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Optimizing information flow in small genetic networks. II. Feed-forward interactions
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Central to the functioning of a living cell is its ability to control the readout or expression of information
encoded in the genome. In many cases, a single transcription factor protein activates or represses the expres-
sion of many genes. As the concentration of the transcription factor varies, the target genes thus undergo
correlated changes, and this redundancy limits the ability of the cell to transmit information about input signals.
We explore how interactions among the target genes can reduce this redundancy and optimize information
transmission. Our discussion builds on recent work [Tkacik et al., Phys. Rev. E 80, 031920 (2009)], and there
are connections to much earlier work on the role of lateral inhibition in enhancing the efficiency of information
transmission in neural circuits; for simplicity we consider here the case where the interactions have a feed
forward structure, with no loops. Even with this limitation, the networks that optimize information transmis-
sion have a structure reminiscent of the networks found in real biological systems.
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I. INTRODUCTION

The genomes of even the smallest bacteria encode the
structure of hundreds of proteins; for complicated organisms
like us, the number of different proteins reaches into the tens
of thousands [1]. During the course of its life, each cell has
to control how many copies of each protein molecule are
synthesized [2]. These decisions about the expression of ge-
netic information occur on many scales, from (more or less)
irreversible decisions during differentiation into different tis-
sue types down to continuous modulations of the number of
enzyme molecules in response to varying metabolic needs
and resources [3]. As with many biological processes, the
control of gene expression depends critically on the trans-
mission of information. Because the relevant information is
represented inside the cell by signaling molecules at low
concentrations, the irreducibly stochastic behavior of indi-
vidual molecules sets a physical limit to information trans-
mission [4-7]. A more precise discussion is motivated by the
emergence of experiments which measure the noise in gene
expression [8—15]. In this paper, building on our previous
work [16], we explore how cells can structure their genetic
control circuitry to optimize information transmission in the
presence of these physical constraints, thus maximizing the
control power that they can achieve while using only a lim-
ited number of molecules.

Although the problems of information transmission in ge-
netic control are general, it is useful to have a concrete ex-
ample in mind. In developing embryos, information about
position—and hence, ultimately, fate in the developed
organism—is encoded by spatially varying concentrations of
“morphogen” molecules [17,18]. These molecules often are
transcription factors, and positional information then is trans-
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mitted to the expression levels of the target genes [18-20]. In
this scheme, maximizing information transmission maxi-
mizes the richness of the spatial patterns which the embryo
can construct.

In recent work we have considered the problem of maxi-
mizing information transmission from a single transcription
factor to multiple target genes, in the case where the targets
are noninteracting [16]. Already, this problem generates
some structures that remind us of real genetic control net-
works. But, when a single transcription factor controls many
genes independently, the signals carried by those genes nec-
essarily are redundant [21]. To fully optimize the information
which can be carried by a given number of molecules, there
must be interactions among the target genes which reduce
this redundancy. Our goal in this paper is to derive the form
of these interactions. We emphasize that this is an ambitious
project: we are trying to find the topology and parameters of
a genetic network from first principles, constrained only by
the limited concentration of all the relevant molecules. To
simplify our task, we start here with the case in which the
network of interactions has no closed loops, and return to the
full problem in subsequent papers.

When we search possible networks for the ones that opti-
mize information transmission, it is convenient to break this
search into two parts. First, we enumerate network topolo-
gies, and then we search parameters within each topology. It
is conventional to encode in the network topology the sign of
the interactions, so that changing the ‘shape of an arrow’
from activation to repression is counted as a qualitatively
different network (see Fig. 1). Even if we assume that each
protein can act either as activator or repressor for all its tar-
gets [22], with one transcription factor controlling K inter-
acting genes in a feed forward network, there are 25 possible
network topologies. For each of these possibilities we find a
single well defined optimum for all the continuously adjust-
able parameters in the system, and these optimal parameter
values are determined only by the number of available mol-
ecules. Thus, the structures of these networks really are de-
rivable, quantitatively, from first principles. For related ap-
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a. ACTIVATION: REPRESSION:
A——B A——B
b.
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FIG. 1. Schematic models of transcriptional regulation. (a) Tran-
scription factor proteins (A) can either activate (left) the expression
of genes (B) by recruiting the RNA polymerase, or repress (right)
the expression of genes by blocking the polymerase. Throughout
the paper we will use the diagrammatic representation, in which an
arrow depicts activation and a blunted arrow depicts repression. (b)
A feed forward network in which the input ¢ regulates the expres-
sion levels of g; and g,, and g; also regulates g,; the structure is
feed forward because g, does not feedback on g;.

proaches to information flow in biochemical and genetic
networks, see Refs. [24-28].

Among the possible network topologies, there are some in
which interaction strengths are driven to zero by the optimi-
zation. Among the nontrivial solutions, however, we find that
the different topologies achieve very similar information ca-
pacities. Thus, it seems that there is not a single optimal
network, but rather an exponentially large number of nearly
degenerate local optima. All of these local optima are net-
works with competing interactions, so that a single target
gene is activated and repressed by different inputs. Phenom-
enologically, if we view the expression level of each target
gene as a function of the input transcription factor concen-
tration, these competing interactions lead to nonmonotonic
input/output relations. It is this nonmonotonicity that allows
the collection of target genes to explore more fully the space
of expression levels, thus enhancing the capacity to transmit
information. Although we consider only networks without
feedback, these nonmonotonic responses already are reminis-
cent of the patterns seen in real genetic networks.

II. SETTING UP THE PROBLEM

The optimization problem that we are addressing in this
paper is a generalization of the problem discussed in our
previous work [16]. To make this paper self-contained, how-
ever, we begin by reviewing the general formulation of the
problem. We are interested in situations where a single tran-
scription factor controls the expression level of several
genes, labeled i=1,2,...,K. The expression levels of these
genes, g;, carry information about the concentration ¢ of the
input transcription factor. It is this information /(c;{g;}) that
we suggest is optimized by real networks.

