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Since the publication of this paper, we have noticed or been made aware of several
minor mistakes. These mistakes do not affect significantly the main results and are all
readily corrected below.

1 Expression for the constant d in Corollary 6.8

The expression given in Corollary 6.8 for the constant d, controlling the magnitude of
fluctuations, was incorrectly calculated. The correct value is

d = 21/3c2/3(1 − c)2/3
√
1 − (1 − c)2

(1)

Indeed, at the bottom of page 1101, it is correctly stated that the constant d depends
on the parameter c as d = σ(x0)/I ′(x0). Here x0 ∈ (0, 1) is such that I (x0) = c,
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where

I (x) = 1 −
√
1 − x2,

and where, using [1, Eq. (43)],

σ(x) =
(

2I (x)2

1 − I (x)

)1/3

.

Since I (x0) = c, we have x0 = √
1 − (1 − c)2, so that

σ(x0) =
(

2c2

1 − c

)1/3

(2)

and

I ′(x0) = x0√
1 − x20

=
√
1 − (1 − c)2

1 − c
. (3)

Combining (2) and (3) yields (1). The previous formula for d came from a mistake in
simplifying the formula for d = σ(x0)/I ′(x0).

2 Signmistakes

We have identified a few sign mistakes in the paper and remedied them below.
In Proposition 4.6, the determinant inside the integrand of Eq. (27) should be

det

(
1

vi + λi − v j

)�(λ)

i, j=1
instead of det

(
1

v j − vi − λi

)�(λ)

i, j=1
. (4)

This was noticed in [7], see footnote 4 page 23 therein. The proof of Proposition 4.6
involves a q → 1 limit of Proposition 3.8 from [5, Section 3.2.1] and the sign mistakes
arose in taking this q → 1 limit. A similar q → 1 limit was performed (correctly)
in [4, Proposition 5.1] so that our sign mistake becomes apparent, even though the
choice of contours there are slightly different than ours.

The sign mistake in Proposition 4.6 implies sign mistakes in several further state-
ments using Proposition 4.6. In Theorem 2.12, the first equation should read

E

[
euZ(t,n)

]
= det

(
I − KBP

u

)

L2(C0)
instead of det

(
I + KBP

u

)

L2(C0)
. (5)

In Theorem 2.13, the first equation should read

E

[
euP(t,x)

]
= det

(
I − KRW

u

)

L2(C0)
instead of det

(
I + KRW

u

)

L2(C0)
. (6)
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This was already noticed in [3, Remark 1.21]. Similarly, in Theorem 2.18, the first
equation should read

P (T (n,m) > r) = det
(
I − K FPP

r

)

L2(C ′
0)

instead of det
(
I + K FPP

r

)

L2(C ′
0)

This was noticed in [2, Remark 1.6].
The statement of Theorem 2.15 is correct. Even though it relies on Theorem 2.13

(which had sign mistakes indicated above) there was another sign mistake which
cancelled the previous ones. Indeed, the first displayed equation at the top of page
1096, which explains how to recover the standard form of the Fredholm determinant
defining the Tracy Widom distribution, is not correct. It should read

det(I + Ky)L2(C) = det(I − KAi)L2(x,+∞) instead of

det(I − Ky)L2(C) = det(I − KAi)L2(x,+∞).

The statement of the convergence towards the Tracy-Widom distribution for the
Bernoulli-Exponential FPP model also contained a sign mistake, as noticed in [2,
Remark 1.3]. The displayed equation in the statement of Theorem 2.19 should read

lim
n→∞P

(
T

(
n, κ(θ)n

) − τ(θ)n

ρ(θ)n1/3
≥ −y

)

= FTW(y).

3 Asymptotic analysis of the Fredholm determinant kernels
(Propositions 6.7 and 7.6)

In the proof of Proposition 6.7, Eq. (53) reads

∣∣∣∣t · h(v) − σ(θ)3

3
ṽ3

∣∣∣∣ < Ct(v − θ)4.

