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Abstract

Repeat-proteins are made up of near repetitions of 20– to 40–amino acid stretches. These polypeptides usually fold up into
non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent
repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence
and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi–one-dimensional
problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of
the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The
overall folding properties of a complete ‘‘domain’’ (the stability and cooperativity of the repeating array) can be derived
from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the
experimental observables: folding free-energy (DGwater) and the cooperativity of denaturation (m-value), which do not
ordinarily apply for globular proteins. We show how the parameters for the ‘‘coarse-grained’’ description in terms of foldon
spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the
ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to
the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the
experimentally observed folding behavior, we speculate that natural repeat proteins are ‘‘poised’’ at particular ratios of
inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically
relevant conditions, which may be intrinsically related to their biological functions.
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Introduction

Many proteins are nearly periodic. Instead of being formed by

‘apparently random’ amino acid sequences [1], repeat-proteins are

made up of tandem arrays of similar stretches, usually between 20

and 40 amino acids in length [2]. In ‘physiological’ conditions,

these polypeptides fold up into elongated architectures of repeating

structural motifs that stack one upon the next producing extended

superhelical structures ([2] and references therein). Quasi-one

dimensional, these non-globular folds are stabilized only by

interactions within each repeat or between adjacent repeats. In

general there are no obvious contacts between residues distant in

sequence. This seemingly simple architecture contrasts with typical

globular domains in which the polypeptide chain ‘wraps around’

to form multiple sequence-distant interactions. For globular

proteins these sequence-distant interactions often play critical

roles in folding kinetics, and dictate the overall topology of the

protein [3,4]. Repeat proteins, by virtue of their inherent

symmetries both in primary sequence and three dimensional

structure, should have an underlying folding landscape reflecting

these symmetries. The near periodicity of repeat proteins allows a

general description of their energy landscape which can help us

appreciate their biological function.

One natural way to model repeat-protein folding is to coarse-

grain the description of the protein architecture to be that of a

linear array of elementary ‘units’ that interact locally with each

other. Though each unit in such an array is complex, their

simplification yields a description of the low free energy ensembles

as corresponding to those of a classical one-dimensional Ising

magnet [5]. In Ising models, each site is taken to be in one of two

states (i.e.: spin up/spin down; helix/coil, folded/unfolded).

Interaction energies are defined only locally between nearest

neighbors. Owing to its one dimensional connectivity, the

thermodynamic properties of the system can be computed exactly.

More than half a century ago, Zimm and Bragg used this Ising

description to describe the formation of a-helices [6]. In their

model each residue was considered to be able to be ordered in a

helical state of low energy, or be in a coil state of high energy,
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reflecting an ensemble of possible chain orientations. Recently

similar models have been used to describe repeat-protein folding

[7–9]. In this case each repeating segment is taken to be ordered in

a low energy state or to populate a disordered many dimensional

ensemble of high entropy. Clearly this description lumps together

many different substates in which a repeating unit is only partially

ordered. In simpler but somewhat less precise terms, one might say

that we approximate each element as folding as a highly

cooperative unit. The hope is that in some sense other high free

energy states are sufficiently rare as to be unnoticed in the thermal

ensemble. In what sense is this description adequate for the low

free energy ensemble? Also, can we discover the appropriate units

to think of as quasi-independent? Finding such units clearly is

related to the question of the existence of foldons [10],

autonomously folding units which can serve as ‘building blocks’

of protein structures [11].

The most extensive investigations on the folding of repeat-

proteins have focused on the ankyrin (ANK) and the tetratrico-

peptide (TPR) repeat protein families. Most of the natural

members of these families are composed of 4 to 10 repeats, but

sequences coding up to ,50 repeats have been found [12]. The

shorter members with 2 to 7 repeats have been very carefully

characterized in terms of their experimental folding behavior.

