appendix C) and reads

F(s) = ∂s

[
e− 1

2

∫ +∞
s dr [(r−s)q(r)2−q(r)]

∫ s

−∞
dr e−2

∫ +∞
r dt q(t)

]

= ∂s

[
e− 1

2

∫ +∞
s dr [(r−s)q(r)2+3q(r)](s − 2q ′(s) + 2q(s)2)

]
.

(7.38)

which was given in (2.29). A third formula, useful for the asymptotics, is obtained applying
the derivative in front of the bracket and using Eqs. (C.2) and (C.3)

F(s) = e− 1
2

∫ +∞
s dr [(r−s)q(r)2+3q(r)]

×
(
1 + 1

2
(q ′(s)2 − sq(s)2 − q(s)4 − q(s))(s − 2q ′(s) + 2q(s)2)

) (7.39)

7.3.3 Properties of F(s): First Moments

We check in Appendix C using the formulae (7.39) that the function F(s) has the behaviour
at s → ±∞ that is required for a CDF, i.e. its limit at s = −∞ is 0 and its limit at s = +∞
is 1. The detailed asymptotics for s → ±∞ is performed in Appendix D. The CDF takes the
form F(s) = ∂s[F(s)]. Provided F(s) → 0 sufficiently fast for s → −∞ and F(s)− s → 0
sufficiently fast for s → +∞, conditionswhich can be checked fromAppendixD, integration
by parts give the following formula for the k-th positive integermomentMk of the distribution
F(s)

Mk = k(k − 1)
∫

R

(F(s) − max(s, 0))sk−2ds (7.40)

This formula can be used to obtain the moments and the cumulants through a numerical
evaluation of F(s). One notices that the mean vanishes, M1 = 0, which indeed must be the
case since E[H(t)] = 0 in the critical stationary case (see Sect. 4.3 where we have computed
the expectation of h(x, t) using the stationary structure of the log-gamma polymer). We used
two numerical methods to evaluate F(s). The first one uses Eq. (7.27) where the Fredholm
determinants are calculated using the method described in Ref. [76,113]. The second method
uses the formula (7.37) and uses the Mathematica routines for F1,2(s), and is in agreement
with the first one. The CDF F(s) and its derivative F ′(s) are plotted in Fig. 3. The mean,
variance, skewness and excess kurtosis are given in Table 1.

7.4 Limit a, b → +∞: Convergence to the GSE

As we already discussed in Remark 6.3 the limit a, b → +∞ can be performed on the
Fredholm pfaffian formula and leads to GSE Tracy–Widom fluctuations. This limit can also
be performed on the formula (7.11) involving the scalar kernel Âs defined in (7.7) in terms
of the function A(a,b)(x) defined in (7.6). It is clear from the definition of A(a,b)(x) that if
a, b → +∞ simultaneously, then A(a,b)(x) converges to the standard Airy function. The
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CDF F (a,b)(s) in (7.11), for a, b → +∞ then takes the form of the GSE Tracy–Widom
distribution found in [53, Eq (35)]. This result thus matches smoothly with the result (2.16)
valid for any fixed A, B > −1/2 in the large time limit.

7.5 Limit (a, b) → (0,+∞): Convergence to the GOE

Another interesting limit, that we call F (a)(s) = limb→+∞ F (a,b)(s), is the limit b → +∞
at fixed a and by the A ↔ B symmetry, the case A → +∞ at fixed b is similar. In particular
we consider now the limit a → 0.

