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The past decade has seen great advances in our understanding of
the role of noise in gene regulation and the physical limits to signal-
ing in biological networks. Here, we introduce the spectral method
for computation of the joint probability distribution over all species
in a biological network. The spectral method exploits the natural
eigenfunctions of the master equation of birth−death processes
to solve for the joint distribution of modules within the network,
which then inform each other and facilitate calculation of the entire
joint distribution. We illustrate the method on a ubiquitous case in
nature: linear regulatory cascades. The efficiency of the method
makes possible numerical optimization of the input and regulatory
parameters, revealing design properties of, e.g., the most infor-
mative cascades. We find, for threshold regulation, that a cascade
of strong regulations converts a unimodal input to a bimodal out-
put, that multimodal inputs are no more informative than bimodal
inputs, and that a chain of up-regulations outperforms a chain
of down-regulations. We anticipate that this numerical approach
may be useful for modeling noise in a variety of small network
topologies in biology.
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T ranscriptional regulatory networks are composed of genes and
proteins, which are often present in small numbers in the cell

(1, 2), rendering deterministic models poor descriptions of the
counts of protein molecules observed experimentally (3–9). Prob-
abilistic approaches have proven necessary to account fully for the
variability of molecule numbers within a homogenous population
of cells. A full stochastic description of even a small regulatory
network proves quite challenging. Many efforts have been made
to refine simulation approaches (10–14), which are mainly based
on the varying step Monte Carlo or “Gillespie” method (15, 16).
Yet expanding full molecular simulations to larger systems and
scanning parameter space is computationally expensive. However,
the interaction of many protein and gene types makes analytical
methods hard to implement. A wide class of approximations to the
master equation, which describes the evolution of the probabil-
ity distribution, focuses on limits of large concentrations or small
switches (17–19). Approximations based on timescale separation
of the steps of small signaling cascades have been successfully used
to calculate escape properties (20, 21). Variational techniques
have also been used to calculate approximate distributions (22).

In this article we introduce a method for calculating the steady-
state distributions of chemical reactants (code is available at
http://specmark.sourceforge.net). The procedure, which we call
the spectral method, relies on exploiting the natural basis of a
simpler problem from the same class. The full problem is then
solved numerically as an expansion in this basis, reducing the mas-
ter equation to a set of linear algebraic equations. We break up the
problem into two parts: a preprocessing step, which can be solved
algorithmically; and the parameter-specific step of obtaining the
actual probability distributions. The spectral method allows for
huge computational gains with respect to simulations.

We illustrate the spectral method for the case of regulatory
cascades: downstream genes responding to concentrations of tran-
scription factors produced by upstream genes that are linked to

external cues. Cascades play an important role in a diversity of
cellular processes (23–25), from decision making in development
(26) to quorum sensing among cells (27). We take a coarse-grained
approach, modeling each step of a cascade with a general regula-
tory function that depends on the copy number of the reactant at
the previous step (Fig. 1). Although the method as implemented
describes arbitrary regulation functions, we optimize the infor-
mation transmission in the case of the most biologically simple
regulation function: a discontinuous threshold, in which a species
is created at a high or low rate depending on the copy count of the
species directly upstream. In the next sections, we outline the spec-
tral method and present in detail our findings regarding signaling
cascades.

Method
We calculate the steady-state joint distribution for L chemical
species in a cascade (Fig. 1). The approach we take involves two
key observations: the master equation, being linear,∗ benefits from
solution in terms of its eigenfunctions; and the behavior of a given
species should depend only weakly on distant nodes given the
proximal nodes.

The second of these observations can be illustrated succinctly
by considering a three-gene cascade in which the first gene may
be eliminated by marginalization. For three species obeying s

qs−→
n

qn−→ m as in Fig. 1, we have the linear master equation

ṗsnm = ρ̃[gp(s−1)nm − gpsnm + (s + 1)p(s+1)nm − spsnm]
+ qsps(n−1)m − qspsnm + (n + 1)ps(n+1)m − npsnm

+ ρ[qnpsn(m−1) − qnpsnm + (m + 1)psn(m+1) − mpsnm]. [1]

Here, time is rescaled by the second gene’s degradation rate, so
that each gene’s creation rate (g, qs, or qn) is normalized by its
respective degradation rate; ρ̃ and ρ are the ratios of the first and
third gene’s degradation rate to the second’s, respectively.