Folding repeat-proteins of these lengths appears to follow a two-

state transition, in which only the fully denatured ensemble and a

nearly unique folded state are significantly populated at equilib-

rium ([13,14] and references therein). The experiments along with

simulations based on perfectly funneled landscapes suggest that

this cooperative behavior can be understood if the domains fold up

by a mechanism that is reminiscent of nucleation-propagation

growth [8,15]. Once an initial nucleation takes place, the

individual structural modules of the repeat-protein serially fold

up in a highly cooperative fashion that results in the folding of the

complete ‘domain’. Apparently, as in the helix-coil transition, the

intrinsic stability of the folding elements is low compared to the

free energy of stabilization from forming an ‘interface’ between

neighbors [8,15]. In the helix-coil transition, the Pauling scheme

requires four hydrogen bonds to form an a-helix turn, resulting in

a large nucleation free energy that comes from the necessity to

properly configuring several successive dihedral angles in a

subunit, losing their entropy before hydrogen bond stabilization

is gained. In the case of repeat-proteins, because of the delicate

balance in each subunit, subtle variations in the interactions in and

between the repeats give the impression of major changes in the

folding landscape [16,17]. Such variations may then ‘decouple’ the

folding of the elements. This balance implies that for sufficiently

long repeating arrays partially folded species become populated.

These species may be characterized at equilibrium [18–20]. In a

sense they provide snapshots of ensembles closely resembling the

fleetingly formed transition state ensemble for globular proteins,

providing information about the fine structure of the energy

landscape, about its symmetry and deviations from it [16,17].

The energy landscape theory of protein folding is based on the

‘principle of minimal frustration’ [21]. This principle states that

the energy of the protein decreases more than what may be

expected by chance as the protein assumes conformations

progressively more like the ground (native) state. In other words,

there is a strong energetic bias towards the native basin that

overcomes both the asperities of the landscape and ultimately the

entropy of the chain. The resulting overall landscape picture is that

of a rough funnel [22]. When energetic frustration is low enough,

the native energy and folding entropy primarily compete. Since

these mainly depend on protein topology, topology becomes a key

factor governing folding reactions. It has been shown that the

structures of transition state ensembles [23,24], the existence of

folding intermediates [25], dimerization mechanisms [26], and

domain swapping events [27] are often well predicted in models

where energetic frustration has been removed and topological

information of the native state is the sole input. Still, inhomoge-

neity in the native contacts energetics, non-native interactions and

the residual local frustration present in the native ensemble do

contribute to the functional characteristics of proteins, ‘molding’

the roughness that underlies the detailed protein dynamics [28,29].

The internal symmetries of repeat-proteins suggest that the overall

folding properties of a complete ‘domain’ (the stability and

cooperativity of the array) may be derived from a microscopic

description of the energy balance within each folding element and its

interactions with its neighbors. Furthermore, the minimal frustration

principle suggests that ‘‘on average’’ these interactions can be

inferred from knowledge of the protein topology. However, the

paucity of contacts in interfaces can give significant fluctuations.

Here, we study how an ‘Ising-like’ description in terms of foldon

spin variables for the repeat-containing proteins can be obtained

from a more fundamental model based on perfectly funneled energy

landscapes. The parameters of the description follow to a first

approximation from the protein topology. By explicitly transforming

from this more detailed model, we show how an Ising foldon-spin

description for the low free energy states emerges and ultimately

leads to the ability to predict the global folding properties of repeat-

proteins. For illustration we show how the parameters in the Ising

description of the energy landscape of a family of TPR proteins can

be extracted from the elementary interactions between residues. We

find that the parameters in the Ising model, like kinetic barriers for

folding globular proteins, are most strongly a property predictable

from native state topology, although again subtle but important

changes can be made by tuning the sequence. We must emphasize

that the general structure of the energy landscapes of proteins are

robust, but the details of the kinetic routes taken through it depend

on smaller energy scales, associated with inhomogeneities. Small

perturbations may therefore re-route the transitions [30]. The one-

dimensional physics where a single defect can interrupt the

development of other stabilizing interactions, makes the macroscopic

ensembles more sensitive to local details than one usually finds for

Author Summary

Repeat-proteins are coded in repetitions of similar amino
acid stretches. Unlike typical globular domains, repeat-
protein domains fold into elongated superhelical shapes of
stacked elements, stabilized only by interactions within
each repeat or between adjacent repeats. This architecture
allows folding to be treated as a quasi–one-dimensional
problem. We introduce an analytical model that describes
the folding energy landscape of repeat-proteins, based on
a representation in terms of spin variables. This represen-
tation groups together conformations on the basis of the
degree of order in local quasi-independent folding units,
often called foldons. We derive simple relations between
the experimentally observed stability and cooperativity of
denaturation of the whole repeat-domain, which differ
from those found in three-dimensionally connected
globular proteins. Folding simulations on perfectly fun-
neled landscapes reproduce these relations. We document
that these relations are experimentally observed in a
variety of repeat-protein systems. We show the parameters
in the foldon spin description can be predicted on the
basis, largely, of protein topology, reflecting the funneled
energy landscape.