To derive the consequences of our optimization principle,
we require several ingredients: we need to describe the space
of possible networks, we need to relate I(c;{g;}) to some
calculable properties of these networks, we need to put these
pieces together to form the objective function for our opti-
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mization problem, and finally we need to perform the opti-
mization itself. In the interests of proceeding analytically as
far as possible down this path, before resorting to numerics,
we adopt several approximations: we consider the case
where expression levels have reached steady state values
consistent with the input transcription factor concentration,
we assume that the noise in the system is small, and we
restrict our attention to networks that have a feed forward
structure. We have discussed the first two approximations in
our previous work [16], and our focus here on feed forward
networks is intended as a useful intermediate step between
the case of noninteracting target genes (as in Ref. [16]) and
the case of arbitrary interactions, to which we will return in a
subsequent paper.

A. Describing the regulatory interactions

The expression levels of genes are determined by a com-
plex sequence of events, especially in eukaryotic cells where
even the transcription of DNA into messenger RNA involves
a complex of more than one hundred proteins [23]. As in
much previous work, we abstract from this complexity to say
that expression levels are set by a balance of synthesis and
degradation reactions; in the simplest case only synthesis is
regulated, and degradation is a first order process. Then the
deterministic kinetic equations that govern the expression
levels are

dG; 1

= (G - G, (1)
where 7 is the lifetime of the gene products against degrada-
tion, 7. 1S the maximum number of molecules per second
that can be synthesized, and fi(c;{G;}) is the “regulation
function” that describes how the synthesis rate is modulated
by the other molecules in system. The regulation functions,
which are positive and range between zero and one, will be
different for every gene, but we assume that the lifetimes and
maximum synthesis rates are the same for all of the genes
[29]. In this formulation, G; counts the number of molecules
of the protein coded by gene i, while it is conventional to
define ¢ as a concentration. Before we are done, it will be
useful to normalize these quantities.

The steady state expression levels, G;(c), are the solutions
of the simultaneous nonlinear equations

Gi€) = Fanax e {G(O)}). 2)

In general there can be multiple solutions, corresponding to a
network that has more than one stationary state; as noted
above, we will confine our attention here to networks with a
feed forward architecture, in which this cannot happen. In
Fig. 1(b), we present an example of a feed forward network,
where an input ¢ regulates the expression of genes g; and g,.
The product proteins of g; also regulate gene g,, but g, does
not regulate g;. Formally, the “no loops” condition defining
feed forward networks means that there is some assignment
of the labels i so that f; only depends upon G; for j<<i, and
hence, as will be important below, the matrix Jf;/dG; is
lower triangular.
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A deterministic system with continuous inputs and out-
puts can transmit an infinite amount of information. In real-
ity, information transmission is limited by the discreteness
and randomness of the individual molecular events. If this
noise is small, it can be described by adding Langevin
“forces” to the deterministic kinetic equations [30-34]. To
the extent that synthesis and degradation rates can be written
as depending on the instantaneous concentrations or expres-
sion levels, as we have done in Eq. (1), then the system has
no “hidden” memory, and the Langevin terms which describe
the noise in the system should have effectively zero correla-
tion time. We also will assume that the noise in the synthesis
and degradation of different gene products are independent.
Then we can write

dG, 1
d—t' = rmacf (¢:{G}) = ~Git 7i(0), (3)

() (t")) = N;:6;8(t 1), (4)

where the A; are the spectral densities of the noise forces.

The spectral densities of noise have several components
which add together. First, if we take Eq. (1) seriously, it
describes synthesis and degradation as simple first order pro-
cesses; the terms which appear in the deterministic equation
as rates should then be interpreted as the mean rates of Pois-
son processes that describe the individual molecular transi-
tions. Then we have

1
N = r o files{G ) + ~Gi. (5)

We are interested in small fluctuations around the steady

state, so in this expression we should set G;=G,(c). Further,
we can account for the possibility that synthesis is a multi-
step process by adding a “Fano factor” v to the spectral
density of synthesis noise, so we have

N = (G0 + 26, ©)
MY =260, ™

The Fano factor is a measure of the dispersion of the prob-
ability distribution, the ratio of the variance to the mean; here
the relevant random variable is the number of reaction events
in a small window of time. As an example, if synthesis oc-
curs in bursts, then we expect »>1 [15,31,35,36]. Bursts of
both proteins and mRNAs have now been experimentally
observed in a number of bacterial and eukaryotic systems
[9,37-39].

A second source of noise comes from the diffusive arrival
of transcription factor molecules at their targets. To describe
this, we should remember that the regulation of transcription
depends on events that occur in a very small volume, of
linear dimension €. The relevant concentrations are those in
this volume, or more colloquially at the point where the tran-
scription factors bind; binding and unbinding events act as
localized sources and sinks for the diffusion equation that
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describes the spatiotemporal variations in concentration. In-
tuitively, this coupling generates noise because the diffusion
of the transcription factors into the relevant volume is a sto-
chastic process, so that even with the global concentration
fixed there are local concentration fluctuations [40]. Analysis
of this problem [4,5,15,41] shows that, so long as the time
for diffusion through a distance € is short, the net effect of
the diffusive fluctuations is captured by a Langevin term

m_(r _Mﬁ“;{G}))zL (8)
o max Jdc D’

where D is the diffusion constant; again we should evaluate

this at G j:éj(c) to describe the small fluctuations around the
steady state.

The same arguments that apply to the input transcription
factor also apply to each of the target gene products when
they act as transcription factors. If there are G; molecules of
gene product i, then these proteins are present at concentra-
tion G,/€), where () is the relevant volume [42], and the
analog of Eq. (8) is

DS, f?fi(C;{G;}))z(Gk/Q)
N _%:( m5GYQ) ) DE ©)
Q (c:AGH)?
=ﬁ§(rmaxaf’(; G{::J)) 6. )

Finally, in putting all these terms together, it is convenient
to measure expression levels in units of the maximum mean

expression level, which is G,:rmaxf molecules; that is, we
define g,=G,;/(ry.7). Then we have

dg.
U= flegh) - 51+ 0. (11

(EDE) = 3,5 - mr%w,v NP NPT, (12)

max

NIRRT aficifgd) |\ ¢
:(Siié(t ) [ rmangi(C) * ( Jdc ) Der

+2(afi<c;{g€}>>2 g }

k &gk ngrmaxT/Q)

{g=8 ()}
(13)

