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Optimizing information flow in small genetic networks. III. A self-interacting gene
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Living cells must control the reading out or “expression” of information encoded in their genomes, and
this regulation often is mediated by transcription factors—proteins that bind to DNA and either enhance or
repress the expression of nearby genes. But the expression of transcription factor proteins is itself regulated,
and many transcription factors regulate their own expression in addition to responding to other input signals.
Here we analyze the simplest of such self-regulatory circuits, asking how parameters can be chosen to optimize
information transmission from inputs to outputs in the steady state. Some nonzero level of self-regulation is
almost always optimal, with self-activation dominant when transcription factor concentrations are low and
self-repression dominant when concentrations are high. In steady state the optimal self-activation is never strong
enough to induce bistability, although there is a limit in which the optimal parameters are very close to the critical
point.
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I. INTRODUCTION

In order to function and survive in the world, cells must
make decisions about the reading out or “expression” of
genetic information. This happens when a bacterium makes
more or less of an enzyme to exploit the variations in the
availability of a particular type of sugar and when individual
cells in a multicellular organism commit to particular fates
during the course of embryonic development. In all such cases,
the control of gene expression involves the transmission of
information from some input signal to the output levels of
the proteins encoded by the regulated genes. Although the
notion of information transmission in these systems usually
is left informal, the regulatory power that the system can
achieve—the number of reliably distinguishable output states
that can be accessed by varying the inputs—is measured,
logarithmically, by the actual information transmitted, in bits
[1,2]. Since relevant molecules often are present at relatively
low concentrations, or even small absolute numbers, there are
irreducible physical sources of noise that will limit the capacity
for information transmission. Cells, thus, face a trade-off
between regulatory power (in bits) and resources (in molecule
numbers). What can cells do to maximize their regulatory
power at fixed expenditure of resources? More precisely,
what can they do to maximize information transmission with
bounded concentrations of the relevant molecules?

We focus on the case of transcriptional regulation, where
proteins—called transcription factors (TFs)—bind to sites
along the DNA and modulate the rate at which nearby
genes are transcribed into messenger RNA. Because many
of the regulated genes themselves code for TF proteins,
regulatory interactions form a network. The general problem of
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optimizing information flow through such regulatory networks
is quite hard, and we have tried to break this problem into
manageable pieces. Given the signal and noise characteristics
of the regulatory interactions, cells can try to match the
distribution of input transcription factor concentrations to these
features of the regulatory network; even simple versions of this
matching problem make experimentally testable predictions
[3,4]. Assuming that this matching occurs, some regulatory
networks still have more capacity to transmit information, and
we can search for these optimal networks by varying both
the topology of the network connections and the strengths
of the interactions along each link in the network (the
“numbers on the arrows” [5]). We have addressed this problem,
first, in simple networks where a single input transcription
factor regulates multiple noninteracting genes [6] and then in
interacting networks where the interactions have a feedforward
structure [7]. But real genetic regulatory networks have
loops, and our goal here is to study the simplest such case,
where a single input transcription factor controls a single
self-interacting gene. Does feedback increase the capacity
of this system to transmit information? Are self-activating or
self-repressing genes more informative? Since networks with
feedback can exhibit multistability or oscillation, and, hence,
a nontrivial phase diagram as a function of the underlying
parameters, where in this phase diagram do we find the optimal
networks?

Autoregulation, both positive and negative, is one of the
simplest and most commonly observed motifs in genetic
regulatory networks [8–10] and has been the focus of a number
of experiments and modeling studies (see, for example,
Refs. [11,12]). A number of proposals have been advanced
to explain its ubiquitous presence. Negative feedback (self-
repression) can speed up the response of the genetic regulatory
element [13] and can reduce the steady-state fluctuations
in the output gene expression levels [14]. Positive feedback
(self-activation), on the other hand, slows down the dynamics
of gene expression and sharpens the response of a regulated
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gene to its external input. Self-activating genes, thus, could
threshold graded inputs, transforming them into discrete,
almost “digital,” outputs [15], allowing the cell to implement
binary logical functions [16]. If self-activation is very strong,
it can lead to multistability, or switchlike behavior of the
response, so the genetic regulatory element can store the
information for long periods of time [17–19]; such elements
will also exhibit hysteretic effects. Weak self-activation, which
does not cause multistability, has been studied less extensively
but could play a role in allowing the cell to implement
a richer set of input-output relations [10]. Alternatively, if
the self-activating gene product can diffuse into neighboring
nuclei of a multicellular organism, the sharpening effect of
self-activation can compensate for the “blurring” of responses
due to diffusion and, hence, open more possibilities for noise
reduction through spatial averaging [20,21].

Many of the ideas about the functional role of autoregu-
lation are driven by considerations of noise reduction. The
physical processes by which the regulatory molecules find and
bind to their regulatory sites on the DNA, the operation of
the transcriptional machinery, itself subject to thermal fluctu-
ations, and the unavoidable shot noise inherent in producing
a small number of output proteins all contribute toward the
stochastic nature of gene expression and, thus, place physical
limits on the reliability of biological computation [22–25]. In
the past decade the advance of experimental techniques has
enabled us to measure the total noise in gene expression and
sometimes parse apart the contributions of various molecular
processes toward this “grand total” [26–34]. Progress has also
been made in understanding that gene regulatory mechanisms
beyond simple binding and unbinding of transcription factors,
such as DNA looping, can control the noise at the molecular
level [35,36]. With the detailed knowledge about noise in gene
expression, we can revisit the original question and ask: Can
both forms of autoregulation help mitigate the deleterious
effects of noise on information flow through the regulatory
networks and, if so, how?

All of our previous work in information transmission in
transcriptional regulation has been in the steady-state limit. A
similar approach was taken in Ref. [37], where the authors
analyze information flow in elementary circuits, including
feedback, but with different model assumptions about network
topology and noise. More recently, de Ronde and colleagues
have systematically reexamined the role of feedback regulation
on the fidelity of signal transmission for time-varying Gaussian
signals in cases where the (nonlinear) behavior of the genetic
regulatory element can be linearized around some operating
point [38]. They found that autoactivation increases gain-to-
noise ratios for low-frequency signals, whereas autorepression
yields an improvement for high-frequency signals. While
many of the functions of feedback involve dynamics, as
far as we know, all analyses of information transmission
with dynamical signals resort to linear approximations. Here
we return to the steady-state limit, where we can treat
gene regulatory elements as fully nonlinear devices. While
we hope that our analysis of the self-regulated gene is
interesting in itself, we emphasize that our goal is to build
intuition for the analysis of more general networks with
feedback.
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FIG. 1. (Color online) A schematic diagram of a self-regulating
gene. The gene � is depicted by a thick black line and a promoter
start signal. Gene products g denoted as blue circles can bind to the
regulatory sites (one in this example) that control the expression of
�. Direct control over the expression of � is exerted by molecules of
the transcription factor c (green diamonds, two binding sites).

II. FORMULATING THE PROBLEM

Figure 1 shows a schematic of the system that we will
analyze in this paper, a gene � that is controlled by two
regulators: directly by an external transcription factor, as well
as in a feedback fashion by its own gene products. We will
refer to the transcription factor as the regulatory input; its
concentration in the relevant (cellular or nuclear) volume �

will be denoted by c. In addition, the gene products of �,
whose number in the relevant volume � we denote by G

and to which we refer to as the output, can also bind to the
regulatory region of �, thereby activating or repressing the
gene’s expression. As we attempt to make our description of
this system mathematically precise, the heart of our model will
be the regulatory function that maps the concentrations of the
two regulators at the promotor region of � to the rate at which
output molecules are synthesized.

We can write the equation for the dynamics of gene expres-
sion from � by assuming that synthesis and degradation of the
gene products are single kinetic steps, in which case we have

dG

dt
= rmaxf (c,γ ) − 1

τ
G + ξ, (1)

where rmax is the maximum rate for production of G, τ

is the protein degradation time, and γ is the concentration
of the output molecules in the relevant volume �. To include
the noise effects inherent in creating and degrading single
molecules of G we introduce the Langevin force ξ , and
we will discuss the nature of this and other noise sources
in detail later. Importantly, departures from our simplifying
assumptions about the kinetics can, in part, be captured by
proper treatment of the noise terms, as discussed below.