This bound should, instead, be

∣∣∣∣t · h(v) − σ(θ)3

3
ṽ3

∣∣∣∣ < Ct |v − θ |4. (7)

The following sentences aimed at proving an estimate on the kernel K t
y,ε given in the

displayed equation following (53), where modulus bars are also missing. Due to the
factor exp(−th(v)) in the integrand defining the kernel, we used (7) to argue that we
may find constants C ′,C ′′ > 0 such that for ṽ, ṽ′ along their contour,

|K t
y,ε(ṽ, ṽ′)| < C ′′ exp(−C ′|ṽ|3). (8)

However, there is a lack of rigor in the justifications given. Indeed, as pointed out to
us by Sergei Korotkikh, the argument of the complex variable ṽ is π/2 + O(ε), so
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Fig. 1 Left: The contour Cε
θ for variables v, v′ is shown (thick black segments). Since the length of each

segment is ε, the length of the corresponding arc it intercepts is ε +o(ε). Taking into account that the circle
has radius θ , it implies that the angle α shown in the figure is α = ε

θ + o(ε). Right: The contour (thick

black segments) for variables ṽ, ṽ′ obtained after the change of variables v = θ + t−1/3ṽ. The angle of the
segments is the same as on the left, that is φ(ε) = π

2 + ε
2θ + o(ε)

that the real part of σ(θ)3

3 ṽ3 may not decay faster than the bound in the R.H.S. of (7),
as |ṽ| increases along the contour.

Instead, we need to consider a higher order Taylor approximation, as it was kindly
suggested to us by Sergei Korotkikh (see also [6] for an alternative approach). Using
Eq. (48), we may compute the fourth derivative of the function h and find that

h(4)(θ) = − 6(1 + 2θ)

θ2(1 + θ)2(1 + 2θ + 2θ2)
. (9)

By Taylor expansion, there exist a constant C > 0 such that for |v − θ | < ε with ε

chosen small enough,

∣∣∣∣∣
th(v) − σ(θ)3

3
ṽ3 − t−1/3h(4)(θ)

4! ṽ4

∣∣∣∣∣
< Ct |v − θ |5 < Cε2|ṽ|3. (10)

According to the choice of contours made just before the statement of Proposition
6.7, the variable ṽ belongs to a contour formed by two segments leaving 0 with angle
±φ(ε) where φ(ε) = π

2 + ε
2θ + o(ε), see Fig. 1.

Thus, using that t−1/3|ṽ| < ε and h(4)(θ) < 0,

Re

[
−σ(θ)3

3
ṽ3 − t−1/3h(4)(θ)

4! ṽ4

]

= − sin

(
3ε

2θ
+ o(ε)

)
σ(θ)3

3
|ṽ|3

− cos

(
2ε

θ
+ o(ε)

)
t−1/3h(4)(θ)

4! |ṽ|4

< −ε|ṽ|3
(

σ(θ)3

2θ
+ h(4)(θ)

4!

)

+ o(ε) (11)
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Using (9) and the expression of σ(θ) in Eq. (43), we find that

σ(θ)3

2θ
+ h(4)(θ)

4! = 1

4θ2(1 + θ)2(1 + 2θ + 2θ2)
> 0,

Combining (10) and (11), there exist a constant c > 0 such that

Re [−th(v)] < −cε|ṽ|3 + Cε2|ṽ|3.

Hence, choosing ε small enough, we may find constants C ′,C ′′ > 0 such that

|K t
y,ε(ṽ, ṽ′)| < C ′′ exp(−C ′ε|ṽ|3),

which allows to apply dominated convergence on the Fredholm determinant expansion
as explained in the proof of Proposition 6.7.

In the asymptotic analysis of the Bernoulli-Exponential FPP model in Section 7,
the proof of Proposition 7.6 was claimed to be identical to the proof of Proposition
6.7. Thus, one might expect that a similar issue needs to be addressed there as well.
However, in Section 7, the contour for the variables u, u′ (i.e. the variables of the kernel
K FPP

y,ε (u, u′) in Proposition 7.6) departs θ with angle±φ, where φ ∈ (π/2, 5π/6) does
not depend on ε. Hence, using a Taylor expansion of the function H to the third order
as in (7) suffices to show that

Re [−t H(u)] < −c|ũ|3,

for some constant c > 0, which allows to bound the kernel appropriately.