To integrate out the first species, we sum over s. We then
introduce gn, the effective regulation of n, by

∑

s

qspnms = pnm

∑

s

qsps|nm ≈ pnm

∑

s

qsps|n ≡ gnpnm. [2]

Here, we have made the Markovian approximation that s is condi-
tionally independent of m given n. Generally speaking, the prob-
ability distribution depends on all steps of the cascade. However,
since there are no loops in the cascades we consider here, we
assume in Eq. 2 that at steady state each species is not affected
by species two or more steps away in the cascade. The validity
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Fig. 1. A schematic representation of a general signaling cascade. Interac-
tions between species of interest may include intermediate processes; we take
a coarse-grained approach, condensing these intermediate processes into a
single effective regulatory function. For example, the regulatory function qn

describes the creation rate of a species with copy count m as a function of
the copy count n of the previous species.

of the Markovian approximation is tested by using both a non-
Markovian tensor implementation of the spectral method and a
stochastic simulation using the Gillespie algorithm (16), as dis-
cussed in supporting information (SI) Appendix. We find that the
approximation produces accurate results for all but the most
strongly discontinuous regulation functions; even in these cases
qualitative features such as modality of the output distribution
and locations of the modes are preserved. Armed with the Mar-
kovian approximation the equation for the remaining two species
simplifies to

ṗnm = gn−1p(n−1)m − gnpnm + (n + 1)p(n+1)m − npnm

+ ρ[qnpn(m−1) − qnpnm + (m + 1)pn(m+1) − mpnm]. [3]

This procedure can be extended indefinitely for a cascade of arbi-
trary length L, in which modules consisting of pairs of adjacent
species are each described by two-dimensional master equations.

The distribution for the first two species is obtained by summing
over all other species, which gives an equation of the same form
as Eq. 3 but with gn = g = constant. If instead the input distribu-
tion is an arbitrary pn, the distribution for the first two species is
still described by Eq. 3, but with gn calculated recursively from pn
via gn = (−npn + gn−1pn−1 + (n + 1)pn+1)/pn with g0 = p1/p0 to
initialize.† Describing the start of a cascade (with arbitrary input
distribution) and describing subsequent steps, both amount to
solving Eq. 3 with gn given by either the recursive equation or
Eq. 2, respectively.

We solve Eq. 3 by defining the generating function (28) G(x, y) =∑
n,m pnmxnym over complex variables x and y.‡ It will prove more

convenient to write the generating function in a state space as
|G⟩ = ∑

n,m pnm|n, m⟩,§ with inverse transform pnm = ⟨n, m|G⟩,
where the states |i⟩ and ⟨i|, for i ∈ {n, m}, along with the inner
product ⟨i|i′⟩ = δii′ , define the protein number basis. With these
definitions, Eq. 3 at steady state becomes 0 = Ĥ|G⟩, where

Ĥ = b̂+
n b̂−

n (n) + ρb̂+
mb̂−

m(n). [4]

Here, we have introduced raising and lowering operators in pro-
tein space (22, 29–32) obeying b̂+

i |i⟩ =| i + 1⟩ − |i⟩ for i ∈ {n, m},
b̂−

n (n)|n⟩ = n|n − 1⟩ − ĝn|n⟩ and b̂−
m(n)|n, m⟩ = m|n, m − 1⟩ −

†The recursion can equivalently be performed in the reverse direction, with gN = 0,
gN−1 = NpN/pN−1, and gn−1 = (gnpn + npn − (n + 1)pn+1)/pn−1, where N is a cut-
off in n. In several test cases we found that reverse recursion is more numerically stable
than forward recursion at large N.

‡Setting x = eik1 and y = eik2 makes clear that the generating function is simply the
Fourier transform.

§G(x, y) can be recovered by projecting onto position space ⟨x, y|, with ⟨x|n⟩ = xn and
⟨y|m⟩ = ym.

q̂n|n, m⟩,¶ and the regulation functions have become operators
obeying ĝn|n⟩ = gn|n⟩ and q̂n|n⟩ = qn|n⟩.