Repeat-Protein Landscapes
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the folding of the three dimensionally connected globular proteins,

where sequence tuning may be less important for geometrically

correct overall folding, but may be critical for function [28,29].

Results/Discussion

Analytical Repeat-Protein Folding Model
Definitions. Repeat proteins may be thought of as a linear

array of structural elements. The low free energy ensembles of

these arrays may be represented as the states of a collection of

elementary folding units. Each unit can assume two macro-states:

folded (F) or unfolded (U). Both macrostates represent ensembles

of atomic level structures. Interaction between nearest neighbors

are most important and depend on whether each unit can be

considered to be folded or not. The two states can be thought of as

foldon spin variables. Hence the free energy of the bulk of the

thermally occupied states can be described with a coarse-grained

one-dimensional Ising model having a Hamiltonian:

H~
XN

j~1

{Tsjdj:U{ei
jdjF

h i
{
XN{1

j~1

es
j,jz1dj,F djz1,F ð1Þ

An unfolded subunit contributes a low free energy because of

the entropy of its available configurations, sj. If the unit is not too

compact we can take its internal energy to be zero. On the other

hand, folded elements have little entropy but have an internal

folding free energy (averaged over the solvent) of ei
j . In the coarse-

grained description, the interaction energies between neighboring

elements are zero when either of the elements is unfolded, but is

equal to a surface energy es
j,jz1 if both elements are folded. Since

the systems we want to treat are linear and finite, the end elements

(or ‘caps’ [31]) must be explicitly treated as having only one

neighbor. The influence of a chemical denaturant can be modeled

as binding with the unfolded elements. This influence can be

described as an increase in the entropy of the system, by allowing

the protein to access a greater configurational space, sj = s0,j+ajxj,

where xj is the denaturant concentration [i.e. urea, guanidine], s0,j

the accessible entropy without denaturant. aj is a denaturation

parameter that describes the susceptibility of a given element to

interact with the denaturant [7]. Within this model a protein can

unfold both as a result of an increase in temperature (T = 1/b), or

by an increase in the concentration of denaturant xj.

Derivations. At the level of most experiments, the

thermodynamics for folding of a repeat protein is usually

quantified by following a spectroscopic signal averaged over the

sample. Often one quotes the overall change in free energy between

the macroscopic thermodynamic states in the absence of chemical

denaturant (DGwater) or the folding temperature (Tf), along with a

cooperativity parameter that describes how rapidly the free energy

changes with denaturant (m). In case of a chemical denaturation,

commonly one speaks of the cooperativity ‘m-value’ usually obtained

assuming a linear extrapolation of the form DGx~DGx
water{mx x½ �

[32]. The m-values are what are called in thermal physics

‘susceptibilities’. These susceptibilities can be written in terms of

correlation functions. For the present model, it is easy to show that

the cooperativity parameter ‘m’ is directly related to the equilibrium

correlation functions Cx,T
ij for the degree of order of the protein. The

appropriate correlation functions are defined by:

Cx
ij~Sdi:F dj:F T{Sdi:F TSdj:F T ð2Þ

if the protein is unfolded by chemical means. If the protein is

unfolded by temperature, the relevant correlation function is:

CT
ij ~ei

j Sdi:F dj:F T{Sdi:F TSdj:F T
� �

z

es
j Sdi:F dj:F djz1:F T{Sdi:F TSdj:F djz1:F T
� � ð3Þ

The corresponding cooperativity parameters are:

mx~
4T

N

X
i,j

ajC
x
ij x~xtj ð4Þ

mT~
4

TN

X
i,j

CT
ij T~Tf

�� ð5Þ

where xt and Tf are the midpoints of the folding transitions,

concentration of denaturant and the folding temperature,

respectively. Intuitively it is easy to see that when units further

apart are more correlated in their macrostate occupation, the protein

thermodynamically responds more strongly to changes in

concentration of denaturant or temperature, i.e.: folding is more

cooperative. The precise correlation function for temperature or

chemical denaturation are different. A three-point correlation

function enters for the susceptibility in temperature denaturation.

Thus, the cooperativity of the transition will appear to be a more

global phenomenon for temperature denaturations (see below).