We are interested in the information that the steady-
state output of � provides about the input concentration c.
Following our previous work [6,7], we address this problem
in stages. First we relate information transmission to the
response properties and noise in the regulatory element,
using a small-noise approximation to allow analytic progress
(Sec. II A). We then show how the relevant noise variances
can be computed from the model in Eq. (1), taking advantage
of our understanding of the physics underlying the essential
sources of noise (Sec. II B); this discussion is still quite general,
independent of the details of the regulation function. We then
explain our choice of the regulation function, adapted from
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the Monod-Wyman-Changeux description of allosteric inter-
actions (Sec. II C). Because feedback allows for bifurcations,
we have to map the phase diagram of our model (Sec. II D)
and develop approximations for the information transmission
near the critical point (Sec. II E) and in the bistable regime
(Sec. II F). Our discussion reviews some earlier results, in the
interest of being self-contained, but the issues in Secs. II D–II F
are all new to the case of networks with feedback.

A. Noise and information transmission

We are interested in computing the mutual information
between the input and the output of a regulatory element
in steady state. We have agreed that the input signal is the
concentration c of the transcription factor, and we will take the
output to be the concentration g of the gene products, which
we colloquially call the expression level of the gene �. An
important feature of the information transmission is that its
mathematical definition is independent of the units that we use
in measuring these concentrations, so when we later choose
some natural set of units we will not have to worry about
substituting into the formulas we derive here.

Following Shannon [1], the mutual information between c

and g is defined by

I (c; g) =
∫

dc

∫
dg P (c,g) log2

[
P (c,g)

Pin(c)Pout(g)

]
bits, (2)

where input concentrations c are drawn from the distribution
Pin(c), the output expression levels that we can observe are
drawn from the distribution Pout(g), and the joint distribution
of these two quantities is P (c,g). We think of the expression
level as responding to the inputs, but this response will be
noisy, so, given the input c, there is a conditional distribution
P (g|c). The symmetric expression for the mutual information
in Eq. (2) then can be rewritten as a difference of entropies,

I (c; g) = S[Pout(g)] −
∫

dc Pin(c)S[P (g|c)], (3)

where the entropy of a distribution is defined, as usual, by

S[P (x)] = −
∫

dx P (x) log2 P (x). (4)

Finally, we recall that

Pout(g) =
∫

dc Pin(c)P (g|c). (5)

Notice that the mutual information is a functional of
two probability distributions, Pin(c) and P (g|c). The latter
distribution describes the response and noise characteristics
of the regulatory element and is something we will be
able to calculate from Eq. (1). Following Refs. [3,4,6,7],
we may then ask: Given that P (g|c) is determined by the
biophysical properties of the genetic regulatory element, what
is the optimal choice of Pin(c) that will maximize the mutual
information I (c; g)? To this end we have to solve the problem
of extremizing

L[Pin(c)] = I (c; g) − �

∫
dc Pin(c), (6)

where the Lagrange multiplier � enforces the normalization
of Pin(c). Other “cost” terms are possible, such as adding a
term proportional to

∫
dc cPin(c), which would penalize the

average cost of input molecules c, although here we take the
simpler approach of fixing the maximum possible value of c,
which is almost equivalent [6]. If the noise were truly zero, we
could write the distribution of outputs as

Pout(g) =
∫

dc Pin(c)δ[g − ḡ(c)], (7)

where ḡ(c) is the average output as a function of the input, i.e.,
the mean of the distribution P (g|c). Then if the function ḡ(c)
is invertible, we can write the entropy of the output distribution
as

S[Pout(g)] ≡ −
∫

dg Pout(g) log2 Pout(g)

→ −
∫

dc Pin(c) log2

[
Pin(c)

∣∣∣∣dḡ(c)

dc

∣∣∣∣
−1]

, (8)

and we can think of this as the first term in an expansion in
powers of the noise level [3]. Keeping only this leading term,
we have

L[Pin(c)] = −
∫

dc Pin(c) log2

[
Pin(c)

∣∣∣∣dḡ(c)

dc

∣∣∣∣
−1]

−
∫

dc Pin(c)S[P (g|c)] − �

∫
dc Pin(c), (9)

and one can then show that the extremum of L occurs at

P ∗
in(c) = 1

Z
2−S[P (g|c)]

∣∣∣∣dḡ(c)

dc

∣∣∣∣ , (10)

where the entropy is measured in bits, as above, and the
normalization constant,

Z =
∫

dc

∣∣∣∣dḡ(c)

dc

∣∣∣∣ 2−S[P (g|c)]. (11)

The maximal value of the mutual information is then simply
I ∗ = log2 Z.

In the case where P (g|c) is Gaussian,

P (g|c) = 1√
2πσ 2

g (c)
exp

{
− [g − ḡ(c)]2

2σ 2
g (c)

}
, (12)

the entropy is determined only by the variance σ 2
g (c),

S[P (g|c)] = 1
2 log2

[
2πeσ 2

g (c)
]
. (13)

It is useful to think about propagating this (output) noise
variance back through the input-output relation ḡ(c), to define
the effective noise at the input,

σ 2
c (c) =

∣∣∣∣dḡ(c)

dc

∣∣∣∣
−2

σ 2
g . (14)

We then can write

P ∗
in(c) = 1

Z

1√
2πeσc(c)

. (15)

As before, Z is the normalization constant,

Z =
∫ C

0
dc

[
1

2πe

(
dḡ

dc

)2 1

σ 2
g (c)

]1/2

, (16)
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where C is the maximal value of the input concentration, and,
again, we have the information I ∗(c; g) = log2 Z bits.

B. Noise variances

Equation (16) relates Z, and, hence, the information
transmission I ∗ = log2 Z, to the steady-state response and
noise in our simple regulatory element. These quantities are
calculable from the dynamical model in Eq. (1) using the
Lagevin framework [39] and the Itō formulation of stochastic
calculus that we follow in this manuscript, if we understand the
sources of noise. There are two very different kinds of noise
that we need to include in our analysis.

First, we are describing molecular events that synthesize
and degrade individual molecules, and individual molecules
behave randomly. If we say that there is synthesis of r̄

molecules per second on average, then, if the synthesis is
limited by a single kinetic step, and if all molecules behave
independently, then the actual rate r(t) will fluctuate with a
correlation function 〈δr(t)δr(t ′)〉 = r̄δ(t − t ′). Similarly, if,
on average, there is degradation of d̄ molecules per second,
then the actual degradation rate d(t) will fluctuate with
〈δd(t)δd(t ′)〉 = d̄δ(t − t ′). Thus, if we want to describe the
time dependence of the number of molecules N (t), we can
write,

dN

dt
= r(t) − d(t) = r̄ − d̄ + ξ (t), (17)

where

ξ (t) = δr(t) − δd(t). (18)

If we are close to the steady state, r̄ = d̄, and if synthesis and
degradation reactions are independent, we have

〈ξ (t)ξ (t ′)〉 = 2d̄δ(t − t ′). (19)

If some of the reactions involve multiple kinetic steps, or if
the molecules we are counting are amplified copies of some
other molecules, then the noise will be proportionally larger
or smaller, and we can take account of this by introducing a
“Fano factor” ν, so

〈ξ (t)ξ (t ′)〉 → 2νd̄δ(t − t ′). (20)

The second irreducible source of noise is that the synthesis
reactions are regulated by transcription factor binding to DNA,
and these molecules arrive randomly at their targets. One
way to think about this is that the concentrations of TFs
which govern the synthesis rate are not the bulk average
concentrations over the whole cell or nucleus but rather
concentrations in some small “sensitive volume” determined
by the linear size � of the targets themselves [22,40,41].
Concretely, if we write the synthesis rate as

r = rmaxf (ĉ,γ ), (21)

where ĉ is the local concentration of the input transcription
factor and γ is the concentration of the gene product that
feeds back to regulate itself, we should really think of
these concentrations as ĉ = c + ξc and γ = G/� + ξg , where
we separate the mean values and the local fluctuations; note

that the mean gene product concentration is the ratio of the
molecule number G to the relevant volume �. The local
concentration fluctuations are also white, and the spectral
densities are given accurately by dimensional analysis [22,40],
so

〈ξc(t)ξc(t ′)〉 = (2c/D�)δ(t − t ′), (22)

〈ξγ (t)ξγ (t ′)〉 = (2G/�D�)δ(t − t ′), (23)

where D is the diffusion constant of the transcription factor
molecules, which we assume is the same for the input and
output proteins.