Were the operators b̂−
n (n) and b̂−

m(n) not n-dependent, Ĥ would
be easily diagonalizable. In fact, this corresponds to the uncoupled
case, in which there is no regulation, and both upstream and down-
stream genes undergo independent birth–death processes with
Poisson steady-state distributions. We exploit this fact by work-
ing with the respective deviations of gn and qn from some constant
creation rates ḡ and q̄. Then Ĥ can be partitioned as Ĥ = Ĥ0 +Ĥ1,
where

Ĥ0 = b̂+
n b̄−

n + ρb̂+
mb̄−

m [5]

Ĥ1 = b̂+
n #̂n + ρb̂+

m$̂n, [6]

and we define operators b̄−
n |n⟩ = n|n − 1⟩ − ḡ|n⟩, b̄−|m⟩ =

m|m − 1⟩ − q̄|m⟩, #̂n = ḡ − ĝn, and $̂n = q̄ − q̂n. #̂n and $̂n
capture the respective deviations of gn and qn from ḡ and q̄, and
Ĥ0 is diagonal in the eigenbases |j⟩ and |k⟩ of the uncoupled
birth–death processes at rates ḡ and q̄, respectively∥; specifically
Ĥ0|j, k⟩ = (j+ρk)|j, k⟩. Projecting Eq. 4 onto the eigenbasis yields
the linear equation of motion

(j + ρk)Gjk +
∑

j′
#j−1,j′Gj′k + ρ

∑

j′
$jj′Gj′ ,k−1 = 0, [7]

where Gjk = ⟨j, k|G⟩, #jj′ = ∑
n(ḡ − gn)⟨j|n⟩⟨n|j′⟩, and $jj′ =∑

n(q̄ − qn)⟨j|n⟩⟨n|j′⟩. Eq. 7 exploits the subdiagonal nature of
the k-dependence; it is initialized by using Gj0 = ∑

n pn⟨j|n⟩, then
solved exactly by matrix inversion for each subsequent k. The joint
distribution is retrieved via the inverse transform as

pnm =
∑

jk

⟨n|j⟩Gjk⟨m|k⟩. [8]

One computational advantage is that the overlap integrals ⟨n|j⟩
and ⟨j|n⟩ need only be evaluated explicitly for ⟨n|j = 0⟩ = e−ḡ ḡn/n!
and ⟨j|n = 0⟩ = (−ḡ)j/j!; all other values can be obtained recur-
sively by using the selection rules ⟨n|j + 1⟩ =⟨ n − 1|j⟩ − ⟨n|j⟩ and
⟨j|n + 1⟩ =⟨ j − 1|n⟩ +⟨ j|n⟩.∗∗ The same holds for ⟨m|k⟩, taking
n → m, j → k, and ḡ → q̄. Note that once ḡ and q̄ have been cho-
sen, the calculation can be separated into a preprocessing step,
in which the matrices ⟨n|j⟩, ⟨j|n⟩, and ⟨m|k⟩ are calculated (and
potentially reused at subsequent steps of the cascade or for subse-
quent steps in an optimization), and the actual step of calculating
Gjk via Eq. 7. The choices of ḡ and q̄ can affect the numerical
stability of the method.

By exploiting the basis of the uncoupled system, we have
reduced Eq. 3 to a set of simple linear algebraic equations. Eq. 7,
which dramatically speeds up the calculation without sacrificing
accuracy (cf. Results and SI Appendix). More precisely, we have
turned an N2 × N2 matrix solve (where N is a cutoff in copy
count) into K length-J vector solves (where J and K are cutoffs in
eigenmodes j and k, respectively). The method is applicable for
any input function gn and regulation function qn. Solutions using
other bases and further generalizations to systems with feedback
are outside the scope of the current work. One must take particular
care in applying a Markov approximation when there is feedback,