The manipulations follow closely the ones of Section. 7.3. We start by moving the contour
to the right in the definition of A(a,∞) in (7.6) already taking into account the b → +∞
limit. We obtain A(a,∞)(x) = Ă(a,∞)(x) + 2ha(y), with ha(x) = ae−xa+a3/3 and

Ă(a,∞)(x) =
∫

dz

2iπ
a + z

a − z
e−xz+z3/3 = −Ai(x) − 2a

∫ +∞

x
dλAi(λ) + O(a2), (7.41)

where in the integral over z, the contour passes to the right of a. We introduce the operator
Ăs acting on L

2(0,+∞) with kernel Ăs(x, y) = Ă(a,∞)(s + x + y). We thus write

Âs(x, y) = Ăs(x, y) + 2| fa(x)〉〈 fa(y)|, (7.42)

with fa(x) = √
aea

3/6−as/2−ax . Using the matrix determinant lemma, we have

Det(I ± Âs) = Det(I ± Ăs)

(
1 ± 2〈 fa | fa〉 − 2

〈
fa | Ăs

I ± Ăs
| fa
〉)

(7.43)

We now consider the limit a → 0 and we use the exact expressions for the scalar product

〈 fa | fa〉 = 1
2e

a3
3 −as as well as

〈
fa | Ăs

I ± Ăs
| fa
〉
= ae

a3
3 −as

〈
e−ax | Ăs

I ± Ăs
|e−ax

〉
(7.44)

One has

Det(I ± Âs) = Det(I ± Ăs)

(
1 ± e−as − 2e−asa

〈
1| Ăs

I ± Ăs
|1
〉
+ O(a2)

)
(7.45)

Looking at formula (7.11) in the limit b → +∞ we see that we need only the following
estimates from (7.45) up to O(a) as a → 0

Det(I − Âs) = O(a) (7.46)

Det(I + Âs) = Det(I − Ais)(2 + O(a)). (7.47)

which, inserted in (7.11), lead to

F (0)(s) := F (0,∞)(s) = F (∞,0)(s) = Det(I − Ais) = F1(s) (7.48)

This coincides with the determinantal representation of the GOE Tracy–Widom CDF. This
formula matches smoothly with the result (2.17) which states that the CDF of the one-point
KPZ height field is given by the GOE Tracy–Widom distribution for A = −1/2 and any
B > −1/2.
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Appendix

A Overlap of the Half-Line Bethe States with the Brownian Initial
Condition

Here we give some details on the calculation of the overlap 〈�μ|�0〉 between the half-line
Bethe states and the Brownian initial condition. We recall that �0, given in (3.5), is a fully
symmetric function of its arguments, and that in the sector 0 ≤ x1 ≤ · · · ≤ xn it equals

�0(x1, . . . , xn) = exp

⎛
⎝1

2

n∑
j=1

(2n − 2 j + 1)x j − (1/2 + B)x j

⎞
⎠ , (A.1)

where b is the drift of the Brownian. Since we will find that the overlap is real, we will instead
calculate its complex conjugate and use that 〈�μ|�0〉∗ = 〈�0|�μ〉 = 〈�μ|�0〉. Since �μ

is also a symmetric function of its arguments, by definition the overlap can thus be written
as

〈�0|�μ〉 = n!
∫
0<y1<y2<···<yn

dy1 . . . dyn �μ(y1, . . . , yn)e
∑n

j=1
1
2 (2n+1−2 j)y j−(1/2+B)y j

(A.2)

Inserting the explicit form of the Bethe eigenstate (3.7) as a superposition of plane waves we
obtain

〈�0|�μ〉 = n!
(2i)n

∑
P∈Sn

n∏
p=1

⎛
⎝ ∑

εp=±1

εp

⎞
⎠ n∏

�=1

(
1 + i

ε�λP(�)

A

)

×
∏
k<�

(
1 + i

ε�λP(�) − εkλP(k)

) (
1 + i

ε�λP(�) + εkλP(k)

)

Gn,w(ε1λP(1), . . . , εnλP(n)) (A.3)

where we have defined the integrals

Gn,w(λ1, . . . , λn) =
∫
0<y1<y2<···<yn

dy1 . . . dyp e
∑n

j=1(−B−1/2+iλ j )y j+ 1
2 (2n+1−2 j)y j

(A.4)
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These integrals can be explicitly evaluated

Gn,w(λ1, . . . , λn) =
n∏
j=1

−1

− j(B + 1/2) + iλn + · · · + iλn+1− j + j2/2
(A.5)