The parameter combinations which appear in these equa-
tions have simple interpretations. If v=1, the synthesis and
degradation of each gene product molecule really is an inde-
pendent Poisson process, and hence r,,,7 is not just the
maximum number of molecules that can be made (on aver-
age), but also the maximum number of independent mol-
ecules, N, in the notation of Ref. [16]. For more complex
processes, where v# 1, we can write Ny=2r,7/(1+v).
Similarly, the combination r, 7/€) is a concentration, the
maximum (mean) concentration of the gene products. Since
these are acting as transcription factors, we will assume that
this maximum concentration is also the maximum concentra-
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tion of the input transcription factor, c .. As discussed pre-
viously [16], there is a natural scale of concentration, ¢
=N,/(D€7), and if we use units in which cy=1 we can write

(E(NE(t)y=8(t—1')N;
ae-iray gt (LD

o dc

LIS (9fi(0;{ge}) )2&1

Cmax k agk

{8k=§k(c)}
(14)

To complete our description of the system we need to specify
the regulation functions f(c;{g;}).

B. Regulation functions

The central event in transcriptional regulation is the bind-
ing of the transcription factor(s) to their specific sites along
the DNA. These binding sites must be close enough to the
start of the coding sequence of the target gene that binding
can influence the initiation of transcription by the RNA poly-
merase and its associated proteins. In the simplest geometric
picture, which might actually be accurate in bacteria
[43-46], we can imagine the molecular interactions being so
strong that the normalized mean rate of transcription—what
we write as the regulation function f,-(c;{gj})—is essentially
the probability that certain binding sites are occupied or un-
occupied. If n transcription factors bind cooperatively to
nearby sites, and binding activates transcription, then we
would expect

Cn

K'+ "

fle)= (15)

and if the binding represses transcription, so that the mean
rate is proportional to the fraction of empty sites, we should
have

n

fle)= (16)

K'+c"
In each case, the constant K measures the concentration for
half-occupancy of the binding sites, and so F=—kgT In K
can be interpreted as a binding energy for the transcription
factor to its specific site along the genome. In the biological
literature, these models are called Hill functions, after Hill’s
classical discussion of oxygen binding to hemoglobin [47].
While it is convenient to distinguish between activators and
repressors, we note that, within the Hill function model, we
can pass smoothly from one to the other by allowing n to
change sign.

The Hill function model identifies the transcription of a
gene as a logical function of binding site occupancy, so that
the mean rate of transcription will be proportional to the
probability of the sites being occupied (or, in the case of
repressors, not occupied). Thus there is a natural generaliza-
tion when multiple transcription factors converge to control a
single gene, as in Fig. 2: the rate of transcription should be
proportional to logical functions on the occupancy of mul-
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FIG. 2. Regulation of transcription in the presence of two tran-
scription factors. (a) Two types of transcription factors, squares and
triangles, can bind to the regulatory region of the gene. This situa-
tion does not uniquely determine the form of regulation. (b) The
Hill regulatory model with the AND logic for the binding of the two
types of transcription factors. In this case both types of transcription
factors must be bound to initiate transcription. The response of the
gene is proportional to the product of the activation by each tran-
scription factor separately. (c) The MWC model for regulation. The
transcriptional complex has two states, active and inactive, and
binding of any type of transcription factor shifts the equilibrium
between the two states.

tiple binding sites. Thus, if the input transcription factor and
the gene j converge to activate gene i, transcription could
depend on the AND of the two binding events; if these are
independent, then the regulation function becomes
cMi gl
.fi(c’gj)= n; n; i n;i* (17)
Kii+c 'Kijf+gjf
Alternatively, transcription could depend on the OR of the
two binding site occupancies, in which case
i N g;y

K+ " K;;"f + g;-"'j

file.gy) = (18)

and we can construct functions that interpolate or mix AND
and OR. In general, we find that the pure AND functions
transmit the most information. Thus, we will write

1 ij
c 8

sledeh =

(19)
. ;. n.:?
+ C”’j<i Kij[j +gjt./

where the restriction j<<i confines our attention to feed for-
ward networks with no loops. If n;;>0, then K;;— 0 means
that gene j does not regulate gene i; if n;;<<O then the con-
dition for no interaction is K;;— .
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An alternative model for regulation envisions a large tran-
scriptional complex that can be in one of two states, and the
rate of transcription is proportional to the population of the
“active” state; transcription factors act by binding and shift-
ing the equilibrium between the two states. This is essentially
the model proposed by Monod, Wyman, and Changeaux for
allosteric enzymes and cooperative binding [48]. The impor-
tant idea is that, in each state, all effector molecules bind
independently, but the binding energies are different in the
two states. By detailed balance, this difference in binding
energy means that binding will shift the equilibrium between
the two states. In the case of one transcription factor at con-
centration ¢, with n binding sites, the probability of being in
the active state is given by

(1+c/K.)"
L'(1+c/Ky)" + (1 + c/K,,)"

fle)= (20)

where kT In L is the free energy difference between the two
states in the absence of any bound molecules. If binding
favors the active state, and the gene has a very small prob-
ability to be “on” in the absence of input (L> 1), then taking
K, <K reduces Eq. (20) to

(I +c/Kyp)"

f(@=m (21)

1

1+c/K,, \ |
l+exp| —nln| ———
1+C1/2/K0n

where we have introduced the constant ¢, to simplify nota-
tion, L=(1+c,,/K,,), and ¢, is the input concentration for
half maximal activation [49]. Note that activation and repres-
sion differ only in the sign of n.

When more than one type of protein regulates expression
[Fig. 2(c)], each binding event makes its independent contri-
bution to shifting the equilibrium between active and inac-
tive states. Thus, in the same limit of very unequal binding
constants to the two states, we can write

(22)

1
M= el Rty

1+ c/K; 1+gi/K;;
Fic{g}) =n; IH<T> 2 1n<—_g(i)uL).
L+cin/Ki)  j<i 1 +gi(cip)/K;;

(24)

For a single transcription factor, there is not much differ-
ence between the Hill and MWC models: the classes of func-
tions are very similar, and when we go through the optimi-
zation of information transmission, the optimal parameter
values are such that the input/output relations are nearly in-
distinguishable. But, as we shall see, when multiple tran-
scription factors converge, the Hill and MWC models lead to
significantly different behaviors. This raises the possibility
that the molecular details of the regulatory process are still
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‘felt’ at the more macroscopic, phenomenological level, but
this is a huge set of questions that we leave aside for the
moment, focusing just on these two models.