¶The adjoint operations are ⟨i|b̂+
i = ⟨i − 1| −⟨ i| for i ∈ {n, m}, ⟨n|b̂−

n (n) = (n + 1)⟨n + 1| −
gn⟨n|, and ⟨n, m|b̂−

m(n) = (m + 1)⟨n, m + 1| − qn⟨n, m|.
∥In position space the eigenfunctions are ⟨x|j⟩ = (x−1)j eḡ(x−1) and ⟨y|k⟩ = (y−1)keq̄(y−1).
The operators b̂+ and b̄− raise and lower in eigenspace: b̂+

n |j⟩ =| j + 1⟩ and b̄−
n |j⟩ = j|j − 1⟩

(or ⟨j|b̂+
n = ⟨j − 1| and ⟨j|b̄−

n = (j + 1)⟨j + 1|), and similarly for n → m and j → k.
∗∗The selection rules are derived by starting with ⟨n|b̂+

n |j⟩ or ⟨j|b̂+
n |n⟩ and allowing b̂+

n
to act both to the left and to the right. Alternatively, one may use b̄−

n , obtaining
⟨n + 1|j⟩ = (j⟨n|j − 1⟩ + ḡ⟨n|j⟩)/(n + 1) and ⟨j + 1|n⟩ = (n⟨j|n − 1⟩ − ḡ⟨j|n⟩)/(j + 1), ini-
tialized with ⟨n = 0|j⟩ = (−1)j e−ḡ and ⟨j = 0|n⟩ = 1. We find the latter relations yield
smoother distributions pnm for large cutoffs N and J.

6530 www.pnas.org / cgi / doi / 10.1073 / pnas.0811999106 Walczak et al.



PH
YS

IC
S

since species in a feedback loop will be nonnegligibly dependent
on all other species in the loop if the loop is small enough.

Results
The Spectral Method Is Fast and Accurate. To demonstrate the accu-
racy and computational efficiency of the spectral method (all
numerical procedures in this article are implemented in MAT-
LAB), we compare it with both an iterative numerical solution of
Eq. 3 and a stochastic simulation using the Gillespie algorithm
(16) for a cascade of length L = 2 with a Poisson input (gn = g =
constant) and the discontinuous threshold regulation function

qn =
{

q− for n ≤ n0

q+ for n > n0.
[9]

The spectral method achieves an agreement up to machine pre-
cision with the iterative method in ∼0.01 s, which is ∼1,000 times
faster than the iterative method’s run time and ∼108 faster than
the run time necessary for the stochastic simulation to achieve
the same accuracy; see SI Appendix for details. The huge gain in
computational efficiency over both the iterative method and the
stochastic simulation makes the spectral method extremely useful,
particularly for optimization problems, in which the probability
function must be evaluated multiple times. In the next sections
we exploit this feature to optimize information transmission in
signaling cascades.

Information Processing in Signaling Cascades. Linear signaling cas-
cades are a ubiquitous feature of biological networks, used to
transmit relevant information from one part of a cellular sys-
tem to another (23–27). Information processing in a cascade is
quantified by the mutual information (33), which measures in
bits how much information about an input signal is transmit-
ted to the output signal in a noisy process. For a cascade of
length L, the mutual information between an input species (with
copy number n1) and an output species (with copy number nL)††

is I = ∑
n1,nL

p(n1, nL) log2[p(n1, nL)/p(n1)p(nL)]. In this study
we define the capacity I∗ as the maximum mutual information
over either regulatory parameters, the input distribution, or both.
Depending on the signal-to-noise ratio, a high-capacity cascade
functions either where the input signal is strongest or where the
transmission process is least noisy (34, 35).

We first consider a cascade of length L in which the regulation
function qn is a simple threshold (Eq. 9) with fixed parameters
that are identical for each cascade step. It is worth noting that
while a threshold-regulated creation rate represents the simplest
choice biologically, it is the most taxing choice computationally:
as the discontinuity $ = |q+ − q−| increases, we find both that (i)
a larger cutoff K in eigenmodes is required for a desired accuracy,
and (ii) the accuracy of the Markovian approximation decreases
(SI Appendix). The results herein therefore constitute a stringent
numerical challenge for the spectral method.