Now in (A.3) for each permutation P we can relabel all the εp → εP(p) and denoting by∑
ε={±1}n the operation of summation over all the variables εi (an operation independent of

their labeling) we can rewrite (A.3) as

〈�0|�μ〉 = n!
(2i)n

∑
ε={±1}n

n∏
�=1

ε�

(
1 + i

ε�λ�

A

)∏
k<�

(
1 + i

εkλk + ε�λ�

)

∑
P∈Sn

∏
k<�

(
1 + i

εP(�)λP(�) − εP(k)λP(k)

)
Gn,w(εP(1)λP(1), . . . , εP(n)λP(n)) (A.6)

where we have used the fact that the products

∏
k<�

(
1 + i

εP(�)λP(�) + εP(k)λP(k)

)
=
∏
k<�

(
1 + i

εkλk + ε�λ�

)
(A.7)

and
n∏

�=1

(
1 + i

εP(�)λP(�)

A

)
=

n∏
�=1

(
1 + i

ε�λ�

A

)
(A.8)

are independent of the permutation P . Now we use the following symmetrization identity,
given in [114] (this is a limit of [115, Eq. (9)] which was a slight generalization of [116,
Eq. (1.6)]),

∑
P∈Sn

∏
k<�

(
1 + i

λP(�) − λP(n)

)
Gn,w(λP(1), . . . , λP(n)) =

n∏
j=1

1

B − iλ j
(A.9)

Applying it to the set {εkλk} we obtain

〈�0|�μ〉 = n!
(2i)n

∑
ε={±1}n

∏
k<�

(
1 + i

εkλk + ε�λ�

) n∏
j=1

ε j + i λ j
A

B − iε jλ j
. (A.10)

It remains to perform the symmetrization over ε.

Lemma A.1 For any set of complex numbers {λ j }1≤ j≤n,

∑
ε={±1}n

∏
k<�

(
1 + i

εkλk + ε�λ�

) n∏
j=1

ε j + i λ j
A

B − iε jλ j
=
(
2i
A

)n
�(A + B + 1)

�(A + B − n + 1)

n∏
j=1

λ j

B2 + λ2j
.

(A.11)

Remark A.2 In the limit A → +∞, this formula yields back the overlap for Dirichlet bound-
ary condition, see [54].

Proof This identity was essentially known in the context of Hall-Littlewood polynomials of
type BC. In particular, a generalization of it was proved in [104, Theorem 2.6]. We refer
to [55, Eq. (54)] for more details about how to degenerate Venkateswaran’s symmetrization
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identity to the one we need (trigonometric to rational limit). For any parameters A, B,C ∈ C

and complex variables (zi )1≤i≤n , we have

∑
ε∈{±1}n

∑
P∈Sn

∏
k<l

εP(k)zP(k) + εP(l)zP(l) − C

εP(k)zP(k) + εP(l)zP(l)

εP(k)zP(k) − εP(l)zP(l) − C

εP(k)zP(k) − εP(l)zP(l)

×
n∏
j=1

(εP( j)zP( j) + A)(εP( j)zP( j) + B)

εP( j)zP( j)
= 2nn!

n−1∏
j=0

(A + B − j). (A.12)

Let us perform first the symmetrization over P ∈ Sn . Since the first product in the left hand
side of (A.12) is Sn-invariant, and using the symmetrization identity ( [117, Chap. III, Eq.
(1.4)]) ∑

P∈Sn

εP(k)zP(k) − εP(l)zP(l) − C

εP(k)zP(k) − εP(l)zP(l)
= n!,

we obtain that

∑
ε∈{±1}n

∏
k<l

εk zk + εl zl − C

εk zk + εl zl

n∏
j=1

(ε j z j + A)(ε j z j + B)

ε j z j
= 2n

n−1∏
j=0

(A + B − j). (A.13)

We obtain (A.11) using the substitutions C → 1, z j → iλ j in (A.13). ��
Applying Lemma A.1 in (A.10), we obtain the formula for the overlap (3.17) given in the

text.
We note that the overlap formula it is a priori valid before the insertion of the solution of

the Bethe equations, i.e. it is valid for any set of complex λ j such that the overlap integral
converges. The condition for that to be true can be read from (A.9) as

Re(iλ j ) < B (A.14)

for all j ∈ [1, n]. Inserting a string state, labeled by {k j ,m j } j=1,...,ns , the condition becomes
max j

1
2 (2m j − 1) ≤ 1

2 (2n − 1) < B, which leads to the condition n
2 < B + 1

2 .