C. Information transmission

We are interested in connecting the properties of the net-
works described in the previous section to the information
that the expression levels carry about the input transcription
factor concentration. This requires only a modest generaliza-
tion of the discussion in Ref. [16], but, in the interest of
clarity, we review the derivation.

In the limit that noise is small, the solution of the Lange-
vin equations in Sec. II A has the form of Gaussian fluctua-
tions around the steady state. Formally, the probability dis-
tribution of expression levels given the concentration of the
input transcription factor is

1
—log det(K)

P({gi}|c) 2

(2 )K/Z 5 \K2EXP

——E[g, g0l —g )] (. (25)

1}1

The mean expression level of each gene, gi(c), defines an
input/output relation for that gene, and the matrix /C is the
inverse covariance matrix of the fluctuations or noise in the
expression levels at fixed input,

(Lgi-&ic)lgi-g )] = (K_l)ij; (26)

note that C is a function of ¢. The fact that the expression
levels “carry information” about the input transcription fac-
tor concentration means that it should be possible to estimate
¢ from knowledge of the {g;}. From Bayes’ rule, the distri-
bution of concentrations consistent with some set of expres-
sion levels is given by

P({gilc)P(c)
P({g}) '

In the limit that noise is small (K is large), this too is an
approximately Gaussian distribution,

P(cligd) ~ ﬁexp{— %} 28)

N
where c..({g,;}) is the most likely input given the output, and
the effective variance is determined by

§ {dg ic) ijdgwc)}

2({8 $) ij=1 dce

In general it is difficult to find an explicit expression for
c.({g;}), but we will see that this is not crucial. We can use
these ingredients to calculate the amount of information, in
bits, that the expression levels {g;} provide about the input
concentration c.

The mutual information between ¢ and {g;} is defined,
following Shannon [50,51], as

P(C|{8i}) = (27)

(29)

c=c*({g;})
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(CRIE j de j dgP (C’{gi})logz{%}

(30)

We can rewrite this as a difference in entropies,

Ic:fgih) =- f dcP(c)log, P(c) - J d*gP({g:})

X[—deP(CHgi})lng P(C|{gi}):|, (31)

where the first term is the entropy of the overall distribution
of input concentrations, and the second term is the (mean)
entropy of the distribution of inputs conditional on the out-
put. With the Gaussian approximation from Eq. (28), we can
evaluate

- [ derteiteons Prelin)) = Stof2mec? (s
e

Further, when the noise is small, we can replace an average
over expression levels by an average over inputs, setting the
expression levels to their mean values along this path:

f d*gP(g L]~ f dcP(TT olg; - (Nl -+ 1.

(33)

Putting these pieces together, we find an expression for the
information in the low noise limit,

I(c:{g}) =- f dcP(c)log, P(c)

5| deperesamenizon. Go

As Eq. (34) makes clear, the information transmitted
through the regulatory network depends on the input/output
relations, on the noise level, and on the distribution of inputs
P(c). The cell can optimize information transmission by ad-
justing this input distribution to match the characteristics of
the network [6,7], but this matching is constrained by the
cost of making the input molecules. We can implement this
constraint by trading bits against a cost function that counts
the mean number of molecules, or more simply by insisting
that ¢ is bounded by some maximum concentration ¢, In
Ref. [16], we have shown that these different ways of imple-
menting the constraint give essentially identical results, so
we use the c,,, approach here. We still need a constraint to
force the normalization of P(c), so we should maximize the
functional

L=1I(c{g}) - )\J dcP(c). (35)

The solution to this problem can be written, using the expres-
sions for I(c,{g;}) from above, as
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P*(c) (36)

1
" ez

K 12
1 dgi(c) dgj(c)
B Z[ 2me izl dc Kile) de :| > G7

where the normalization constant

o Ko _ 12
Z= f chLE dg’(c)/c,.j(c)dgf(c)] . (39)

0 e - dc dc

Finally, the information itself, evaluated with the optimal in-
put distribution, is

I'(c:{gi}) =log, Z. (39)

This maximal mutual information still depends on all the
parameters that describe the network, and our goal is to find
the parameter values that maximize I*. To do this, it is useful
to be a little more explicit about how the parameters enter
into the computation of Z.

D. Putting the pieces together

To evaluate Z in Eq. (38), we need to know the inverse
covariance matrix K;; that describes the noise in gene expres-
sion. This can be calculated from the Langevin equations in
Sec. I A. To do this, we recall that we are looking at the
small noise limit, so we linearize the Langevin equations
around the steady state g;=g,(c), and then Fourier transform.
With g,(r)=g;+ dg;(), and

ogi(t) =f ;l_a)e_iwt5§i(w)’ (40)
T
Equation (11) becomes
l-iwT 0 0 02, (w) (o)
-¢y l-ioT 0 82> (w) _ gz(w)
—¢y  —dn l-ier .. || 68i(w) é?s(w) ,
) o E)
where
¢ij — afi(c7{gk}) (42)

98 lig=g (0}

In this expression we explicitly restrict ourselves to networks
with a feed-forward architecture, which (as noted above)
means that we can assign labels i so that gene j regulates
gene i only if j<i. We recall from Eq. (14) that

(&) = 8t —1")Ny;, (43)

where the noise matrix is diagonal,
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. 2
vymag [ (ZD )

< d
1 afi(cilged) \?
+—2 (a—€ 8 (44)
Cmax k 8k {gk=§k(c)}
The delta function in time means that the noise is white,
(E()E () =278(w - )N, (45)
Equations (41) are of the form
A(w) - 88(w) = &), (46)

where A(w) is the matrix describing the linearized dynamics,

88(w)={58,(w), 58>(w), -}, and similarly for &w). Evi-
dently, 5g(w) =A‘1(w)g(w). We are interested in calculating
the covariance matrix of the fluctuations in &g. Since these
are stationary, in the frequency domain we will have

(38(w) g (")) = 2780 ~ ©)S;(w), (47)

and the equal time correlations that we want to calculate are
related to the power spectrum through

(3.2,) = f 225, 0). (48)
Following through the algebra, we have
(98/(w) 3%, ("))
=[A™ (&) JW[A™ (0" ]G @) T(@)), (49

=[A" (&) Jil[A™ (&) ] Nim2 78w - '), (50)

=8(w) =[A™ () [iNw[ A (@),
=[A"(@)NA ()], (51)

where M" denotes the Hermitian conjugate of the matrix M.
The covariance matrix, which is the inverse of K;; in Eq.
(26), then takes the form

(K1) = f LA @A @Y (5)
a

To complete the calculation of Z we need to do this fre-
quency integral, and then an integral over the concentration
¢, as in Eq. (38). Some details of these calculations are given
in the Appendix. Here we draw attention to two key points.