We take the input p(n1) to be a Poisson distribution (i.e.,
gn = g = constant). In the extreme cases, when the threshold
is infinite or zero, the output is a Poisson distribution centered at
q− or q+, respectively. Similarly, when the input median is below
or above threshold, the output mean should be biased toward q−
or q+, respectively. For example, in Fig. 2A, ⟨n1⟩ < n0, and the
output distribution is shifted toward q−. This effect is amplified at
each step of the cascade, such that ⟨nL⟩ → q− for large L. Sim-
ilarly, ⟨nL⟩ → q+ for large L when ⟨n1⟩ > n0 (Fig. 2C). When
⟨n1⟩ ∼ n0 (Fig. 2B), the output is balanced between q− and q+;

††Although the spectral method only involves the calculation of joint distributions
between adjacent species in the cascade, the input-output distribution can be obtained
by using p(n1, nℓ) = ∑

nℓ−1
p(n1, nℓ−1)p(nℓ−1, nℓ)/p(nℓ−1), initialized with ℓ = 3 and

run up to ℓ = L. This assumes p(n1|nℓ−1, nℓ) = p(n1|nℓ−1), which at worst (at ℓ = 3) is
equivalent to the Markovian approximation, Eq. 2.

Fig. 2. Transfer functions and noise in a signaling cascade. (A–C) Plots of
input distribution p(n1) (black) and output distributions p(nL) (colors; see
legend) for various cascade lengths L. Input distribution is a Poisson centered
at ⟨n1⟩ = 4 (A), ⟨n1⟩ = n0 = 6 (B), or ⟨n1⟩ = 10 (C). The regulation function
qn for all steps is a threshold (Eq. 9) shown in D (black line with dots), with
parameters q−, q+, and n0 overlaid as dashed lines in A–C. The degradation
rate ratio is ρ = 1, and Eq. 3 is solved by using the spectral method with
q̄ = 10 and ḡ = ⟨gn⟩ for each step in the cascade. (D–F) Transfer functions
(average output ⟨nL⟩) (D), noise (standard deviation of the output σ (nL)) (E),
and mutual information I (F) as functions of average input ⟨n1⟩ for various
cascade lengths L (colors as in A–C). As in A–C, input is Poisson at every ⟨n1⟩;
dashed lines correspond to the specific ⟨n1⟩ values in A, B, and C. (D Inset)
Cooperativity h as a function of L.
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if the discontinuity $ = |q+ − q−| is sufficiently large, the output
is bimodal, as discussed in more detail in the next section.

Mutual information I decreases monotonically with L for all
⟨n1⟩ (Fig. 2F), as required by the data processing inequality (36)
(i.e., one cannot learn more information from the output of an
(L + 1)-gene cascade than one could from an L-gene cascade
with identical regulation, only less). I is maximal for ⟨n1⟩ ∼ n0
which makes intuitive sense, as it corresponds to the input taking
advantage of both rates q− and q+ roughly equally in producing
the output. A simple calculation quantifies this intuition. Approx-
imating the steady-state distribution for the moment as a strict
switch conditional on n0 (i.e., p(nL|n1) = p−(nL) if n1 ≤ n0 and
p(nL|n1) = p+(nL) if n1 > n0 for some distributions p±(nL)), it
follows from the definition of I that

Iswitch = S −
∑

±

∑

nL

p±(nL) log2

[
1 + π∓p∓(nL)

π±p±(nL)

]
, [10]

where S = −∑
± π± log2 π±, π− = ∑

n1≤n0
p(n1) and π+ =∑

n1>n0
p(n1) = 1 − π−. If there is little overlap between p−(nL)

and p+(nL), then Iswitch ∼ S, which is maximal when π− = π+, i.e.,
when the median of the input distribution p(n1) lies at the thresh-
old n0. Additionally, since the maximal value of S (and Iswitch, since
the summand of the second term in Eq. 10 is always nonnegative)
is 1 bit, this calculation also suggests that the capacity of threshold
regulation (in the limit of strict switch-like behavior) is limited to
1 bit. Again, this result is intuitive, as the cascade is only pass-
ing on the binary information of whether particles in the input
distribution are below or above the threshold.