B From Two-Dimensional Kernels to Scalar Kernels

We present in this section an equivalent representation of a class of Fredholm Pfaffians with
2×2 block kernels in terms of a Fredholm determinant with a scalar valued kernel. Consider
a measure dμ on a contour C in the complex plane and another measure dνς on the real line
R, depending on a real parameter ς . Consider the quantity g(ς) defined by the series

g(ς) = 1 +
∞∑

ns=1

(−1)ns

ns ! Z(ns, ς) (B.1)

and

Z(ns, ς) =
ns∏
p=1

∫
R

dνς (rp)
∫∫

C2
dμ(X2p−1)dμ(X2p)

φodd(X2p−1)φeven(X2p)e
−rp[X2p−1+X2p] Pf

[
Xi − X j

Xi + X j

]2ns
i, j=1
(B.2)

123



Half-Space Stationary Kardar–Parisi–Zhang Equation

Then, following Ref. [54], we have the following equivalent representations for g(ς).

Lemma B.1 (Fredholm Schur Pfaffian) g(ς) is equal to a Fredholm Pfaffian with a 2 × 2
matrix valued skew-symmetric kernel

g(ς) = Pf(J − K )L2(R,νς ) (B.3)

For (r , r ′) ∈ R
2 the matrix kernel K is given by

K11(r , r
′) =
∫∫

C2
dμ(v)dμ(w)

v − w

v + w
φodd(v)φodd(w)e−rv−r ′w

K22(r , r
′) =
∫∫

C2
dμ(v)dμ(w)

v − w

v + w
φeven(v)φeven(w)e−rv−r ′w

K12(r , r
′) =
∫∫

C2
dμ(v)dμ(w)

v − w

v + w
φodd(v)φeven(w)e−rv−r ′w

K21(r , r
′) =
∫∫

C2
dμ(v)dμ(w)

v − w

v + w
φeven(v)φodd(w)e−rv−r ′w

(B.4)

and the matrix kernel J is defined by J (r , r ′) =
(

0 1
−1 0

)
1r=r ′ .

Lemma B.2 (Scalar Fredholm determinant - Proposition B.2 of Ref. [54]) g(ς) is equal to
the square root of a Fredholm determinant with scalar valued kernel

g(ς) =
√
Det(I − K̄ )L2(R+) (B.5)

where L
2(R+) is considered with the Lebesgue measure on R+. Introducing the functions

fodd(r) =
∫
C
dμ(v) φodd(v)e−rv, feven(r) =

∫
C
dμ(v) φeven(v)e−rv (B.6)

which are assumed to be in L
2(R+), the scalar kernel K̄ is given, for (x, y) ∈ R

2+, by

K̄ (x, y) = 2∂x

∫
R

dνς (r) [feven(x + r)fodd(r + y) − fodd(x + r)feven(r + y)] (B.7)

and the scalar kernel I is the identity kernel I (x, y) = 1x=y .

C Painlevé II Equation and Tracy–WidomDistributions

C.1 The Hastings–McLeod Solution of the Painlevé II Equation

Define q(s) to be the solution of the Painlevé II equation for s ∈ R,

q ′′(s) = sq(s) + 2q(s)3 (C.1)

which satisfies the asymptotic condition q(s) ∼s→+∞ Ai(s). The unique smooth solution
of the Painlevé II equation with that asymptotic condition is called the Hastings–McLeod
solution [110]. Let us indicate the two following formula which we use in the manuscript.
The first one is given in Ref. [118, Eq. (2.18)]

s − 2q ′(s) + 2q(s)2 = e2
∫∞
s dr q(r)