First, because the noise £ is white—that is, N is indepen-
dent of frequency—all of the structure in the frequency inte-

gral comes from the inverse of the matrix A(w). Since the

matrix elements of A are linear in frequency, this results in
an integrand which is a rational function of w, so the inte-
grals can all be done by closing a contour in the complex w
plane. Again, examples are in the Appendix.

Second, and most importantly, when we finish computing
Z it depends on all the parameters we want to optimize—e.g.,
in the Hill description of the regulation functions, all of the
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half-maximal points KC;; and the cooperativities n;—and in
addition it depends on the maximal concentration of the in-
put transcription factor, c,,,.. But there are no other param-
eters in the problem. Thus, if we search for the maximum of
Z, and hence the optimum information transmission, we will
find the parameters of the network as a function of the avail-
able number of molecules, with no remaining arbitrariness.

III. OPTIMAL NETWORKS AND THEIR
PARAMETERS

In previous work [16], we considered the case of many
noninteracting genes regulated by a single transcription fac-
tor. Optimizing information transmission in these systems
leads to two qualitatively different families of solutions, de-
pending on the available dynamic range c,./co. At small
Cmax» the optimal strategy is for the different output genes to
respond in the same way, allowing the system to make mul-
tiple independent “measurements” of the input concentra-
tion; in this case the target genes are completely redundant.
At large ¢, a tiling solution appears, in which the genes
are turned on sequentially at different concentrations; the
precise setting of the thresholds is determined by a compro-
mise between minimizing the noise and maximizing the use
of the dynamic range. Even in this regime, however, the
target genes are (partially) redundant. Here we explore how
the interactions between target genes can be tuned to reduce
redundancy and increase the capacity of the system to trans-
mit information.

A. Two target genes

We first consider feed forward networks in which an input
transcription factor at concentration ¢ regulates the expres-
sion of two genes, with normalized expression levels g; and
g»; in addition, the product proteins of gene 1 regulate the
expression of gene 2. Within this class of networks, we can
calculate the information transmission following the outline
above, and then search for optimal values of all the param-
eters.

We find that the general problem has many well defined
local optima, corresponding to different topologies of the
network, as shown in Fig. 3. With just two target genes and
a single input, the constraint of considering feed forward
networks means that the locations of the arrows in the graph
describing the network are fixed, but it is conventional to
distinguish different topologies based on the signs associated
to the arrows, that is whether a transcription factor acts as an
activator (A) or repressor (R), leaving us with multiple pos-
sibilities. For convenience we describe, for example, a net-
work in which the input activates both target genes, while
gene 1 represses gene 2, as A;A,—R,.

Our intuition is that the role of interactions is to reduce
redundancy, and this is borne out by the solutions associated
to each topology. In particular, if the input activates both
targets, then having one target activate the other can’t help to
reduce redundancy, and correspondingly we find that in the
A A,—A,, topology the interaction between the target genes
is actually driven to zero by the optimization, and this is true
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FIG. 3. Locally optimal networks for four topologies of the two gene feed forward networks, with ¢,/ co=10. Top panels are for the
case of the Hill model, Eq. (19), and bottom panels are for the MWC model, Eq. (24). As explained in the text, the optimal parameters for
the AjA,—A, and the R;R,— A, networks correspond to zero interaction between the target genes so these solutions also provide a reference
for input/output relations in the optimal noninteracting networks. Note that the noninteracting solutions are very similar for Hill and MWC,

while the optimal interacting networks are qualitatively different.

whether we use the Hill model of regulation or the MWC
model (top and bottom left panels of Fig. 3). The same intu-
ition suggests that the R;R,—A;, topology should also be
driven to zero interaction, and this too is what we find (right
panels of Fig. 3). As an aside, these comparisons also verify
that, in the noninteracting case, the Hill and MWC models
achieve very similar input/output relations once we find the
parameters that optimize information transmission.

The networks, which are optimized with nontrival inter-
actions, are the ones where one target gene represses the
other, AjA,—R|, and R|R,—R/,. For the Hill model, both of
these networks are optimized when one of the target genes is
expressed only in a finite band or stripe of input concentra-

tions, so that if we monitor only the expression level g,, we
see a nonmonotonic dependence on the input transcription
factor. If we think of the input concentrations as varying
along one axis of a two dimensional space—as they do in
the genetic networks controlling embryonic development
[17-20]—then this nonmonotonic behavior means that one
of the genes will be expressed in a “stripe” through the
middle of the spatial domain. The other gene, which is itself
a repressor, is expressed only at the extremes of the concen-
tration range, either at high or low input concentrations de-
pending on whether the input is an activator or repressor,
respectively. As in the case of noninteracting target genes, all
of this structure depends on the available dynamic range of
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FIG. 4. Optimal information transmission in different network
topologies, with Hill model regulation. The information capacity of
a network depends on Z, from Eq. (38), which in turn is propor-
tional to the number of independent copies of the output molecules,
N,. Here we plot Z=2meZl N, as a function of the maximal con-
centration of input transcription factor, ¢,/ ¢o-

inputs. As we make ¢,/ co smaller, the optimal strength of
the interactions becomes smaller, and the networks that op-
timize information transmission are more nearly noninteract-
ing; if cp./co is sufficiently small, the optimal solution
again is for all targets to be completely redundant, allowing
the system to make multiple independent measurements of
the same signal, rather than using the different targets to
respond to different portions of the input dynamic range.