In an experimental setup one might have access to only the mean
response (or “transfer function”), or the variance in response
across cells (or “noise”), of a signaling cascade to its input. Since
our method yields the full distributions, such summary statistics
are readily computed. Despite the sharpness of threshold regu-
lation, the transfer functions are quite smooth even at L = 2
(Fig. 2D). The effect of the intrinsic noise is to smooth out a
sharp discontinuity in creation rates, producing a continuous mean
response. The transfer functions shown are least-squares fit to Hill
functions of the form ⟨nL|n1⟩ = α− + (α+ − α−)(n1)h/[(n1)h +
(kd)h]. As one would expect, for all L, best fit values of α−, α+
are near the rates q− and q+, respectively, and best fit kd values
are near the threshold n0. As L increases, the transfer function
sharpens, and cooperativity h increases (Fig. 2D Inset), due to the
amplified migration of the output to either q− and q+ in longer
cascades (as in Fig. 2 A and C).

The strength of the noise increases with L (Fig. 2E), consistent
with the reduction in I with L (Fig. 2F), and the noise is peaked
at the threshold. The “switch approximation” (Eq. 10) illustrates
the gain in information when the median of the input coincides
with the threshold; the “small noise approximation” (34, 35), how-
ever, illustrates the loss in information when the peak of the input
coincides with the peak of the noise. The trade-off between these
two trends thwarts information transmission with unimodal input
distributions (e.g., those used in Fig. 2) and suggests an input distri-
bution with two or more modes should be able to transduce more
information. Such distributions are the subject of study below, and,
in related work (35, 37) are shown to be the optimal strategy and
to be observed in biology for a regulatory system in which peak
noise and threshold coincide.

Bimodal Output from a Unimodal Input. A striking feature of Fig.
2B is that the unimodal input is converted to a bimodal output for
cascades of length L = 3 or longer. Bimodality can arise from a
system with two genes whose proteins repress each other or from
a single gene whose proteins activate its own expression. Here,
we demonstrate that cascades with sufficiently strong regulation
constitute an information-optimal mechanism for a cell to achieve
bimodality.

Fig. 3. Optimal output modality in cascades with unimodal input. (A) Plots
of optimal input distribution p∗(n1) (black) and optimal output distributions
p∗(nL) (colors; see legend) for different cascade lengths L (optimal input distri-
butions are qualitatively the same; only that for L = 2 is shown), correspond-
ing to regulation functions qn (identical for each step) plotted underneath
(ρ = 1, and solutions used q̄ = 10 and ḡ = ⟨gn⟩). Mutual information I is opti-
mized as a function of the mean g of the Poisson input distribution. Magenta
numbers on plots correspond to magenta points in B. Insets show plots of
average output ⟨nL⟩ vs. cascade length L. In the first column of A, the output
is always unimodal; in the second column, the output is bimodal for cascade
lengths L ≥ L∗ for some L∗ (“persistent” bimodality); in the third column, the
output is bimodal for a range of L values, then unimodal once more for large
L (“localized” bimodality). The first row shows “DC” cascades, in which each
step is up-regulating, and the second row shows “AC” cascades, in which each
step is down-regulating. (B) Phase diagram of optimal output modality as a
function of q− and q+ (n0 = 8). White is unimodal, and color is bimodal, with
color corresponding to L∗. Distinction between persistent (no ‘x’) and local-
ized (‘x’) bimodality is shown up to L = 10. Dashed line separates DC cascades
from AC cascades. (Inset) Capacity I∗ in bits as a function of q− and q+ for the
same data, with L = 2.

Recall that Fig. 2B corresponds to the case where the input dis-
tribution is optimally matched with the regulation function, i.e.,
the bimodal output represents optimal information transmission.
By optimizing over the mean g of a Poisson input distribution,
we find that the most informative output distribution in a cas-
cade with unimodal input can be unimodal or bimodal, depending
on regulatory parameters and the length of the cascade. Fig. 3A
shows examples of regulation functions which produce output
distributions that are unimodal, bimodal for cascades as long or
longer than some L∗ (which we term “persistent” bimodality), and
bimodal for short cascades but unimodal at both initial and final
nodes for longer cascades (which we term “localized” bimodality).