We can put all of these factors together if the noise is small,
so that it drives fluctuations which stay in the linear regime of
the dynamics. Then, if the steady-state solution to Eq. (1) in
the absence of noise is denoted by G = Ḡ(c), we can linearize
in the fluctuations δG = G − Ḡ as follows:

dG

dt
= rmaxf (ĉ,γ ) − 1

τ
G + ξ

= rmaxf (c + ξc,G/� + ξγ ) − 1

τ
G + ξ, (24)

⇒ d(δG)

dt
=

[
rmax

�

∂f (c,γ )

∂γ

∣∣∣∣
γ=Ḡ/�

− 1

τ

]
δG + ξeff(t), (25)

where

〈ξeff(t)ξeff(t
′)〉 = 2

[
ν
Ḡ

τ
+

(
rmax

∂f (c,γ )

∂γ

∣∣∣∣
γ=Ḡ/�

)2 2Ḡ

�D�

+
(

rmax
∂f (c,Ḡ/�)

∂c

)2 2c

D�

]
δ(t − t ′). (26)

To solve this problem and compute the variance in the
output number of molecules 〈(δG)2〉, it is useful to recall the
Langevin equation for the position x(t) of an overdamped
mass tethered by a spring of stiffness κ , subject to a drag force
proportional to the velocity, Fdrag = −αv:

α
dx

dt
= −κx + ζ (t), (27)

〈ζ (t)ζ (t ′)〉 = 2kBT αδ(t − t ′). (28)

From equipartition we know that these dynamics predict the
variance 〈x2〉 = kBT /κ . Identifying terms with our Langevin
description of the synthesis and degradation reactions,
we find

〈(δG)2〉 = 1
1
τ

− rmax
�

∂f

∂γ

[
ν
Ḡ

τ
+

(
rmax

∂f

∂γ

)2
Ḡ

�D�

+
(

rmax
∂f

∂c

)2
c

D�

]
, (29)

where we understand that the partial derivatives of f are to be
evaluated at the steady state γ = Ḡ/�.
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We have defined rmax as the maximum synthesis rate, so the
regulation function f is in the range 0 � f � 1 and, hence,
the maximum mean expression level is Ḡmax = rmaxτ . Thus,
it makes sense to work with a normalized expression level
g ≡ G/(rmaxτ ), and to think of the regulation function f as
depending on g rather than on the absolute concentration γ .
We then have

〈(δg)2〉 ≡ σ 2
g (c) = 1

1 − (∂f/∂g)

[(
ν

rmaxτ

)
ḡ

+
(

∂f

∂g

)2

ḡ
1

D�γmax
+

(
∂f

∂c

)2
c

D�

]
, (30)

where γmax is the maximal mean concentration of output
molecules. As discussed previously [6], we can think of
Ng = rmaxτ/ν as the maximum number of independent output
molecules, and this combines with the other parameters in
the problem to define a natural concentration scale, c0 =
Ng/(D�τ ). Once we choose units where c0 = 1, we have a
simpler expression,

σ 2
g (c) = 1

Ng

1

1 − (∂f/∂g)

[
ḡ +

(
∂f

∂g

)2
ḡ

γmax
+

(
∂f

∂c

)2

c

]
,

(31)

where we notice that almost all the parameters have been
eliminated by our choice of units.

Finally, we need to use the variance to compute the
information capacity of the system, I ∗ = log2 Z, where, from
Eq. (16), we have

Z =
∫ C

0
dc

[
1

2πe

(
dḡ

dc

)2 1

σ 2
g (c)

]1/2

=
[

Ng

2πe

]1/2

Z̃, (32)

Z̃ =
∫ C

0
dc

[(
dḡ

dc

)2 1−(∂f/∂g)

ḡ+(∂f/∂g)2(ḡ/γmax)+(∂f/∂c)2c

]1/2

,

(33)

where C is the maximum concentration of input tran-
scription factor molecules, in units of c0. Notice that the
parameter Ng just scales the noise and (in the small-noise
approximation) thus adds to the information, I ∗ = log2 Z̃ +
(1/2) log2(Ng/2πe); the problem of optimizing information
transmission, thus, is the problem of optimizing Z̃. Further,
because

ḡ = f (c,ḡ), (34)

the total derivative dḡ/dc can be expressed though

dḡ

dc
= ∂f

∂c
+ ∂f

∂g

dḡ

dc
. (35)

Putting all of these pieces together, we find

Z̃ =
∫ C

0
dc

∂f

∂c

(
1 − ∂f

∂g

)− 1
2√

ḡ + (
∂f

∂c

)2
c + (

∂f

∂g

)2
ḡ
/
γmax

. (36)

In what follows, we will start with the assumption that,
since both input and output molecules are transcription factor
proteins, their maximal concentrations are the same, and,
hence, γmax = C; we will return to this assumption at the end
of our discussion.

If a regulatory function f (c,g) is chosen from some para-
metric family, Eq. (36) allows us to compute the information
transmission as a function of these parameters and search for
an optimum. Before embarking on this path, however, we note
that the integrand of Z̃ can have a divergence if ∂f/∂g = 1.
This is a condition for the existence of a critical point, and
in this simple system the critical point or bifurcation separates
the regime of monostability from the regime of bistability.
We expect that, at this point, the fluctuations around ḡ are
no longer Gaussian, and we need to compute higher-order
moments. Thus, Eq. (36), as is, can safely be used only in the
monostable regime away from the critical point; in Sec. II E we
compute the expression for the mutual information near to and
at the critical point for a particular choice of f . There are even
more problems in the bistable regime, since there are multiple
solutions to Eq. (34), and in Sec. II F we discuss information
in the bistable regime.

C. MWC regulatory function

To continue, we must choose a regulatory function. In
Ref. [7], where we analyzed genetic networks with feed-
forward interactions, we studied Hill-type regulation [42]
and Monod-Wyman-Changeux–like (MWC) regulation [43]
and found that the MWC family encompasses a broader set
of functions than the Hill family; for a related discussion
see Ref. [44]. MWC functions also allow for a natural
introduction of convergent control, where a node in a network
is simultaneously regulated by several types of regulatory
molecules. Briefly, in the MWC model, one assumes that the
molecule or supermolecular complex being considered has two
states, which we identify here with ON and OFF states of the
promoter. The binding of each different regulatory factor is al-
ways independent, but the binding energies depend on whether
the complex is in an OFF or ON state, so (by detailed balance)
binding shifts the equilibrium between these two states.

In our case, we have two regulatory molecules, the input
transcription factor with concentration c and the gene product
with concentration g. If there are, respectively, nc and ng

identical binding sites for these molecules, then the probability
of being in the ON state is

f (c,g) =
(
1 + c/Qon

c

)nc
(
1 + g/Qon

g

)ng

L
(
1 + c/Qoff

c

)nc
(
1 + g/Qoff

g

)ng + (
1 + c/Qon

c

)nc
(
1 + g/Qon

g

)ng
, (37)
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where Qon
c ,Qon

g are the binding constants in the ON state and,
similarly, Qoff

c ,Qoff
g are the binding constants in the OFF state;

L reflects the “bare” free energy difference between the two
states. If the binding of the regulatory molecules has a strong
activating effect, then we expect Qon

c 
 Qoff
c , and similarly for

Qg , which means that only one binding constant is relevant
for each molecule, and we will refer to these as Kc and Kg .
Then we can write

f (c,g) = 1

1 + e−F (c,g)
, (38)

F (c,g) = nc ln

(
1 + c/Kc

1 + c1/2/Kc

)
+ ng ln

[
1 + g/Kg

1 + 1/(2Kg)

]
,

(39)

where c1/2 is the input concentration at which ḡ(c1/2) = 1/2.
Notice that if binding of g strongly represses the gene, then
we have Qoff

g 
 Qon
g , but this can be simulated by changing

the sign of ng . Thus, we should think of the parameters nc and
ng as being not just the number of binding sites but also an
index of activation versus repression. We will also treat these
parameters as continuous, which is a bit counterintuitive but
allows us to describe, approximately, situations in which the
multiple binding sites are inequivalent or in which Qon and
Qoff do not infinitely differ.