When end-effects are neglected, i.e. for a translational invariant

system (es
j ~es, ei

j~ei, sj = s) having therefore many repeats, these

expressions become:

mx~
4Ta

N
Sn2

F T{
N2

4

� �
ð6Þ

mT~
4

NTf

ei Sn2
F T{

N2

4

� �
zes SnF niT{SnF TSniTð Þ

� �
ð7Þ

where nF is the number of folded elements and ni is the number of

folded elements that have folded elements as neighbors.

Folding mechanism. We first recall some analytical results

for the case in which all repeating elements are identical and the

protein consists of a large number of repeats. This is what

physicists call a translationally invariant model with periodic

boundary conditions in the large N limit. These yield rather simple

expressions for the global folding susceptibility parameters.

However, natural proteins usually have a relatively small

number of repeats, so the large N analysis is complemented by

numerical evaluations of proteins of finite length in the

appropriate quantities for various regions of the parameter space.

Chemical denaturation. The analytical expression for the

m-value in the large N limit is:

mx~aTeK ð8Þ

where a is the susceptibility of a single element (vide supra) and

K~ bes

2
. We see the protein susceptibility responds exponentially to

changes in inter-repeat interaction energy. For finite systems with

end-effects, the numerical evaluations also show that the global

measurements on finite proteins should depend only slightly on the

internal energetic parameters of the elements, s0 or ei, but that they

are sensitive to the energy of interaction between elements, eS, which

strongly affects them (Figure 1). The exponential dependence on the

interaction energy is evident for small values of the interaction

Repeat-Protein Landscapes
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energy eS, but for finite size proteins the m-value change saturates

(Equation 9), once the correlation spans the whole protein. The

protein cannot become any more cooperative. In the large N limit,

the transition midpoint and the free energy in water are:

xT~
1

a
kBb eizzes

� 	
{s0

� �
ð9Þ

DGx
water~{mxxT&{ eizes{Ts0

� �
ebes=2 ð10Þ

Figure 1 shows the dependence of the free energy and the

apparent cooperativity of a protein of N = 14 units for various

regions of the parameter space. Again, the protein becomes more

stable and more cooperative as es increases. This result can be

physically interpreted as arising from a bigger penalty for having

an unsatisfied interface between elements, so that the protein

behaves more as a single folding domain. As expected, the

extrapolated stability of the protein (DGx
water) does not change with

the capability of the particular residues to binding of the

denaturant molecules (a). Only changing the interaction energy

between elements results in a simultaneous change in the

cooperativity and stability, revealing an intimate coupling between

the two (Figure 1C). On the other hand, changing the properties

internal to individual elements by perturbing a and ei at the same

time, also results in a roughly linear relationship between m and

DGwater (Figure 1C inset). However, in the latter case, the

cooperativity decreases with increasing stability. The energy gain

on folding the individual elements is enough to compensate the

entropy cost of having an unsatisfied interface, the elements

uncorrelate, and the cooperativity breaks down.

Thermal denaturation. The analytical expression for the

appropriate susceptibility in the large N limit is:

mT~
1

Tf

eKt ð11Þ

where Kt = K(Tf), K~ bes

2
and the transition temperature (DGt

water)

is:

Tf ~
eizes

s0zax
ð12Þ

The stability of the protein increases linearly as the effective field

(ei+eS) increases, and shows an inverse relationship with the

entropy of the individual elements and chemical denaturant

activity. This dependence is also seen in the numerical study for a

protein having a small finite number of repeats (Figure 2). The

cooperativity depends on a combination of three competing

energy scales, the temperature and both the energy of formation of

a single element unit ei and of the interfaces eS. If the inter-element

interaction is lower than the internal energies, the cooperativity

and the stability increase with eS (Figure 2). Interestingly, when the

interaction energy is higher than the internal energy balance

within each element, strengthening the interaction between

neighboring elements actually decreases the apparent cooperativ-

ity of the protein folding (Figure 2C). This counter-intuitive result

is not found when monitoring chemical denaturations. The

difference arises from the different forms of the correlation

function Cx,T
ij (Equation 3), entering the thermal denaturation

susceptibilities. As the temperature is increased, the unfolding of

certain elements results in the preferential unfolding of neighbor-

ing domains, since when an element is unfolded it has no means of

interacting with its neighbor, and no possible surface energy gain.

As eS increases, the three body correlations are rare resulting in a

decrease of the overall cooperativity of the system.