We know from the analysis of the noninteracting system
that suboptimal settings of all the parameters really do incur
large penalties, substantially reducing information transmis-
sion [16]. This remains true for the interacting case, in that if
we choose a topology but set the parameters arbitrarily, there
is a significant loss of information. On the other hand, once
we choose parameters optimally, the different topologies
have very similar information capacities, at least in the case
of two target genes, as shown in Fig. 4. To set a scale for
these results on information transmission, we could ask
whether there really is an advantage to having two target
genes. After all, noise is reduced by making more molecules,
and with two targets the maximal number of output mol-
ecules will be increased. A useful comparison, then, is with a
system that has just one target gene, but can generate twice
as many output molecules, and this is shown in Fig. 5. We
see that, as the structure of the optimal networks collapses at
low values of ¢,/ ¢, SO too does the advantage of having
two separate target genes. At very low concentrations of the
input transcription factors, it really is better to have one tar-
get with twice the number of molecules, but as soon as there
are enough molecules available to favor two target genes, the
interactions between these genes become important in build-
ing the networks that optimize information flow.

One of the most interesting results of the optimization
problem is that the Hill and MWC models, which are almost
indistinguishable in the noninteracting case, are driven to
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FIG. 5. One target or two? We show the dependence of Z on the
maximum concentration of input molecules, in the case of Hill
regulation functions, comparing an interacting two gene network, a
noninteracting two gene network, and a single output gene with
twice the number of molecules. Note that to make the comparison
meaningful, we have to be careful about the definition of ¢, since
this concentration scale includes a factor of Ng; here we normalize
to ¢ for the two gene networks.

qualitatively different solutions in the interacting case. The
basic idea of how interactions relieve redundancy can be
understood in a limit where each gene is either fully ex-
pressed (g=1) or completely turned off (g=0). For the non-
interacting network, for example, with the A;A, topology, the
genes “turn on” in sequence, and so the system accesses
states 00, 01, and 11 in order as the input concentration is
increased. In the interacting network A;A,—R,, the optimal
Hill model (cf. Fig. 3, top left panel) accesses state 00, 01,
and then switches to 10, not quite achieving the state 11. In
contrast, the MWC model, once optimized, accesses all the
states in sequence, 00— 01— 10— 11, as the input concen-
tration is increased, as we can see from the lower left panel
of Fig. 3; the situation is reversed in the case of RjR,—R,.
We can understand how this happens, because in the MWC
model each binding event shifts the equilibrium between the
active and inactive states; thus there is a competition on gene
2 between the activating effect of the input and the repress-
ing effect of gene 1, and this competition continues through-
out the range of input concentration. In the MWC model, by
adjusting parameters, it is possible that the final increase in
input concentration up to c,,, overwhelms the repressive
effect of gene 1, and indeed this is what happens at the
parameter values that optimize information transmission.
The difference between the Hill and MWC models indi-
cates that the relatively microscopic physics of protein-DNA
interactions which underlies transcriptional regulation can be
“felt” at a more macroscopic, phenomenological level. In
this spirit, we should also ask if it matters that we assume
each protein can act only as an activator or a repressor, but
not both. It is easy to imagine the alternative in which, by
proper placement of the binding sites, the transcription factor
can activate one gene by recruiting the polymerase, but can
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FIG. 6. Locally optimal networks with the three target genes, with the input acting as an activator. Regulation is according to the Hill
model, Eq. (19), and we choose parameters to maximize information transmission with ¢,/ co=10. Top row shows the network topologies,
and the middle row shows the average expression levels of the different target genes, as in Fig. 3. The bottom panel shows the distribution
of input concentrations that matches the optimal networks, from Eq. (37).

repress other genes by occlusion. We have analyzed these
mixed networks, and find that the optimal information trans-
mission in these cases is intermediate between the “pure”
networks considered thus far. Thus, considering these addi-
tional topologies does not change the global picture of the
problem, except to open the possibility of yet more local
optima.

B. Three target genes

The analysis of networks with three target genes confirms
and amplifies the lessons learned in the two gene case. Be-
cause the space of possible networks is much larger, we once
again restrict individual proteins to act only as activators or
repressors, and give explicit results only for the case of the
Hill function models of regulation, Eq. (19); results are
shown in Figs. 6 and 7. As with two genes, having the target
genes activate one another cannot reduce the redundancy that
is generated in the noninteracting networks, and hence the
AA,A5—A»A13A55 topology networks are driven back to the
noninteracting A;A,A3; when we solve the optimization prob-
lem, and similarly for R;R,R;—A,A 34,3 Topologies that in-
clude some repressive interactions generate nontrivial solu-
tions, with progressively richer structure the more repression
we allow.

The signature of the repressive interactions in the case
of two targets was the emergence of nonmonotonic depen-
dencies of the expression levels on the input transcription

factor concentration. In the case of three targets, the param-
eters which maximize information transmission again lead to
nonmonotonicity. In the case where the input is an activator
(Fig. 6), allowing for one repressive interaction (A;A,A;
—A A 3R,3) leads to one gene having a nonmonotonic re-
sponse. If we allow two repressive interactions (A;A,A;
—R,R5A53) then two genes have nonmonotonic responses.
Finally, with the maximum of three repressive interactions
(A1A5A3—R5R5R,3) one of the two nonmonotonic re-
sponses becomes yet more complex, with two “stripes” of
expression in different ranges of the input concentration.
In the case of an input repressor, we see a similar pattern
(Fig. 7).

A striking feature of the networks with two target genes
was that local optima with different topologies were nearly
degenerate. This is less true for the case of three targets—the
spread in capacities associated with the different topologies
is larger, and the network A;A,A;—R,R|3R,; is the clear
global optimum. Corresponding to the larger spread in ca-
pacities, the enhancement of information transmission by in-
teractions is larger, and in the difference in capacity between
the Hill and MWC models also is larger in the three gene
networks (Fig. 8). Including the possibility that individual
transcription factors could act as both activators and repres-
sors does not change these conclusions.