∫ s

−∞
dr e−2

∫∞
r dr q(r) (C.2)
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The second one is given in Ref. [118, Eqs. (2.5), (2.6)]∫ +∞

s
dr q(r)2 = q ′(s)2 − sq(s)2 − q(s)4 (C.3)

C.1.1 Left Asymptotics

Useful asymptotics are given [112] and

q(s) =s→−∞
√

− s

2

(
1 + 1

8s3
− 73

128s6
+ 10657

1024s9
+ o

(
1

s9

))
(C.4)

C.1.2 Right Asymptotics

We also needed the following right asymptotics in the proof of Proposition 7.4, see [119,
Sect. 1.3].

∫ +∞

s
dr (r − s)q(r)2 =s→+∞

e−4/3s3/2

15πs3/2

(
1 − 35

24s3/2
+ O
(
1

s3

))
(C.5)

and ∫ +∞

s
dr q(r) =s→+∞

e−2/3s3/2

2
√

πs3/4

(
1 − 41

48s3/2
+ O
(
1

s3

))
(C.6)

C.2 Relations Between the Tracy–Widom, Baik–Rains Distributions and the
Hastings–McLeod Solution of the Painlevé II Equation

The Tracy–Widom distributions for β = 2, 1, 4 and the Baik–Rains distribution (denoted
BR) are given by [109,118]

– For β = 2

F2(s) = exp

(
−
∫ +∞

s
dr(r − s)q2(r)

)
= Det(I − Ai2s )L2(R+) (C.7)

– For β = 1

F1(s) = exp

(
−1

2

∫ +∞

s
dr [(r − s)q2(r) + q(r)]

)
= Det(I − Ais)L2(R+) (C.8)

– For β = 4 (everywhere in the paper we use the conventions of [112])

F4(s) = exp

(
−1

2

∫ +∞

s
dr(r − s)q2(r)

)
cosh

(
1

2

∫ +∞

s
dr q(r)

)

= 1

2
(Det(I − Ais)L2(R+) + Det(I + Ais)L2(R+)) (C.9)

– For the Baik–Rains distribution

FBR(s)

= (1 + (s − 2q ′(s) + 2q2(s))(
∫ +∞
s

drq(r)2)) exp

(
−
∫ +∞
s

dr [(r − s)q2(r) + 2q(r)]
)

= ∂s

[∫ s

−∞
dt exp

(
−2
∫ +∞
t

dr q(r)

)
exp

(
−
∫ +∞
s

dr(r − s)q2(r)

)]

(C.10)
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It allows to obtain the following relation between the distributions:

F4(s) = 1

2

(
F1(s) + F2(s)

F1(s)

)
(C.11)

and

FBR(s) = ∂s

[
F2(s)

∫ s

−∞
dt

F1(t)4

F2(t)2

]
. (C.12)

The next sections provide tail asymptotics for F1 and F2.

C.2.1 Left Asymptotics of F1 and F2

The left asymptotics of the Tracy–Widom β = 1, 2 are given by (see e.g. [120] and references
therein)

F1(s) = 2−11/48 eζ ′(−1)/2 exp
[

− |s|3
24

− |s|3/2
3
√
2

− log |s|
16

− |s|−3/2

24
√
2

+ 3|s|−3

128
− 73|s|−9/2

1152
√
2

+ 63|s|−6

512
+ O(|s|−15/2)]

F2(s) = 21/24 eζ ′(−1) exp
[

− |s|3
12

− log |s|
8

+ 3|s|−3

64
+ 63|s|−6

256
+ O(|s|−9)]

(C.13)

C.2.2 Right Asymptotics of F1

The right asymptotics of the Tracy–Widom β = 1, 2 are given by (see e.g. [119] and refer-
ences therein)

1 − F1(s) = e− 2s3/2
3

4
√

π s3/4

[
1 − 41

24 · 3 s−3/2 + 9241

29 · 32 s−3 − 5075225

213 · 34 s−9/2 + 5153008945

219 · 35 s−6

− 1674966309205

223 · 36 s−15/2 + 3985569631633205

228 · 38 s−9 + O(s−21/2)
]