The Effect of Mutations
In contrast to the situation for globular proteins, repeat-based

architecture allows large sequence deletions to be made without

severely disrupting the overall fold [7,8]. Such deletions corre-

spond in the present model to a change in N, the number of

folding elements. For a translationally invariant model with no

end-effects, both the analytical results and the numerical

calculations show that larger proteins exhibit both increased

Figure 1. Numerical calculations of the analytical model for a
finite protein of N = 14 undergoing chemical denaturation. (A)
Fraction folded as a function of denaturant (x) at increasing eS (ei = 1.1,
a= 2, s0 = 1 fixed)(black lines) and simultaneously decreasing a and
increasing ei (eS = 3, s0 = 1 fixed) (gray lines). (B) Dependence of the free
energy between the fully folded and the fully unfolded states (DGwater)
for the changes in parameters described in (A). Insert: cooperativity of
the folding transition as a function of the varied parameters. (C)
Relationship between DGwater and m-values for changes in parameters
described in (A).
doi:10.1371/journal.pcbi.1000070.g001
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stability and cooperativity (Equations 6–7) (Figure 3A and 3B).

This pattern directly results from the fact that more elements are

present and that they interact with each other in the same way,

thus more terms contribute to the correlation function. In the case

of chemical denaturations, this results in a constant that leads to a

linear m(DGwater) function, as is experimentally observed (see

below). For thermal denaturations the change in the susceptibility

is low for shorter proteins and becomes exponential as N grows.

Depending on their location in the structure, point mutations

can be modeled as local changes in the internal energy of a

particular element, or the interaction with its neighbors, or both.

We analyze these effects by numerical calculations of a N = 14

protein for which only the parameters for one element are

perturbed, mimicking a site-directed mutation. If the energetic

stabilization of the mutant element is smaller than that of the

others, then both the cooperativity and the stability increase when

the parameter of a given element increases (insets in Figure 3C and

3D). Small changes in either intra-element or inter-element

energetics result in big overall effects. However, these changes

reach a threshold when the local parameter becomes larger than

those that describe the typical energy scales. In this case the

protein does not behave as a single folding unit and ‘splits’ into

folding domains, thus the overall cooperativity decreases (insets to

Figure 3C and 3D). This can be interpreted as a global effect ‘felt’

by the whole protein, a situation that is more drastic when the

number of repeating units is of the order of the correlation length

of the system. In order to pin down the parameter regime for

natural repeat-proteins, we now compare these general results for

the one-dimensional Ising behavior to results obtained from

molecular dynamics folding studies on perfectly funneled land-

scapes and to the experimentally determined folding mechanisms.

Analyzing the Folding by Discrete Molecular Dynamics
Simulations

We study a perfectly funneled folding model. In such a

homogeneous model only a single energy scale enters so the

behavior only depends on the topology and the ratio of T to Tf. In

the residue level representation a protein is treated as a series of

connected beads located at the Ca position of each amino acid.

Only residues which are in contact with each other in the native

state are given a favorable energy, leading to a smooth and

homogeneous funnel-like energy landscape [22].

To illustrate the ideas, we simulate the folding of consensus

TPR proteins (CTPRs) of different lengths. This is a good test case

since high resolution structures are available, making it possible to

evaluate the local energetic frustration of the protein [28]. These

quantitative measures of frustration show that CTPR is unusually

unfrustrated, justifying the use of perfectly funneled models to

capture folding. Also, experiments have been already successfully

interpreted with a simplified Ising-like description [7], which is

also unfrustrated. It is worth noting that even though the sequence

of each of the repeats in the consensus protein is the same, there

are subtle structural differences that influence the number of

contacts made by each repeat, particularly on the end units [33].

The major structural difference is present at the C-terminal repeat

which contains an additional ‘capping’ helix. Based on the crystal

structure of the 3 repeat protein CTPR3 [33] we constructed a

series of proteins for which the terminal repeats are kept constant

and the middle one is repeated from 1 to 6 times, thus constructing

for computational study a family of proteins that have between 3

and 8 repeats. This family has been realized in the laboratory by

Regan et al. [7]. Simulated annealing runs show that the

constructed proteins converge to the TPR fold, as expected for

this topology-based potential (Figure 4A).