As a caveat, we note that we have assigned the same
maximal concentration to all the transcription factors in the
network. This is equivalent to assuming that all these mol-
ecules come at the same cost to the organism. One could
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FIG. 7. Locally optimal networks with the three target genes, with the input acting as a repressor; all else as in Fig. 6.

imagine that there are significant differences between the
molecules, and hence that one could be expressed at higher
levels than the others for the same cost. If this symmetry is
broken explicitly, then the ordering of the local optima asso-
ciated to different network topologies can be shifted. While it
is satisfying to identify a global optimum, it probably thus
still makes sense to think of the problem as having many
local optima that might all be relevant in different biological

8 T
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FIG. 8. Dependence of Z on the maximum available protein
concentrations ¢,/ co for two and three gene networks. We show
results for the noninteracting cases, and for the globally optimal
topologies, using both the Hill and MWC models of regulation.

contexts. An interesting feature of these different optima is
that, despite the changing structure of the input/output rela-
tions for the target genes, the distribution of input concentra-
tions that optimizes information transmission [cf. Eq. (37)] is
almost the same for all the cases where the input is an acti-
vator (bottom panels of Fig. 6) and again for all the cases
where the input is a repressor (bottom panels of Fig. 7).
Although maximizing information flow requires matching of
the input distribution to the characteristics of the regulatory
network [6,7], it seems that once the parameters of the net-
work itself have been optimized, the solution to the matching
problem has a more universal structure, with almost the same
distribution providing the best match to several different lo-
cal optima.

Finally, we consider the parameter values in these optimal
networks. For simplicity we focus on the globally optimal
solutions with Hill model regulation functions for two
(AlAZ_RIZ) and three (AlAz—R12R13R23) tal‘get genes, plot—
ting in Fig. 9 the evolution of the different constants K; and
K;; as a function of the maximal input concentration ¢,/ co.
As noted above, the optimal interacting networks collapse
onto the noninteracting case at small c,,; for repressors,
interactions become negligible if K;; becomes large, and this
is what we see at small c,,. At the opposite extreme, as
Cmax/ €o becomes large, the optimal K; become nearly con-
stant fractions of c,,,, While the interactions become stron-
ger and stronger even up to ¢,/ co~ 10%. Put another way,
the concentrations at which the target genes are turned on by
the input become distributed at fixed fractions of the avail-
able dynamic range, while the points at which the targets are
turned off by their mutual repression evolves as a function of
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the maximal input concentration. Further, in the interacting
networks, the difference between two and three genes is not
simply an extra target, but a readjustment of the interactions
to make optimal use of this extra output channel.

IV. DISCUSSION

The expression levels of target genes provide information
about the concentration of the transcription factors which
provide input to the regulatory network. Our goal here has
been to understand how the structure of the network can be
adjusted to optimize this information transmission. Earlier
work [16] addressed this problem in the limit where the tar-
get genes do not interact, so the input is simply “broadcast”
to multiple targets; here we considered the role of interac-
tions within a network of target genes, limiting ourselves, for
simplicity, to feed forward structures. We have found that
there are an exponentially large number of locally optimal
networks, each with parameters tuned to a well defined point
that depends only on the maximal number of available mol-
ecules. These optimal networks have two components. As in
the noninteracting case, the affinities of the input transcrip-
tion factor for its multiple targets must be adjusted to balance
the need to use the full dynamic range of inputs against the
need to avoid noise at low input concentrations and output
expression levels. Unique to the interacting case, mutual re-
pression among the target genes is tuned to reduce the redun-
dancy among the network’s outputs.

The problem of redundancy reduction has a long history
in the context of neural coding, dating back to the first de-
cade after Shannon’s original work [52-54]. As first empha-
sized for the retina, nearby neurons often receive correlated
signals; since the dynamic range of neural outputs is limited,
this redundancy compromises the ability of the system to
transmit information. The solution to this problem is lateral
inhibition— neighboring neurons that receive correlated in-
puts inhibit one another, so that each neuron transmits some-

thing which approximates the difference between its input
and that of its neighbors. Lateral inhibition, sometimes me-
diated through a more complex network, is a common motif
in neural circuitry, and in the retina it is expressed by the
“center-surround” organization of the individual neurons’ re-
ceptive fields. A more careful analysis shows that there is a
tradeoff between redundancy reduction and noise reduction,
so that the extent of inhibitory surrounds should be reduced,
even to zero, as background light intensity is reduced and
photon shot noise is increased, and this is in semiquantitative
agreement with experiment [55,56]. The relation of these
ideas in neural coding to our present discussion of genetic
networks should be clear. Although there are many questions
about how these ideas connect more quantitatively to experi-
ment, it is attractive to think that similar physical principles,
and even analogous implementations of these principles,
might be relevant across such a wide range of biological
organization.

There are relatively few transcriptional regulatory net-
works that have been characterized to the point of comparing
quantitatively with the sorts of models we have explored
here. In contrast, there is a growing literature on the qualita-
tive, topological structure of these networks. In particular, a
number of groups have focused on the local “motif” structure
of large networks, searching for patterns of interaction that
are over-represented relative to some randomized ensemble
of networks [57,58]. One such motif is the feed forward
loop, which essentially captures the whole set of feed for-
ward networks with two target genes that we have consid-
ered here. In the language of Fig. 1(b), much of the discus-
sion about the importance of this motif has centered on the
nature of the transformation from the input concentration c to
the expression level of gene 2. By choosing coherent (in our
notation, A;A,—A},) or incoherent (A;A,—R;,) loops, the
system can achieve different temporal dynamics as well as
nonmonotonic input/output relations [59-64]. Since we have
considered system in steady state, it is this last point which is
significant for our discussion. Our results comparing Hill and
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MWC models of regulation emphasize, however, that it is
not just the topology of the network which is important for
the structure of these input/output relations.

One of the best opportunities for quantitative comparison
with experiment is in the genetic networks controlling the
early events of embryonic development. In these systems,
the primary morphogen molecules are sometimes transcrip-
tion factors, so that we can literally see the variations in
input concentration laid out in space [18-20]. Along the
anterior-posterior axis of the Drosophila embryo, for ex-
ample, the maternally provided morphogen Bicoid varies in
concentration almost exponentially, so that the long axis of
the embryo is essentially a logarithmic concentration axis
[65,66]. Bicoid is a transcription factor that provides input to
the network of gap genes, hunchback, kriippel, giant, and
knirps. Although Bicoid is an activator, these genes exhibit
nonmonotonic expression levels, forming stripes along the
length of the embryo, and these nonmonotonicities are me-
diated by mutual inhibitory interactions [67-71]. Qualita-
tively, the structure of the optimal networks that we derive
here (especially the globally optimal A;A,A;—R,R 3R,3) re-
sembles the gap gene network, and the expression profiles
along the log ¢ axis are reminiscent of the spatial profiles of
gap expression. Generalizations of the experiments in Ref.
[14] should make it possible to map the input/output rela-
tions more quantitatively, and perhaps even to measure the
interactions directly by detecting the predicted correlations
among the noise in the expression levels of different gap
genes. To make truly quantitative comparisons, however, we
need to solve our optimization problem allowing for net-
works with feedback.