From the discussion in the previous section, we will need
to evaluate the partial derivatives of f (c,g) with respect to its
arguments. For the MWC model, these derivatives take simple
forms:

∂f

∂c
= f (1 − f )

nc

Kc + c
, (40)

∂f

∂g
= f (1 − f )

ng

Kg + g
. (41)

D. Phase diagram

Let us start by examining the stability properties of Eq. (34),
which determines the steady state ḡ(c). Viewed as a function
of g, f (c,g) is sigmoidal, and so, if we try to solve g = f (c,g)
graphically, we are looking for the intersection of a sigmoid
with the diagonal as a function of g. In doing this, we expect
that, for some values of the parameters, there will be exactly
one solution but that, as we change parameters (or the input c),
there will be a transition to multiple solutions. This transition
happens when f just touches the diagonal, that is, when for
some ḡ∗ it holds true that f (ḡ∗,c) = ḡ∗ and ∂f (ḡ,c)|ḡ∗/∂ḡ =
1. Using Eq. (41), these two conditions can be combined to
yield an equation for ḡ∗:

ḡ∗(1 − ḡ∗)
ng

Kg + ḡ∗ = 1. (42)

This is a quadratic in ḡ∗ for which no real solution on ḡ∗ ∈
[0,1] exists if either

Kg >
(ng − 1)2

4ng

(43)

or ng < 1. When either of these conditions are fulfilled,
the gene is in the monostable regime. At the critical point,
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FIG. 2. (Color online) Monostable, critical, and bistable (green,
red, and blue lines, left to right, respectively) behavior of the self-
activating gene for ng = 2. (a) The phase diagram as a function of Kg

and the input-dependent term. In the region between the black solid
lines two solutions ḡ1,2 exist for every value of the input c (y axis). The
corresponding critical value is at K∗

g = 1/8 (cusp of the black solid
lines). Circles and crosses represent analytical approximations to the
exact boundary of the bistable region for ng = 2 and large 1/Kg (see
text). For three choices of Kg denoted by vertical dashed lines, the
input-output relations ḡ(c) are plotted in (b). (b) The critical solution
(red) has an infinite total derivative ḡ′(c) at θ − nc log(1 + c/Kc) =
3.29, ḡ = 0.25. The bistable system (blue) has three solutions, two
stable and one unstable, for a range of inputs that can be read out
from the plot in (a).

K∗
g = (ng − 1)2/(4ng) and ḡ∗ = (ng − 1)/(2ng). This is illus-

trated in Fig. 2 as a function of the effective input χ (c) =
θ − nc ln(1 + c/Kc), where, from Eq. (39), θ = nc ln(1 +
c1/2/Kc) + ng ln[1 + 1/(2Kg)].

For the special case of ng = 2 it is not hard to compute
the analytical approximations for the boundary of the bistable
domain. First, Eq. (38) can be expanded for large Kg , yielding
a quadratic equation for ḡ that has two solutions only when

χ < − ln 4 − 2 ln Kg. (44)

To get the lower bound, we expand Eq. (38) for small ḡ

and retain terms up to the quadratic order in ḡ; the resulting
quadratic equation yields two solutions only if

χ > ln(4/Kg − 3). (45)

Both approximations are plotted as circles and crosses, re-
spectively, in Fig. 2, and match the exact curves well. For other
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values of ng we solve Eq. (34) exactly, using a bisection method
to get all solutions for a given c and we partition the range of c

adaptively into a denser grid where the derivative ḡ′(c) is large.
For integer values of ng when the equation can be rewritten
as a polynomial in ḡ, it is technically easier to find the roots
of the polynomial; alternatively, one can solve for c given ḡ

using a simple bisection, because c(ḡ) is an injective function.

E. Information transmission near the critical point

In this section we will generalize the computation of noise
and information in the region close to the critical point, where
the Gaussian noise approximation breaks down. We start by
rewriting Eqs. (24) and (25) in our normalized units,

τ
dg

dt
= f (c,g) − g + ζ, (46)

〈ζ (t)ζ (t ′)〉 = 2τT (g)δ(t − t ′), (47)

T (g) = 1

Ng

[
g +

(
∂f

∂g

)2
g

γmax
+

(
∂f

∂c

)2

c

]
. (48)

This is equivalent to Brownian motion of the coordinate g in
a potential V (g,c) defined by

−dV (g,c)

dg
= f (c,g) − g, (49)

with an effective temperature T (g) that varies with position. If
we simulate this Langevin equation, we will draw samples out
of the distribution P (g|c), but we can construct this distribution
directly by solving the equivalent diffusion or Fokker-Planck
equation,

∂P (g,t)

∂t
= ∂

∂g
[V ′(g,c)P (g,t)] + ∂2

∂g2
[T (g)P (g,t)]. (50)

The steady-state solution is then P (g|c), and this is

P (g|c) = P (0)
T (0)

T (g)
exp

[
−

∫ g

0

V ′(y,c)

T (y)
dy

]
. (51)

The “small-noise approximation” in this extended frame-
work corresponds to expanding the integrand in Eq. (51)
around the mean, g = ḡ(c) + δg. If we write x = g − ḡ(c),
we will find

P (g|c) ∝ exp(−a2x
2 − a3x

3 − a4x
4 − · · ·), (52)

where our previous approximations correspond to keeping
only a2. The critical point is where a2 = 0, and we have to keep
higher-order terms. In principle, the expansion coefficients
have contributions from the g dependence of the effective
temperature, but we have checked that these contributions are
negligible near criticality. We then have

a2 = 1

2!

[
1 − f ′

T

]
, a3 = − 1

3!

f ′′

T
, a4 = − 1

4!

f ′′′

T
, (53)

where primes denote derivatives with respect to g, and all
terms should be evaluated at g = ḡ(c).

For the Monod-Wyman-Changeux regulatory function in
Eq. (38), all these derivatives can be evaluated explicitly,

f ′ = ∂f

∂g
= f (1 − f )

ng/Kg

1 + g/Kg

, (54)

f ′′ = ∂2f

∂g2
= f (1 − f )

(
ng/Kg

1 + g/Kg

)2(
1 − 2f − 1

ng

)
,

(55)

f ′′′ = ∂3f

∂g3
= f (1 − f )

(
ng/Kg

1 + g/Kg

)3[(
1 − 2f − 1

ng

)

×
(

1 − 2f − 2

ng

)
− 2f (1 − f )

]
. (56)

From Eq. (42), the critical point occurs at ḡ∗ = (ng − 1)/2ng

when K∗
g = (ng − 1)2/4ng , and at this point the derivatives

simplify as follows:

f ′ = 1, (57)

f ′′ = 0, (58)

f ′′′ = − 8n2
g

n2
g − 1

. (59)

Now we want to explore behavior in the vicinity of the
critical point; we will fix Kg to its critical value, K∗

g (ng),
and compute the derivatives in Eqs. (54)–(56) as ∂f/∂g → 1.
Consider, therefore, a small positive ε such that

∂f

∂g

∣∣∣∣
ḡ

= 1 − ε. (60)

In a system with chosen Kg and ng that yield critical behavior,
the deviation from criticality above will happen at ḡ = ḡ∗ + �.
To find the relation between ε and �, we evaluate the derivative
in Eq. (54) at ḡ to form a function ψ(ḡ) = ḡ(1 − ḡ)ng/(Kg +
ḡ), which evaluates to 1 at ḡ∗. This function can be expanded
in Taylor series around ḡ∗; the first order in � vanishes and
we find,

ng(Kg + 1)

(1 + ḡ∗/Kg)3
�2 = ε. (61)

Therefore, the derivative deviates by ε from criticality at
1 when ḡ deviates by ±� from the ḡ∗. We now perform
similar expansions on the second- and third-order derivatives in
Eqs. (55) and (56) and evaluate the factors at the critical point,

∂f

∂g
= 1 − 4n2

g

n2
g − 1

�2, (62)

∂2f

∂g2
= − 8n2

g

n2
g − 1

� + 32n3
g(

n2
g − 1

)2 �2, (63)

∂3f

∂g3
= − 8n2

g

n2
g − 1

+ 64n3
g(

n2
g − 1

)2 � + 128n4
g

(
n2

g − 4
)

(
n2

g − 1
)3 �2. (64)

These expressions have been evaluated for K∗
g , but we could

have easily repeated the calculation by assuming that Kg itself
can deviate a bit from the critical value, i.e., Kg = K∗

g + δKg ,
which would yield somewhat more complicated results that
we do not reproduce here.