Constant temperature runs were carried out at various different

temperatures for each protein and the thermodynamic folding

parameters were extracted by weighted histogram analysis, using

the number of native contacts (Q) as an order parameter [34]. We

noted that as the number of repeats increases, higher temperatures

are needed to reach the unfolded state, that is, the proteins are

more stable (Figure 4B). The shorter proteins display a single peak

in the heat capacity as a function of temperature. This peak

Figure 2. Numerical calculations of the analytical model for a
finite protein of N = 14 undergoing thermal denaturation. (A)
Fraction folded as a function of temperature (T) at increasing eS (ei = 0.5,
a= 2, s0 = 8 fixed)(black solid lines), increasing ei (eS = 2.5, s0 = 8 fixed)
(gray lines) and decreasing s0 (eS = 2.5, ei = 0.5 fixed) (black dashed lines).
(B) Dependence of the transition temperature between the fully folded
and the fully unfolded states (Tf) for the changes in parameters
described in (A). Insert: cooperativity of the folding transition as a
function of the varied parameters. (B) Relationship between Tf and m-
values for changes in parameters described in (A).
doi:10.1371/journal.pcbi.1000070.g002

Repeat-Protein Landscapes
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becomes broader and moves to higher temperature as the protein

grows larger (Figure 4B). For proteins longer than six repeats a

second peak can be distinguished. The shorter proteins conform

more closely to a phenomenological two-state like behavior in

which at any time mainly the fully folded or fully unfolded

configurations are present. The decrease in cooperativity with

increasing length is expected from the analytical model presented

above only if the energetic parameters for the repeats are not

homogeneous. To test this, we deleted the terminal repeats and

strictly conserved the central ones, thus having a set of fully

homogeneous proteins of increasing length. Following the same

simulation and analysis protocol as before, we note that as the

number of repeats increase, higher temperatures are needed to

reach the unfolded state, but in this case the peak of heat capacity

as a function of temperature becomes sharper (Figure 4C). Thus,

as predicted for a strictly homogeneous protein, both stability and

cooperativity increase with length.

To qualitatively compare the simulation results to the usual

experimental denaturations, we linearly scaled the simulations to a

percentage folded vs. denaturant and fitted the results with the

linear free energy model of a two-state transition that is typically

employed for experimental data analysis [32] (Figure 5A) (see Text

S1). Even for the shorter proteins the residuals of the fits show

deviations, but these deviations would usually go unnoticed

experimentally since a 5% error in the signal easily overcomes

the effects of the low populated, high free energy, intermediates

(Figure 5A, inset). Taking into account the two-state fit as a

reasonable approximation, the extracted stability and cooperativ-

ity parameters shows a linear relationship expected from the Ising

description presented above (not shown).

In the previous section we showed that the folding cooperativity

may be interpreted as a function of the folding correlation of the

individual repeating units. In order to quantify these results and

measure the correlation length of the simulated CTPR proteins,

Figure 3. Effect of mutations on the coarse-grained model. (A) Fraction folded for chemical denaturation as a function of denaturant (x) for
proteins of different length. Insert: Relationship between DGwater and m-values. (eS = 1.4, ei = 1.5, a= 2, s0 = 2 fixed). (B) Fraction folded for temperature
denaturation as a function of T for proteins of different length. Insert: Relationship between Tf and m-values. (eS = 2.1, ei = 0.5, x = 0, s0 = 8). (C) Fraction
folded for chemical denaturation as a function of x for proteins with local perturbations in the eighth repeat as specified in the legend. Insert:
Relationship between DGwater and m-values. (eS = 3.0, ei = 0.5, a= 2, s0 = 1). (D) Fraction folded for temperature denaturation as a function of T for
proteins with local perturbations in the eighth repeat specified in the legend. Insert: Relationship between Tf and m-values (eS = 2.5, ei = 1.5, x = 0,
s0 = 8).
doi:10.1371/journal.pcbi.1000070.g003
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we computed the cross correlation of the folding of each repeat

with every other, for each of the proteins (see Text S1). Figure 5B

shows the cross correlation matrix for the longer 8-repeat protein,

where two main correlation ‘domains’ are distinguished, centered

towards the topological ends. The correlation length was extracted

by fitting the cross correlations evaluated for all the proteins with

the expected exponential decay in distance separation (Figure 5C).