4 Proof of the steep-descent property (Lemma 6.4)

The proof of Lemma 6.4 contained a mistake that we remedy here. Note that we only
used this statement in the special case of α = β = 1, where all formulas simplify
and the statement of the lemma is quite easy to check. Nevertheless, let us explain
how the statement of Lemma 6.4 can be proved in the general α, β case. We will
follow the proof of [3, Lemma 2.6], which is a statement very similar as Lemma 6.4
(it corresponds to the α, β → 0 limit). In the proof of Lemma 6.4, we reduced the
statement to proving that for 0 < θ1 < θ2

Ψ2(θ1)

Φ ′(θ1)
>

Ψ2(θ2)

Φ ′(θ2)
, (12)

where Ψn is the nth derivative of the digamma function, and

Φ(θ) =
∑

n≥0

1

(n + θ)2 + y2
, with y > 0.
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There are several mistakes in Eq. (63), which should read

Ψ2(θ1)Φ
′(θ2) > Ψ2(θ2)Φ

′(θ1)

⇔
∞∑

n=0

2

(n + θ1)3

∞∑

m=0

2(m + θ2)
(
(m + θ2)2 + y2

)2

>

∞∑

n=0

2

(n + θ2)3

∞∑

m=0

2(m + θ1)
(
(m + θ1)2 + y2

)2

⇔
∞∑

n,m=0

1

(n + θ1)3(m + θ2)3

1
(
1 + y2

(m+θ2)2

)2

>

∞∑

n,m=0

1

(n + θ2)3(m + θ1)3

1
(
1 + y2

(m+θ1)2

)2 , (13)

and at this point, the inequality is not obvious to prove.
We will instead use a different method from [3, Lemma 2.6]. We need to show that

the functionΨ2(θ)/Φ ′(θ) is decreasing. Taking the derivative, this amount to showing
that for all θ > 0,

Ψ3(θ)Φ ′(θ) − Ψ2(θ)Φ ′′(θ) < 0.

Using, the series representations for the digamma and Φ functions, this is equivalent
to showing that

∞∑

n,m=0

Tn,m > 0 where Tn,m = a(n + θ)B(m + θ) − A(n + θ)b(m + θ), (14)

with

a(x) = 1

x4
, b(x) = 1 − y2

3x2

x4
(
1 + y2

x2

)3 ,

A(x) = 1

x3
, B(x) = 1

x3
(
1 + y2

x2

)2 .

Note that

Tn,m > T̃n,m := a(n + θ)B(m + θ) − A(n + θ)b̃(m + θ),

where b̃(x) = 1

x4
(
1+ y2

x2

)3 ≥ b(x).
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In order to prove (14), we will show that T̃n,m + T̃m,n ≥ 0, and for that we will
show that

(1) For all 0 ≤ n ≤ m, T̃n,m ≥ 0.
(2) For all 0 ≤ n ≤ m, either T̃n,m/T̃m,n ≥ 0 or |T̃n,m/T̃m,n| ≥ 1.

To prove (1), observe that using the shorthand notation nθ = n + θ,mθ = m + θ , we
have

T̃n,m = mθ

(
mθ (mθ − nθ ) + y2

)

n4θ
(
m2

θ + y2
)3

which is clearly non-negative for all 0 ≤ n ≤ m. Now we turn to proving (2). We
have

T̃n,m

T̃m,n
= nθ

mθ

(
1 + y2

n2θ

)3

(
1 + y2

m2
θ

)3

mθ (mθ − nθ ) + y2

nθ (nθ − mθ ) + y2

For n ≤ m, the numerator is always positive. Regarding the denominator, there are
two cases to consider. Either it is nonnegative, which implies Tn,m/Tm,n > 0, or the
denominator is negative. In the latter case, we have that y2 < nθ (mθ − nθ ) and

∣∣∣∣∣
T̃n,m

T̃m,n

∣∣∣∣∣
=

(
1 + y2

n2θ

)3

(
1 + y2

m2
θ

)3

nθ

mθ

mθ (mθ − nθ ) + y2

nθ (mθ − nθ ) − y2
.

For n ≤ m, we clearly have that

(
1+ y2

n2
θ

)3

(
1+ y2

m2
θ

)3 ≥ 1 and

nθ

mθ

mθ (mθ − nθ ) + y2

nθ (mθ − nθ ) − y2
≥ nθ

mθ

mθ (mθ − nθ )

nθ (mθ − nθ )
= 1,

so that
∣∣∣T̃n,m/T̃m,n

∣∣∣ ≥ 1. Therefore we have proved (2) and this concludes the proof

of Lemma 6.4.
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