Equations (62)–(64) can be used in Eq. (53) to write the
probability distribution P (g|c). Far from the critical point, the
Gaussian approximation is assumed to hold, and a3,a4 can be
set to 0. Close to the critical point, the higher-order terms a3

and a4 need to be included. To assess the range where this
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switchover occurs, we compare in Eqs. (62)–(64) the leading
to the subdominant correction: We insist that the quadratic
correction in Eq. (63) is always smaller than linear and that the
linear correction in Eq. (64) is always smaller than constant
(we drop the quadratic correction there). We found empirically
that including the higher-order corrections yields good results
when the following conditions are simultaneously satisfied:

|�| <
n2

g − 1

16ng

|�| < 0.25. (65)

These conditions guarantee that the higher-order terms, which
are evaluated around the critical point, are nowhere evaluated
too far from the critical point such that the approximations
would break down.

We can now put the pieces together by using the general
form of the optimal solution for P ∗(c) in Eq. (10), together
with the quartic ansatz for P (g|c) in Eq. (52). For each c, we
evaluate two entropies of the conditional distribution P (g|c):

S2[P (g|c)] = log2

√
2πeσ 2

g (c), (66)

S4[P (g|c)] = −
∫

dg P (g|c) log2 P (g|c). (67)

S4 is the noise entropy with higher-order terms included
whenever conditions Eq. (65) are met, and S2 is the noise
entropy in the Gaussian approximation.

Equation (10) can be rewritten in a numerically stable
fashion by realizing that P ∗(c)|dḡ/dc|−1 = P ∗(ḡ), that is, that
the optimal distribution of mean output levels is given by

P ∗(ḡ) = 2−S[P (g|ḡ)]/Z. (68)

To join the Gaussian and higher-order approximations consis-
tently in the regimes away and near the critical point, the noise
entropy in Eq. (69) is chosen to be the pointwise minimum of
S4(ḡ) and S2(ḡ). Finally, the information is, again, I = log2 Z,
with

Z =
∫ ḡ(C)

0
dḡ 2−S[P (g|ḡ)]. (69)

F. Information transmission in the bistable regime

We now discuss the information capacity in the bistsable
regime, away from the critical line. In this regime, each value
of the input c can give rise to multiple solutions of the steady-
state equation (34). In the simplest case (which includes the
MWC regulatory functions), there will be two stable solutions,
ḡ1(c) and ḡ2(c), and a third solution, ḡ3(c), that is unstable. In
equilibrium, the system will be on the first branch with weight
w1(c) and on the second with weight w2(c). Here we place
upper bound on the information I (c; g), again, in the small-
noise approximation. This will be useful since, as we will
see, even this upper bound is always less than the information
which can be transmitted in the monostable or critical regime,
and so we will be able to conclude that the optimal parameters
for which we are searching are never in the bistable regime.

In the bistable regime, the small-noise approximation
(again, away from the critical line) means that the condi-
tional distributions are well approximated by a mixture of

Gaussians,

P (g|c) = w1(c)
1√

2πσ 2
1 (c)

e
− (g−ḡ1(c))2

2σ2
1 (c)

+w2(c)
1√

2πσ 2
2 (c)

e
− (g−ḡ2(c))2

2σ2
2 (c) . (70)

To compute the information we need two terms, the total
entropy and the conditional entropy. The conditional entropy
takes a simple form if we assume the noise is small enough that
the Gaussians do not overlap. A direct calculation then shows
that, as one might expect intuitively, the conditional entropy
is just the weighted sum of the entropies of the Gaussian
distributions plus a term that reflects the uncertainty about
which branch the system is on,

S[P (g|c)] = 1

2

2∑
i=1

wi(c) log2

[
2πeσ 2

i (c)
]

−
2∑

i=1

wi(c) log2 wi(c). (71)

Implementing the small-noise approximation for the total
entropy is a bit more subtle. We have, as usual,

P (g) ≡
∫

dc P (c)P (g|c)

=
∫

dc P (c)
w1(c)√
2πσ 2

1 (c)
exp

{
− [g − ḡ1(c)]2

2σ 2
1 (c)

}

+
∫

dc P (c)
w2(c)√
2πσ 2

2 (c)
exp

{
− [g − ḡ2(c)]2

2σ 2
2 (c)

}
.

(72)

If the noise is small, each of the two integrals is dominated by
values of c near the solution of the equation g = gi(c); let us
call these solutions ĉi(g). Notice that these solutions might not
exist over the full range of g, depending on the structure of the
branches. Nonetheless, we can write,

P (g) ≈
[
w1(c)P (c)

∣∣∣∣dḡ1(c)

dc

∣∣∣∣
−1]

c=ĉ1(g)

+
[
w2(c)P (c)

∣∣∣∣dḡ2(c)

dc

∣∣∣∣
−1]

c=ĉ2(g)

, (73)

with the convention that if we try to evaluate wi(c) at a
nonexistent value of ĉi, we get zero. Thus, the full distribution
P (g) is also a mixture,

P (g) = f1P1(g) + f2P2(g). (74)

The fractional contributions of the two distributions are

fi =
∫

i
dc P (c)wi(c), (75)

where
∫

i dc · · · denotes an integral over the regions along the
c axis where the function ĉi(g) exists, and the (normalized)
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component distributions are

Pi(g) = 1

fi

[
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣
−1]

c=ĉi(g)

. (76)

The entropy of a mixture is always less than the average entropy of the components, so we have an upper bound,

S[P (g)] � −
2∑

i=1

fi

∫
dg Pi(g) log2 Pi(g) (77)

= −
2∑

i=1

∫
dg

[
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣
−1]

c=ĉi(g)

log2

[
1

fi
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣
−1]

c=ĉi(g)

(78)

= −
2∑

i=1

∫
i
dc P (c)wi(c) log2

[
1

fi
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣
−1]

. (79)

An upper bound on the total entropy is useful because it allows us to bound the mutual information:

I (c; g) ≡ S[P (g)] −
∫

dc P (c)S[P (g|c)] (80)

� −
2∑

i=1

∫
i
dc P (c)wi(c) log2

[
1

fi
wi(c)P (c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣
−1]

− 1

2

2∑
i=1

∫
dc P (c)wi(c) log2

[
2πeσ 2

i (c)
] +

2∑
i=1

∫
dc P (c)wi(c) log2 wi(c) (81)

= −
∫

dc P (c) log2 P (c) + 1

2

∫
dc P (c)

2∑
i=1

wi(c) log2

[∣∣∣∣dḡi(c)

dc

∣∣∣∣
2 1

2πeσ 2
i (c)

]
−

(
−

2∑
i=1

fi log2 fi

)
(82)

� −
∫

dc P (c) log2 P (c) + 1

2

∫
dc P (c)

2∑
i=1

wi(c) log2

[∣∣∣∣dḡi(c)

dc

∣∣∣∣
2 1

2πeσ 2
i (c)

]
, (83)

where, in the last step, we use the positivity of the entropy
associated with the mixture weights {fi}.