The absolute value of the correlation length is 2.960.3, roughly 3

repeats. Thus, it seems likely that as the number of repeats

increases above the correlation length, the protein can ‘split’ into

separate folding domains with a relatively low energy cost. The

simulations show that the new peak in the heat capacity plot

indeed does appear when the protein sequence is more than two

times the correlation length, and that it corresponds to the folding

of the new ‘domain’ formed by the additional repeats. Moreover,

the overall cooperativity m-value calculated from the cross-

correlations corresponds to the one fitted from the two-state

approximation described above (Figure 5C insert).

Extracting the Folding Parameters from the Molecular
Dynamics Simulations

The residue level folding simulations qualitatively agree with the

results from the analytical treatment of the one-dimensional

reduced model that represents repeating elements as two-state

Figure 4. Molecular dynamic simulations on the folding of TPR proteins using a perfectly funneled topological potential.
Representative structures of the native state of TPR proteins with 3, 5, or 7 repeats obtained after simulated annealing. (A) Heat capacity as a function
of temperature for CTPR proteins of different number of repeats. The lines correspond to the data for proteins with 3 (solid), 5 (dashed), and 7 (dot-
dashed) repeats. Inserts: raw data of the order parameter (Q) as a function of time from representative trajectories close to their respective Tf. (B) Heat
capacity as a function of temperature as in b) but for strictly homogeneous set of TPR proteins.
doi:10.1371/journal.pcbi.1000070.g004
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objects. For quantitative analysis we developed a method for

extracting the internal energetic parameters of each folding unit

and its interactions. To do this we compute from the molecular

dynamics trajectories the probability of occurrence of each

possible folding macro-state as a function of temperature. The

parameters of the reduced model are then fitted to reproduce these

distributions for the residue-level simulations, by minimizing the

Kullback-Leibler divergence between the model probabilities

(pm) and those extracted from the simulation data (ps),

SKL~
P

i

pslog pi
s



pi

m

� 	
. To define the totality of possible folding

states and count them, one must first define boundaries between

the folding elements. It is important to bear in mind that given the

repeating patterns of repeat-proteins, this choice of division into

subunits is not a priori unique. One natural choice is to define the

folding element as the smallest strictly repeating unit in sequence,

which corresponds to a whole TPR repeat. We analyzed the

ensemble of trajectories using this definition, assigning a folding

macro-state to each snapshot (from 000 to 111 in case of CTPR3),

but found that the non-linear fitting was inconsistent and highly

sensitive to the choice of initial parameters. This suggests that

there are multiple minima to the error function. Similar

inconsistencies were also observed for the longer proteins,

suggesting that this initial choice of a quasi-independent ‘folding

element’ was incorrect in the sense that the analytical model

cannot describe the statistics of the low free energy ensembles of

the topology-based model. Looking more carefully at the sampled

structures it became apparent that each repeat can better be

further decomposed into smaller folding units, namely two (or

three in the case of C-terminal repeats) a-helices along with the

interfaces between them. Since the present pure topology based

model is biased to form a-helices because of the dihedral

constraints and the low contact-order, we chose to assign the

foldedness of each element based on the non-helical contacts

formed. We use a cutoff value close to the separatrix of this

projection to assign the microscopic state of each element (Figure

S1). Kajander et. al. also employed a similar decomposition of the

TPR-protein individual a-helices in a homogeneous Ising-like

description of these proteins [7]. Using this choice of fundamental

element, a CTPR3 protein can occupy any of 32 states (00000 to

11111), and the populations of these can be well described with the

one-dimensional model (Figure 6A). We note that while the fitting

method emphasizes the low free energy states, even the macro-

states with very high free energy are well described, indicating that

the model accounts well even for low populated folding

intermediates.

The presented method pins down values for the elementary

folding parameters of the coarse grained Ising description, shown

in Figure 6. The individual intra-element entropy is about 20 kB

with a compensating internal energy in the same range. Thus, at

the folding temperature (T = Tf = 1), the free energy of each unit is

near zero or slightly positive, that is to say, a single repeating unit

is unstable by itself. In contrast, the interaction energy is highly

favorable, about 3 kBT. The recurring zigzag patterns of the plots

of Figure 6 indicates that the model indeed captures differences

between the interactions of elements internal to one TPR-repeat

and those of inter-TPR repeats, as expected from the difficulty to

assign the folding unit to the whole TPR repeat. We note that for

longer proteins the interaction energy decays for the units located

towards the center. Apparently this is the location where ‘cracks’

are more likely to occur, as observed directly from examining

configurations sampled in the molecular dynamics (Figure 5B).