(C.14)
and

1 − F2(s) = e− 4s3/2
3

16π s3/2

[
1 − 35

23 · 3 s−3/2 + 3745

27 · 32 s−3 − 805805

210 · 34 s−9/2 + 289554265

215 · 35 s−6

− 31241084875

218 · 36 s−15/2 + 23604769513325

222 · 38 s−9 + O(s−21/2)
]

(C.15)

D Asymptotics of F(s)

We compute the asymptotics of F(s) for large positive and negative values of s and plot in
Fig. 6 the overlap between the complete PDF F ′(s) and the asymptotics obtained.
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D.1 Right Tail Using the Determinantal Formula

Let us perform the trace expansion for s → +∞ on the form

F(s) = ∂s [2Det(I + Ais + |Ais1〉〈1|) + (s − 2)Det(I + Ais)] . (D.1)

Herewe canperforman expansion in powers ofAiry functions that is in e− 2k
3 s3/2 , k = 1, 2, . . .

using the first two orders of the trace expansion of the Fredholm determinant

Det(I + M) = 1 + TrM + 1

2
((TrM)2 − TrM2) + O(M3) (D.2)

We have, whereO(K �) indicate the higher order traces in the expansion. Up to to the second
order in powers of Airy functions, we obtain

2Det(I+Ais + |Ais1〉〈1|) + (s − 2)Det(I + Ais)

= s + sTrAis + 2Tr|Ais1〉〈1| + O(Ai2)

= s + s
∫ +∞

0
dxAi(2x + s) + 2

∫ +∞

0

∫ +∞

0
dxdyAi(s + x + y) + O(Ai2)

(D.3)

Differentiating allows to find back the CDF F(s)

F(s) = 1 +
∫ +∞

0
dxAi(2x + s) − s

2
Ai(s) − 2

∫ +∞

0
dxAi(x + s) + O(Ai2)

= 1 − s

2
Ai(s) − 3

2

∫ +∞

0
dxAi(x + s) + O(Ai2)

(D.4)

D.2 Right Tail Using the Asymptotics of q(s) and the Tracy–WidomDistributions

We can now compare with the formula (7.39)

F(s) = e− 1
2

∫ +∞
s dr [(r−s)q(r)2+3q(r)]

×
(
1 + 1

2
(q ′(s)2 − sq(s)2 − q(s)4 − q(s))(s − 2q ′(s) + 2q(s)2)

) (D.5)

which we recast into

F(s) = F1(s)3

F2(s)

(
1 + 1

2
(q ′(s)2 − sq(s)2 − q(s)4 − q(s))(s − 2q ′(s) + 2q(s)2)

)
(D.6)

Since q(s) behaves asymptotically for large positive s as the Airy function, we obtain at first
order in q(s) the expansion

F(s) = F1(s)3

F2(s)

(
1 − s

2
q(s)
)

+ O(q(s)2) (D.7)

Using the asymptotics of the Tracy–Widom distributions (C.14) and (C.15) and the asymp-
totics of the Airy function, we obtain

1−F(s)

= s3/4e− 2s3/2
3

4
√

π

[
1 + 139s−3/2

48
− 11423s−3

4608
+ 3907027s−9/2

663552
− 2886147455s−6

127401984
+ o(s−6)

]

(D.8)
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Fig. 6 Overlap of the left and right tails of the PDF of the critical stationary case (derivative of Eqs. (D.10)
and (D.4)) with the complete PDF (derivative of Eq. (7.37)). Top. True scale. Bottom. Logarithmic scale on
the vertical axis

D.3 Left Tail Using the Asymptotics of q(s) and the Tracy–WidomDistributions

Now we investigate the behaviour of F(s) when s → −∞. Using once again that

F(s) = F1(s)3

F2(s)

(
1 + 1

2
(q ′(s)2 − sq(s)2 − q(s)4 − q(s))(s − 2q ′(s) + 2q(s)2)