We can now ask for the probability distribution P (c) that
maximizes the upper bound on I (c; g), and, in this way, we can
bound the capacity of the system. Happily, the way in which
the bound depends on P (c), in Eq. (83), does not differ so much
from the dependencies that we have seen in the monostable
case Eq. (9), so we can follow a parallel calculation to show that

I (g; c) � log2

[∫ C

0
dc e−φ(c)

]
, (84)

φ(c) =
∑

i

wi(c) ln

[√
2πeσ 2

gi
(c)

∣∣∣∣dḡi(c)

dc

∣∣∣∣
−1

]
. (85)

Finally, to find the weights wi(c) we can numerically integrate
the Fokker-Planck solution in Eq. (51) to find

w1(c) =
∫ ḡ3(c)

0
dg′ P (g′|c), (86)

w2(c) =
∫ ∞

ḡ3(c)
dg′ P (g′|c). (87)

To summarize, we have derived an upper bound on the
information transmitted between the input and the output.
The tightness of the bound is related to the applicability
of the “no overlap” approximation, which for MWC-like

regulatory functions should hold very well, as we have verified
numerically. If only one of the weights wi �= 0, our results
reduce to those in the monostable case, as they should.

III. RESULTS

We begin by showing that the analytical calculations
presented in the previous section can be carried out numerically
in a stable fashion, both away from and in the critical regime.
We recall that the information transmission is determined by
an integral Z̃ [Eq. (36)] and that, because we are working in
the small-noise approximation, we have a choice of evaluating
this as an integral over the input concentration c or an integral
over the mean output concentrations ḡ. Figure 3 shows the
behavior of the integrands in these two equivalent formulations
when we have chosen parameters that are close to the critical
point in a self-activating gene. The key result is that, once we
include terms beyond the Gaussian approximation to P (g|c)
following the discussion in Sec. II E, we really do have control
over the calculation and find smooth results as the parameter
values approach criticality. Thus, we can compute confidently,
and search for parameters of the regulatory function θ ≡
{c1/2,Kc,nc,Kg,ng} that maximize information transmission.

We start the optimization by choosing the parameter values
θg ≡ {ng,Kg} which describe the self-interaction term and
then hold these fixed while we optimize the remaining ones,
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FIG. 3. (Color online) Computing information transmission close
to the critical point. (a) An input-output relation ḡ(c) for ng = 2,
C = 1, and Kg = K∗

g (ng) + 0.004, showing a self-activating gene
with an almost critical value of Kg . (b) Noise in the input from
Eq. (14), which is the integrand in the expression for information in
Eq. (36), shows an incipient divergence between red vertical bars.
(Inset) Zoom-in of the peak shows that it can be sampled well by
increasing the number of bins. Different plot symbols indicate domain
discretization into 500 (black dots) and 5000 (red circles) bins. At
the critical point the divergence is hard to control numerically. (c) An
alternative way of computing the same information, by integrating
in the output domain as in Eq. (69). Shown is the integrand in the
Gaussian noise approximation [black, S2(ḡ) from Eq. (66)] and with
quartic corrections [red (light gray), S4(ḡ) from Eq. (67)]. At the
critical point higher-order corrections regularize the integrand, while
away from the critical point the integrand smoothly joins with the
Gaussian approximation. This approach is stable numerically both
away from and in the critical regime. (d) Information I = log2 Z̃

as a function of Kg for ng = 2. Critical K∗
g = 1/8 is denoted by a

dashed red line. Integration across ḡ in the output domain with quartic
corrections (squares) agrees well with the integration across c in the
input domain (crosses) away from K∗

g , but also smoothly extends to
the critical K∗

g . This is a cut across the capacity plane in Fig. 4(a)
(denoted by a dashed yellow line) for C = 1.

θc ≡ {c1/2,nc,Kc}. In all these optimizations the parameter
Kc is driven to zero, and, in this limit, the MWC regulatory
function of Eq. (38) simplifies to something more like the Hill
function,

f (g,c) = cnc

cnc + c
nc

1/2e
−F̃ (g)

, (88)

F̃ (g) = ng ln

[
1 + g/Kg

1 + 1/(2Kg)

]
. (89)

Once we have optimized θc, we can explore the information
capacity as a function of θg , at varying values of the remaining
parameter in the problem, the maximal concentration C

of transcription factors. Figure 4(a) maps out the “capac-
ity planes,” I ∗(ng,Kg; C) at fixed C. In detail, we show

I ∗(ng,Kg; C) − I ∗
max(C) for three choices of our parameter

C, where I ∗
max(C) is the information obtained with the optimal

choice of ng and Kg; the best choice of parameters is depicted
as a yellow circle in the capacity plane.

For large values of C, C = 1,10, the optimal solution is
at ng → 0 or Kg → ∞ (magenta square in the lower right
corner), which drives the self-activation term in Eq. (38) to
zero, toward a noninteracting solution. We have checked that
these solutions correspond to optimal solutions for a single
noninteracting gene found in our previous work [7]. As C is
decreased, however, the optimal combination {ng,Kg} shifts
toward the left in the capacity plane (cyan square for C =
0.1), exhibiting a shallow but distinct maximum in information
transmission. If we examine the mean input-output relations in
Fig. 4(b), we find nothing dramatic: the critical (red) solutions
seem to have lower capacities (which we carefully reexamine
blow), while other quite distinct parameter choices for {ng,Kg}
nevertheless generate very similar mean input-output relations,
because of the freedom to optimally choose θc parameters.
The behavior of effective noise in the input, σc(c), given by
Eq. (14) and shown in Fig. 4(c), is more informative; recall that∫

dc σ−1
c (c) is proportional to the information transmission.

Noninteracting (magenta) solutions always have the lowest
amount of noise at high input concentrations (c ∼ C). As the
self-interaction turns on, the noise at high input increases,
but that increase can be traded off for a decrease in noise at
medium and low c. While for low C = 0.1 the critical (red)
solution is never optimal, the solution with some self-activation
manages to deliver an additional ∼0.2 bits of information.
We have verified that for 10× smaller value of C = 0.01 the
capacity plane is qualitatively the same, exhibiting the peak
at a nontrivial (but still not critical) choice of {ng ≈ 0.51,

Kg ≈ 0.11} (not shown).
Intuitively, the self-activation parameters θg have three

direct effects on the information transmission: they change
the shape of the input-output curve, the self-activation feeds
some of the output noise back into the input, and the time
τ (protein lifetime) that averages the input noise component
gets renormalized to τ → τ (1 − ∂f/∂g)−1. The changes in
the mean input-output relation can be partially compensated
for by the correlated changes in the θc, as we observed
in our optimal solutions, suggesting that regardless of the
underlying microscopic parameters, it is the shape of ḡ(c)
itself that must be optimal. The increase in averaging time
acts to increase the information, thus favoring self-activation.
However, this will simultaneously increase the noise in the
output that feeds back, as well as drive ḡ(c) toward infinite
steepness at criticality, restricting the dynamic range of the
output. At low C there is a parameter regime where increasing
the integration time will help decrease the (dominant) input
noise enough to result in a net gain of information. At high C,
input noise is minimal and, thus, this averaging effect loses its
advantage; instead, feedback simply acts to increase the total
noise by reinjecting the output noise at the input, so optimizing
information transmission drives the self-interaction to zero.