Bimodality is found both in cascades in which each step is down-
regulating, which we call “AC” cascades, and in those in which
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Fig. 4. Design principles of information-optimal cascades. (A) Capacities of
AC and DC cascades. Capacity I∗ vs. average copy count ⟨n⟩ (over all species)
for AC (circles) and DC (plus signs) cascades of different lengths L (color), with
Poisson input distributions. Results were obtained by optimizing the objective
function L over all parameters (q−, q+, n0, and g) for λ = 1 × 10−6 − 3 × 10−2

(n0 is constrained to be an integer, the regulation function is the same for
every step, ρ = 1, and solutions used q̄ = 10 and ḡ = ⟨gn⟩). Lines show con-
vex hulls. (B) Optimal input distributions with different numbers Z of Poisson
distributions. The cascade length is L = 2, the degradation rate ratio is ρ = 1,
and the regulation function qn is plotted; solutions used q̄ = 10 and ḡ = ⟨gn⟩.
The objective function L is optimized with λ = 10−4 over all input parameters
gi and πi . (Inset) Capacity I∗ vs. Z, averaged at each Z over 7 optimizations
with different initial conditions.

each step is up-regulating, which we call “DC” cascades. In DC
cascades, as seen in Fig. 3A i (Inset)–iii (Inset) the average output
either monotonically decreases or monotonically increases with
L. In the former case, since q− < n0, the probability that the
output is below the threshold given that the input is below thresh-
old is large. Such successive regulations drive the probability of
being below the threshold toward 1, successively decreasing ⟨n⟩
at each step in the cascade. In the latter case, since q+ > n0,
the same picture holds, and ⟨n⟩ monotonically increases with L.
Whether the monotonically increasing or decreasing behavior is
the more informative is determined by the relationship among
q+, q−, and n0. In AC cascades, an analogous picture holds but
with alternation: π− < π+ for the even-numbered links (Eq.
10), and the AC condition q− > q+ leads to π+ < π− for
the odd-numbered links, as illustrated in Fig. 3A iv (Inset)–vi
(Inset). These behaviors motivate the names “AC” and “DC,”

analogous to alternating and direct current flow. Performance
of AC and DC cascades is compared in more detail in the next
section.

Fig. 3B shows a phase diagram of optimal output modality as a
function of the rates q− and q+: bimodality is found at high values
of the discontinuity $ = |q+ − q−| (specifically, for $ ! 11 in AC
circuits and $ ! 12 in DC circuits when n0 = 8). Intuitively, since
the weight of the output is distributed between q− and q+ for long
cascades, increasing their separation spreads the weights apart
and creates bimodal distributions. Furthermore, as $ increases,
the bimodality becomes more robust: it goes from localized to per-
sistent, and its onset occurs at a smaller cascade length L∗. Fig.
3B Inset shows that capacity I∗ also increases with $; cascades
with bimodal output therefore have higher capacities than those
with unimodal output. As $ increases, the information transmis-
sion properties of a regulatory cascade are better approximated by
simple switch-like regulation (see Eq. 10). In short, summarizing
the input distribution by π+ and π− is a more informative summary
of the distribution as the regulation becomes more discontinuous.

Channel Capacity in AC/DC Cascades. Our setup provides a way to
ask quantitatively whether a cascade with up-regulating steps (AC)
can transmit information with more or less fidelity than a cas-
cade with up-regulating steps (DC). Since a cell must expend time
and energy to make proteins, a fair comparison between cascade
types can only be made when the species involved in each type
are present in equal copy number. As in ref. 38, we introduce
the objective function L = I − λ⟨n⟩, where I is mutual infor-
mation and ⟨n⟩ = ∑L

ℓ=1⟨nℓ⟩/L is an average copy count over
all species in the cascade. Here, λ represents the metabolic cost
of making proteins, and optimizing L for different values of λ
allows a comparison of AC and DC capacities I∗ at similar values
of ⟨n⟩.