)
(D.9)

and reading the asymptotics of the Painlevé transcendent (C.4) and of the Tracy–Widom
distributions (C.13) we obtain the left tail of F(s) as

F(s) = 2−203/48eζ ′(−1)/2 exp
[− |s|3

24 − |s|3/2√
2

+ 23
16 log |s| + 91

8
√
2|s|3/2

− 3957
128 |s|3 + 28717

128
√
2|s|9/2 − 469683

512|s|6 + o(s−6)
]

(D.10)
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E Extended Kernel and the Kadomtsev–Petviashvili Equation

Recently it was shown that the height CDF at the (large time) KPZ fixed point for the full
space problem is related to scale-invariant solutions of the Kadomtsev-Petviashvili (KP)
equation [121]. A related observation was made for the periodic KPZ fixed point [122]. This
connection to the KP equation extends to the generating function at arbitrary time for the
KPZ equation in full space, for some particular initial conditions, droplet, half-Brownian
[121] and Brownian [123]. A similar relation was also obtained for a class of linear statistics
associated to the Airy process [123]. However at present no such relation is known for the
half-space problem.

Here we provide an extended version of our kernel which can be related to the KP equa-
tion. It involves however an additional variable which plays the role of a “fictitious space”.
Although at this stage we could not see a physical interpretation for this variable, we believe
this fact is curious enough to be reported.

We recall that for the half-space problem at all times, the generating function of the
exponential of the KPZ height at the origin, x = 0, reads (7.3)

E

[
exp(−ςWeH(t))

]
=
√
Det(I − K̄t,ς )L2(R+). (E.1)

Denoting ς = e−r , one rewrites the kernel K̄ as

K̄t,e−r (x, y) = 2∂x

∫∫
C2

dwdz

(2iπ)2
G(z)G(w)

sin(π(z − w))

sin(π(z + w))
e−(x+r)z−(y+r)w+t w3+z3

3 , (E.2)

where the function G reads

G(z) = �(A + 1
2 − z)

�(A + 1
2 + z)

�(B + 1
2 − z)

�(B + 1
2 + z)

�(2z) . (E.3)

The kernel K̄t,e−r verifies two simple identities
⎧⎪⎨
⎪⎩

∂t K̄t,e−r (x, y) = − 1
3 [∂3x + ∂3y ]K̄t,e−r (x, y)

∂r K̄t,e−r (x, y) = [∂x + ∂y]K̄t,e−r (x, y)

(E.4)

We can now extend the kernel by introducing a fictitious variable u in the following way

Kt,e−r ,u(x, y) = 2∂x

∫∫
C2

dwdz

(2iπ)2
G(z)G(w)

sin(π(z − w))

sin(π(z + w))
e−(x+r)z−(y+r)w+ u

2 (w2−z2)+t w3+z3
3

(E.5)
so that

Kt,e−r ,u=0(x, y) = K̄t,e−r (x, y) (E.6)

The new kernel Kt,e−r ,u verifies the same set of differential equations (E.4) and in addition
verifies a third one

∂uKt,e−r ,u(x, y) = 1

2
[∂2y − ∂2x ]Kt,e−r ,u(x, y) (E.7)

It was shown in [121], and known earlier in [124] (see discussion in [123, Appendix E]), that
the three conditions (E.4) and (E.7) imply that the Fredholm determinant associated to K is

a τ -function of the KP equation. Thus, denotingF(r , t, u) =
√
Det(I − Kt,e−r ,u)L2(R+), the
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function φ(r , t, u) := 2∂2r log(F(r , t, u)) solves the KP equation for (r , t, u)

∂tφ + φ∂rφ + 1

12
∂3r φ + ∂−1

r ∂2uφ = 0 (E.8)

Note that the knowledge of φ(r , t, u = 0) is equivalent to the knowledge of the half-space
generating function for the KPZ equation. For the full-space KPZ equation, the variable u
was interpreted as a spatial variable whereas in our case, it is a fictitious variable with no
obvious direct interpretation.
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