Next we examine in detail the behavior of information
transmission close to the critical region. Close to, but not at,
the critical point, we perform very fine discretization of the
input range to evaluate the integral in Eq. (36), as reported in
Fig. 3(b). To validate that the information indeed reaches a
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FIG. 4. (Color online) Information transmission as a function of self-activating parameters {ng,Kg} for three values of C; C = 0.1 (left
column), C = 1 (middle column), C = 10 (right column). For each value of {ng,Kg} the three remaining parameters {c1/2,nc,Kc} are optimized
to maximize information. (a) The capacity planes showing the decrease in capacity in bits (colormap) from the maximal value achieved for an
optimal choice of all parameters; the optimal set of parameters is denoted by a colored square on a yellow circle. The white upper left region of
each capacity plane corresponds to the bistable region. For low C = 0.1 the maximum is achieved in the interior of the domain (cyan, line (1)),
while for C = 1,10 ng is driven to 0 (magenta, line (2)), corresponding to the non-self-interacting solution. Red line (3) represents an example
critical system at ng = 2 and the green line (4) represents a self-interacting system with a high value for ng . The yellow dashed line in C = 1
plane represents a cut shown in detail in Fig. 3(d). The yellow solid line in C = 0.1 plane represents a cut shown in detail in Fig. 5(a). The red
dashed boundary of the critical region in C = 1 plane is analyzed in detail in Figs. 5(b) and 5(c). (b) Input-output relations for four example
systems denoted by colored lines in (a). Despite substantially different values for {ng,Kg}, the optimization of remaining parameters makes the
input-output curves look very similar to the optimal solutions, except for the critical [red (solid)] curves. (c) The effective input noise σc(c) for
the selected systems.

maximum at nontrivial values of {ng,Kg} when C = 0.1, we
cut through the capacity plane in Fig. 4(a) along the yellow line
at ng = 2 and display the resulting capacity values in Fig. 5(a)
(the results are numerically stable when integrated on 104

or 103 points). Unlike for C = 1 and C = 10, for C = 0.1
the maximum is clearly achieved for a nontrivial value of
Kg , but away from the critical line, confirming our previous
observations. We further examine the capacity directly on

041903-11
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the distance in Kg from the critical value (horizontal axis). Across the range of ng , going from the critical axis into the monostable domain
increases the information.

the critical line, K∗
g = (ng − 1)2/(4ng), as a function of ng

at C = 1 [denoted in Fig. 4(a) with a dashed red line]. The
capacity in this case can be calculated using Eq. (69) and
is shown in Fig. 5(b). The capacity that includes quartic
corrections is higher by ∼0.05–0.1 bits than in the Gaussian
approximation, making the effect small but noticeable. We also
confirmed that the capacity at the critical line joints smoothly
with the capacity near the line, i.e., that there is no jump
in capacity exactly at criticality, which presumably would be
a sign of numerical errors. Figure 5(c) finally validates that
across the whole range of ng for C = 1, small increases in Kg

above the critical value K∗
g (ng) always lead to an increase of

information, demonstrating that the maximum is not achieved
on the critical line.

We next turn to the joint optimization of all parameters and
plot the information transmission as a function of C in Fig. 6.
As we have discussed, optimization drives the strength of self-
activation to zero for C > 1 (but see below for self-repression),
and at these high values of C the result of full optimization
coincides with the noninteracting case. As C falls below one,
the gain in information due to self-activation is increased,
reaching a significant value of about a bit for C = 0.01. As
we have noted in Sec. II C, the self-activating effect of g on
its own expression can be changed into a self-repressing effect
by simply flipping the sign of the parameter ng . To explore the
optimization of such self-repressing genes, we, thus, optimized
the parameters as before, now constraining ng � 0. Results in
{ng,Kg} plane are shown in Fig. 7 for C = 1 and C = 10.

We find that, for large C, the optimization process drives
both Kc and Kg toward zero, so the effective input-output
relation is given by

f (g,c) = cnc

cnc + c
nc

1/2 (2g)−ng
, (90)

with nonzero values of ng being optimal. Why is self-
repression optimal at large C, when self-activation is not?
Self-repression suppresses noise at high concentrations of the
input [red versus magenta curves Fig. 7(c) for C = 10] and
allows the mean input-output curve to be more linear than
in the noninteracting case [Fig. 7(b)], extending the dynamic

range of the response. Both these effects serve to increase
information transmission.

It is remarkable that when we put together the self-
activating and self-repressing solutions, we see that they join
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FIG. 6. (Color online) Information transmission in a system
where all parameters θ are optimized as a function of the maximal
input concentration C. The self-interacting system [red (crosses
and circles)] allows for an arbitrary MWC-like regulatory function
Eq. (38) with parameters θ = {c1/2,nc,Kc,ng,Kg}. The noninteract-
ing system [black (solid dots)] only has the MWC parameters nc,Kc

and the leak L (see Ref. [7]) which can be reexpressed in terms
of c1/2. The (red) line with circles shows self-activating solutions
which are optimal for C < 1, while the (red) line with crosses
shows self-repressing solutions, optimal for C > 1. Plotted on the
secondary vertical axis in green (solid line) is the ratio between the
self-interacting contribution to F , and the input contribution to F in
the expression for the MWC regulatory function Eq. (38). For C ∼ 1
where the interacting and noninteracting solution join, this term falls
to 0, as expected.
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10 (right column); plot conventions are the same as in Fig. 4. (a) The
capacity decrease from the maximum value (achieved at the parameter
choice indicated by a yellow circle) as a function of {ng,Kg}. The
maximum information transmission is achieved for a noninteracting
case (magenta, line (2)), for C = 1. In contrast, for C = 10, there is
a nontrivial optimum for small values of Kg and ng ≈ −2.5 (red, line
(3)). (b) The mean input-output solutions for three example systems
from A (cyan, line (1); magenta, line (2); red, line (3)). (c) The
effective noise in the input, σc(c), for example solutions in (a).

smoothly at C = 1 (Fig. 6): Self-activation is optimal for C <

1, and self-repression is optimal for C > 1, while precisely
at C = 1 the system that transmits the most information is
noninteracting.

All of this discussion has been in the limit where the
maximal concentration of output molecules, γmax, is the same
as the maximal concentration of input molecules, C, so there
is only one parameter that governs the structure of the optimal
solution. This makes sense, at least approximately, since
both input and output molecules are transcription factors,
presumably with similar costs, but, nonetheless, we would
like to see what happens when we relax this assumption.
Intuitively, if we let γmax become large, the system can achieve
the advantages of feedback while the impact of noise being
fed back into the system should be reduced.

If we look at Eq. (36) for Z̃, which controls the information
capacity, we can take the limit γmax → ∞ to find

Z̃ =
∫ C

0
dc

∂f

∂c

(
1 − ∂f

∂g

)− 1
2√

ḡ + (
∂f

∂c

)2
c

. (91)
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FIG. 8. (Color online) The dependence of information transmis-
sion in the self-activating case on the ratio γmax/C. (a) For various
choices of C indicated on the plot, the information transmission with
the optimal choice with respect to all parameters θ is shown as a
function of γmax/C. Two special systems of interest [arrows, blue
(dark gray) and green (light gray)] are chosen for the lowest value of
C. (b) The mean input-output relation for the blue and green system.
The green system has a higher transmission, a steeper activation curve
but a smaller dynamic range. (c) The effective noise in the input, σc(c),
for the blue and green systems. The green system is closer to critical at
the point where the mean input-output curve has the highest curvature
and the noise exhibits a dip.

Now the only place where feedback plays an explicit role is in
the term (1 − ∂f

∂g
)−

1
2 , which comes from the lengthening of the

integration time, which, in turn, serves to average out the noise
in the system. All other things being equal (which may be hard
to arrange), this suggests that information transmission will be
maximized if the system approaches the critical point, where
∂f/∂g → 1. The difficulty is that the system cannot stay at the
critical point for all values of the input c, so there must be a
trade-off between lengthening the integration time and using
the full dynamic range.