ACKNOWLEDGMENTS

We thank J. Dubuis, T. Gregor, W. de Ronde, T. Mora, E.
F. Wieschaus, and especially C. G. Callan for helpful discus-

PHYSICAL REVIEW E 81, 041905 (2010)

sions. Work at Princeton was supported in part by NSF under
Grant No. PHY-0650617, and by NIH under Grant Nos. P50
GMO071508 and RO1 GM077599. G.T. was supported in part
by NSF under Grant Nos. DMR04-25780 and IBN-
0344678, and by the Vice Provost for Research at the Uni-
versity of Pennsylvania. W.B. also thanks his colleagues at
the Center for Studies in Physics and Biology at Rockefeller
University for their hospitality during a portion of this work.

APPENDIX

This appendix collects some technical details in the cal-
culation of the inverse covariance matrix K, following the
framework established in Sec. Il D. We start by considering
the case of one input transcription factor at concentration ¢
controlling the expression of two output genes, with normal-
ized expression levels g; and g,. In this case the Langevin
equations of motion describing the network are

d
r§=f1(c)—g1+fl<r>, (A1)

T&=f2(0781)—82+§2(f)- (A2)

dt

We linearize the equations of motion around the steady state
solutions {g;,g,} and Fourier transform to obtain Eq. (46),

where the matrix A is explicitly given by

Ale) = [1 —iwT 0 } A3
(w)_ —¢21 1 —iwT ’ ( )
and hence
ey e — {1—1'(07 0 } Al
@r= (1-iown*| ¢y l-ier]
The covariance matrix then can found, from Eq. (52)
|
[ do . | l-ioT 0 )(NH 0 ) 1 (1+iw7 b1 )
K _f {A (w)N[A ()]} = J 27 (1 —le)2< by l—iwt/\ 0 Ny/(1+iw7)? 0 1+iwt)’
(AS)
_Jd_“) 1 { Ny[1+(07)’] $2iNyi(1 - iw7) } (A6)
B 27T[l + (Q)T)z]z d)ZlNll(l + l(,()T) N22[1 + (wT)z] + ¢2|N1](1 + l(,()T)
=f do 1 |:N11[1 +(w7)?] OSUGT ] (A7)
27[1+ (07T b1 Nyo[1+ (0] + ¢y Ny |

The elements of N; are given explicitly by

_3\2
N11=Nl{gl(c) <(%’(91_£C)> C}, (A8)

M= T o) + [ B oy Bz | (g
22—Ng &(c) + P C+Cmax¢z1 ) (A9)

where we have chosen the maximum concentrations for all
types of proteins to be equal to ¢, and we have set cy=1,
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as described in the text. To finish the calculation, we need the
integrals

271+ (wn)?] 27
fd—w;—i (A11)
21+ (00 47
Then
1 N Ny/2
_12_{ 1 STAY ] (A12)
27 puiN11/2 Nop+ ¢y Nyy/2
27
k= 2) - N2, 2 /4
N1 1(Nyy + 31 N11/2) = N1 b3/
Ny + N,/2 - Ny,/2
X{ 0+ PNy &N } (A13)
= ¢uN/2 Ny

Lastly, we substitute the obtained covariance matrix into the
expression for the normalization constant Z, as obtained in
Eq. (38)

2 12
Cmax 1 dg; dg;
7= f dC E / gl(C) ICU(C) g](C) .
0 2e ij=1 dc

dc
(A14)

Since the information we are trying to maximize is, from Eq.
(39), I"=log, Z, we now can optimize Z over the parameters
of the regulation function. It is now clear, having set the
concentration variables in terms of the natural scale cy=1,
that the only parameter in the problem is cp,,; all other pa-
rameters will be determined by maximizing Z.

In the case of a three gene network, the calculation is

analogous to the two gene case. The matrix Ais explicitly
given by

l-ioT 0 0
Al =| —¢y 1-iwr 0 |, (Al5)
—b —dy l-ioT
and the elements of the noise spectrum matrix are
= 2
N11=]%g|:<&g(;£C)> C+g_1:|’ (A16)

_L 0f2(c7gl)
N22_Ngl( dc

2 _
2 81 _
) c+ ¢y + 82] )
2,=g,(c) max

(A17)
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N _L afS(c’gl’gZ) 2
BTN P ¢
g (&

{g;=8,(c)}
81 & _
+¢§1C_+ %2_+83]~

max Cmax

(A18)

Following Eq. (52) to find the inverse covariance integral,
analogously to the two gene case, requires evaluating the
frequency integrals. The general form of these integrals is:

. fd_w ! _lfﬁ !
BT 2m(1+ionf (1 -—ior)® 7] 20 (1+id)*(1 - i)

_ l<s+k—2>21_s_k

A19
7\ k-1 ( )

When the dust settles, the elements of the inverse of the
covariance matrix, K~! from Eq. (52), are

K71 =Ny, (A20)
41
12=5N11¢21, (A21)
. 1
K= ZN11[¢21¢32+2¢31], (A22)
41
K= 5N11¢21, (A23)
4 1 5
Ky =Nyn+ 5N11(¢21) , (A24)
Ll ) 1
Ky = ENU[(¢21) d+ P31 ]+ §N22¢32, (A25)
_ 1
K3l = ZN11[¢21¢32+2¢31], (A26)
K3 = 5N11[(¢21) b+ bry ]+ §N22¢327 (A27)
1
K33 =N+ 5[N22(¢32)2 + Ny (¢3))7]
3 2
+N11¢21¢32¢31+§N11(¢21¢32) . (A28)
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