For both AC and DC cascades, I∗ increases with ⟨n⟩ as more pro-
teins are made available to encode the signal,‡‡ and I∗ decreases§§

with L at all ⟨n⟩ (Fig. 4A). Both AC and DC capacities con-
verge to an L-dependent asymptotic value at high copy count, but
DC cascades attain higher capacities per output protein than AC
cascades. The difference is most pronounced at low copy count
(⟨n⟩ " 7), and more pronounced still for longer cascades. The
difference is easily explained: AC and DC cascades of the same
length with the same discontinuity $ = |q+ − q−| have the same
capacity but have different mean numbers of proteins. Recall from
Fig. 3B that large $ leads to high-capacity, bimodal solutions.
The difference between AC and DC cascades is in the place-
ment of their optimal distributions for a given $. We observe
that optimal AC cascades tend to exhibit ⟨n⟩ ! n0, whereas opti-
mal DC cascades tend to exhibit ⟨n⟩ " n0. Ultimately, this allows
DC cascades to achieve the same capacity for the same regula-
tion parameters (Fig. 3B Inset), but use fewer proteins. These
results suggest that DC cascades transmit with more informa-
tion per protein than AC cascades when protein production is
costly.

A Multimodal Input to a Threshold Is No More Informative than a
Bimodal Input. If the first species is governed by more than a sim-
ple birth–death process, the input to a cascade will not be a simple
Poisson distribution. To investigate the role of input multimodal-
ity in information transmission, we consider inputs defined by a

‡‡There is a slight decrease in I∗ with ⟨n⟩ beginning near ⟨n⟩ ≈ 8 that is more pronounced
at higher L. This is likely due to the decrease in accuracy of the Markovian approximation
with increasing $ (see SI Appendix), since large ⟨n⟩ requires large $. Calculations with
the full joint distribution (via stochastic simulation) at L = 3 and 4 give qualitatively
similar results, but with I∗ increasing monotonically with ⟨n⟩.

§§The decrease of I∗ with L is consistent with, but not a direct consequence of, the data
processing inequality (36), as each p∗(n1, . . . , nL) results from a separate optimization
for each subsequent choice of L.
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mixture of Poisson distributions, p(n1) = ∑Z
i=1 πie−gi gn1

i /n1!, (with∑Z
i=1 πi = 1). As before, we expect information to increase with

copy number, and we use the objective function L when optimizing
over the input distribution p(n1).

All optimal input distributions with Z ≥ 2 are bimodal, with
one mode on either side of the threshold (Fig. 4B). When Z is 3 or
more, either all but two πi values are driven by the optimization to
0, or all the gi values with nonzero weights are driven to one of two
unique values. The two modes are roughly equally weighted (i.e.,
π1 ≈ π2 ≈ 0.5), consistent once more with our calculation that the
median of the optimal input distribution falls roughly at the thresh-
old (Eq. 10). As an additional verification, a plot of capacity I∗ vs.
Z in Fig. 4B Inset reveals that I∗ remains constant for Z = 2 and
beyond. A threshold regulation function presents a binary choice,
and the optimal input is a bimodal distribution that equally utilizes
both sides. Last, we point out that the capacities in Fig. 4B Inset
are <1 bit. Even with a bimodal input distribution, a short cascade
(L = 2), and strong regulation functions (i.e., large discontinuities
$), we do not find capacities >1 bit. This is consistent with our
calculation under the approximation of threshold regulation as a
switch (Eq. 10) and with the intuition that a threshold represents
a binary decision.

Conclusions
We have introduced a method, the spectral method, that exploits
the linear algebraic structure of the master equation, and expands

the full problem in terms of its natural eigenfunctions. We have
illustrated our method by probing the optimal transmission prop-
erties of signaling cascades with threshold regulation. We have
shown that sufficiently long cascades with sufficiently strong regu-
lation functions optimally convert a unimodal input to a bimodal
output. A bimodal input is optimal for information transmission
across a threshold, and a multimodal input offers no further pro-
cessing power. Sustained bimodality of the output distribution
requires large discontinuities $ between the production rates
below and above the threshold. The value of $ controls the
maximum information transmitted by a cascade with threshold
regulation in a similar way for cascades of up-regulations (DC)
and cascades of down-regulations (AC), but a DC cascade outper-
forms an AC cascade by using fewer average copies of its species.
We emphasize that the application of the spectral method to sig-
naling cascades represents only a beginning. Variations on the
natural bases in which to expand, and extensions of the method
to other small network topologies, should be the subject of future
studies. More generally, however, we anticipate that the method
will prove useful in the direct solution of a large class of master
equations describing a wide variety of biological systems.
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