To explore more quantitatively, we treat γmax/C as a
parameter. When C is small, we know that self-activation
is important, and in this regime we see from Fig. 8 that
changing γmax/C matters. On the other hand, for large values
of C we know that (at γmax/C = 1) optimization drives
self-activation to zero, so we expect that there is less or no
impact of allowing γmax/C �= 1. We also see that, for a fixed
small C, increasing γmax/C drives the system closer toward
the signatures of criticality—nonmonotonic behavior in the
noise and a steepening of the input-output relation. In more
detail, we can plot the value of maxc(∂f/∂g) as a function
of C and γmax/C, that is, check for each of the solutions
in Fig. 8(a) how close the partial derivative ∂f/∂g comes to
1, which is a direct measure of criticality. We confirm that,
for the simultaneous choice of small C and large γmax/C,
we indeed have ∂f/∂g → 1. In the extreme, if we choose
C = 0.01 and γmax/C = 104, we find that the optimal Kc

and Kg are driven toward small values (but since c,C are
small, Kc is not negligible); the optimal ng ≈ 1.0662. With
this value of ng , the corresponding critical value for Kg would
be K∗

g (ng) = 0.001, and the numerically found optimal value
in our system is Kg = 0.0012. The critical value for ḡ∗ would
be ḡ∗(ng) = 0.031, and, indeed, at this small value the optimal
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FIG. 9. (Color online) Crossing the critical line (dashed red) into
the bistable region. (a) Capacity as a function of ng at fixed Kg = 0.05,
with the optimal choice of {nc,Kc,c1/2} parameters, for three values of
C [C = 0.1,1,10 dark (gray) to bright red (gray), respectively]. Dots
show capacity calculation using the bistable code that can handle
multiple branches using Eq. (85), solid line uses the monostable
integration as in Eq. (36). (b) Optimal capacity at very high ratios
γmax/C = 103 for different value of C (C = 10−3,10−2,10−1,1:
circles, crosses, squares, and stars, respectively). The optimum is
pushed toward the critical line from the monostable side for γmax/C

large and C small. In all cases, information in the bistable regime is
smaller than in the monostable regime.

mean input-output relation has a strong kink, the effective noise
σc has a sharp dip, and ∂f/∂g at this point climbs to 0.9936.
Numerically, therefore, we have all the expected indications
of emerging criticality at very large γmax. For less extreme
values, we expect the optimum to result from the interplay
between the input and transmitted noise contributions, which,
in general, need not be on the critical line.

To complete our exploration of the optimization problem,
we have to consider parameter values for which the output has
two locally stable values given a single input. Quantitatively, in
the bistable regime we have to solve for both stable solutions
ḡi(c), with i = 1,2, and for the unstable branch ḡ3(c). We
can then evaluate the equilibrium probabilities wi(c) of being
on either of the stable branches using Eq. (87), and use
Eq. (85) to compute the capacity. As shown in an example
in Fig. 9(a), we never find the optimal solutions in the bistable
region–the capacity starts decreasing after crossing the critical
line. Consistently with our argument that output and feedback
noise must become negligible for the regime of small C and
large γmax/C, we find that optimization drives the system
toward achieving maximal transmission closer and closer the
the critical line (which is approached from the monostable
side), as shown in Fig. 9(b).

IV. DISCUSSION

To summarize, we have analyzed in detail a single, self-
interacting genetic regulatory element. As in previous work,
we based our analysis on three assumptions: (i) that the
readout of the information I (c; g) between the input and output
happens in steady state, (ii) that noise is small; and (iii) that the
constraint limiting the information flow is the finite number
of signaling molecules. In addressing a system with feedback,
assumption (ii) requires technical elaboration near the critical
point, as discussed above. But (i) requires a qualitatively

new discussion for systems with feedback, because of the
possibility of multistability.

Our analysis, with the steady-state assumption, shows
that truly bistable systems do not maximize the information.
Intuitively, this stems from the branch ambiguity: For a
given input concentration c a bistable system can sit on
either one of the stable branches with some probability,
and this uncertainty contributes to the noise entropy, thereby
reducing the transmitted information. But reaching steady state
involves waiting for two very different processes. First, the
system reaches a steady distribution of fluctuations in the
neighborhood of each stable point, and then the populations
of the two stable states equilibrate with one another. As with
Brownian motion in a double-well potential (or a chemical
reaction), these two processes can have time scales that are
separated by an exponentially large factor.

Alternatively, the time scales of real regulatory and readout
processes could be such that the system does not have the time
to equilibrate between the stable branches. In that case, the his-
tory (initial condition) of the system will matter, and the final
value of the output g will be determined jointly by the input c

and the past state of the output, g0. Such regulatory elements
can be very useful, because they retain memory of the past
and are able to integrate it with the new input; a much studied
biological example is that of a toggle switch. The information
measure we use here, I (c; g), will not properly capture the
abilities of such elements, unless we modify it to include
the past state, e.g., into I ({c,g0}; g): Here both the input and
current state together determine the output. Such computations
are beyond the scope of this paper but could make precise our
intuitions about switches with memory.

Multistability also allows for qualitatively new effects at
higher noise levels. In our previous work we found that full
information flow optimization (without assuming small noise)
leads to higher capacities than a small-noise calculation for
an identical system and, moreover, that as noise grows, the
optimal solutions start resembling a (noisy) binary switch
where only the minimum and maximum states of input are
populated in the optimal P ∗

in(c) [4]. At high noise, positive
(even bistable) autoregulation could stabilize these two states
and make them more distinguishable. In this case, the design
constraint for the genetic circuit is to use the smallest number
of molecules that will prevent spontaneous flipping between
the two branches on the relevant biological time scales [18]. In
this limit regulatory elements can operate at high noise, with
perhaps as few as tens of signaling molecules.

With these caveats in mind, our main results can be
summarized as follows. Except at C ∼ 1, the possibility
of self-interaction always increases the capacity of genetic
regulatory elements. For C < 1, the optimal strategy is self-
activation, while for C > 1 it is self-repression, as shown in
Fig. 6. Self-repression allows the system to reduce the effective
noise at high input levels and straighten the input-output
relation, packing more “distinguishable” signaling levels into
a fixed input range. Self-activation for small C lengthens the
effective integration time over which the (dominant) input
noise contribution is averaged, thereby increasing information.
The optimal level of self-activation is never so strong as to
cause bistability, but does, for small C and large γmax/C, push
the optimal system toward the critical state.
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An interesting observation about the nature of the optimal
solutions is that self-activation which is strong enough to
enhance information transmission may, nonetheless, not result
in a functional input-output relation that differs in appearance
from a system without self-activation, albeit with different pa-
rameters. In such cases, information transmission is enhanced
primarily by the longer integration time and reduced effective
noise level. This means that there need be no dramatic signature
of self-activation, so diagnosing this operating regime requires
a detailed quantitative analysis. More generally, this result
emphasizes that the same phenomenology can result from
different parameter values or even networks with different
topology—in this case, with and without feedback.

The prevailing view of self-activation has been that its
utility stems from the possibility of creating a toggle (or
a flip-flop) switch. This explanation, however, can be true
only if self-activation is strong enough to actually push the
system into the bistable regime. De Ronde and colleagues
[38] have improved on this intuition and have shown, in the
linear response limit, that weak self-activation will increase
the signal-to-noise ratio for dynamic signals, a function that
differs markedly from the switch. Here we show that in the
fully nonlinear, but steady-state, treatment, monostable self-
activation can be advantageous for information transmission.
Furthermore, we show that there is a single control parameter,
the ratio C between the output and input noise strengths,
which determines whether self-activation or self-repression is
optimal. Since more and more quantitative expression data
are available, especially for bacteria and yeast, one could
try to assess how the use of both motifs correlates with the
concentrations of input and output signaling molecules.

Stepping back from the detailed results, our goal in this
paper was to make progress on understanding the optimization
of information flow in systems with feedback by studying
the simplest example. The hope is that our results provide

one building block for a theory of real genetic networks, on
the hypothesis that they have been selected for maximizing
information transmission. As discussed in previous work
[3,6,7], a natural target for such analysis is the well-studied gap
gene network in the early Drosophila embryo [45], although
we also hope to connect with a broader range of examples.
Real systems, however, often use regulatory mechanisms that
are more complex than the simplest setup examined here
which enables theoretical progress. One of the important open
questions is, therefore, how different molecular schemes of
transcriptional control impact the information flow in tran-
scriptional regulation. We started with a phenomenologically
motivated MWC regulatory function and two major noise
contributions in the form of the input diffusive and output shot
noise. In fact, processes such as DNA looping [35], regulation
of the oligomeric state of the transcription factors [46,47],
regulation of decay [48], and control through chromatin state
modification or the covalent modification of other regulatory
molecules all potentially affect the mean input-output relation
and the noise. Nevertheless, our hope is that if these quantities
can be computed for more complicated architectures, the
overall information-maximization framework should remain
applicable. We leave open for future work the question
of generalizing our results to more complicated molecular
regulatory mechanisms.
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