The value of the parameters for elementary interactions in the

analytical model were determined from temperature denaturations

of the topologically based model, but the values should be

applicable to analyze any denaturation method. We further

applied the analytical model to analyze the chemical denaturation

behavior of the TPR-repeat protein family, and quantitatively

compare the predicted parameters to the experimentally observed

values. In making this mapping, there are two input parameters in

the analytical treatment of chemical denaturations that need to be

determined, the experimental folding temperature Tf, and the

susceptibility to denaturant parameter aj. We first treat these as

free parameters and fit their values to minimize the differences in

both the m-value and the DGwater to the experimentally measured

ones. Figure 7A shows the close quantitative agreement between

the experiments and values obtained from the analytical model.

For the free parameters, the values we recover are T = 0.91 Tf, and

aj 1.7 kB [D]21. We can crudely compare this with the apparent

folding temperature of CTPR3 (,355 K) (http://www.yale.edu/

reganlab) and the temperature at which the denaturations were

actually performed (,298 K), then T = 0.84 Tf. In principle, the

susceptibility can be estimated from the difference in solvent

accessible surface area (SASA) between the fully folded and the

fully unfolded states [35]. The m-value estimated from the

Figure 5. Folding simulations using a perfectly funneled topology-based model. (A) Fraction folded as a function of denaturant calculated
from the simulation of a three repeat protein CTPR3. The line corresponds to the best fit to a two-state folding approximation. Inserts: top: residuals
of the fit in the main figure, and residuals if 5% noise is added to the data before fitting. (B) Folding cross correlation of the repeats of CTPR8
calculated from the simulations near the folding temperature. (C) Dependence of the folding cross-correlation with distance separation as calculated
from the MD simulations. The line is the best fit to an exponential decay. Insert: m-values calculated from the two-state approximation and calculated
from the folding cross-correlation function.
doi:10.1371/journal.pcbi.1000070.g005
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crystallographic structure of CTPR3 is 1.5 kcal mol21 [GuHCl]21.

With this value, aj is estimated to be 0.7 (eq. 6), for an

homogeneous repeat-protein, a 2.5 fold difference from the value

recovered from the analytical model. This difference is likely to

arise from the non-additivity of the natural interaction energetics,

that are not explicitly treated in the topological model from which

the parameters for the analytical model were derived (Figure 6).

This parallels the behavior of activation free energies which are

underestimated in purely additive models [36].

We can further apply the coarse-grained model to predict the

experimental behavior of longer TPR proteins, at any experimen-

tal conditions. As examples we show the predicted folding curves

for the chemical denaturation of proteins between 5 and 30

identical TPR repeats (Figure 7). If the temperature is lower than

Tf, it is directly observed that the proteins spontaneously populate

partially folded species over a broad range of denaturant

concentrations (Figure 7B). On the other hand, if the temperature

is slightly higher than Tf, the proteins are readily susceptible to

denaturant, and even partially folded species of the shorter

proteins are populated at zero denaturant concentration

(Figure 7C). We note that this thermodynamic behavior has been

experimentally observed in natural repeat-proteins from both the

ANK and TPR families [18,37].

Since the presented method recovers the values for all the

parameters of the analytical model, we can compute the overall

energy and entropy of every possible macro-state. The resulting

repeat-protein folding free energy landscape is presented in

Figure 8. We use for illustration the example of the shortest three

TPR-repeat protein. The fully unfolded state is at the top of the

funnel, a state that has the highest entropy and the lowest energy

(Figure 8A). At the bottom, the fully folded state has the opposite

contributions. In between there exist several discrete possibilities

corresponding to the folding of different numbers of elements.

Each of these ‘steps’ has a characteristic energy/added entropy

balance, reflecting the fact that the protein is finite and

inhomogeneous. The added entropy is a result of the underlying

degrees of freedom, which we describe within the coarse grained

model. The population of each of the states depends on this precise

balance at any given temperature. At low temperatures, the fully

folded states and states with 4 elements folded (or 1 ‘crack’

introduced) are mostly populated, while at high temperatures the

fully unfolded and the states with one-element folded are

populated (Figure 8B). Right at the folding temperature several

intermediate species become populated, and this distribution need

not be homogeneous (Figure 8B). Each of these intermediate states

will contribute to the overall cooperativity and stability of the

Figure 6. Application of the coarse-grained model to extract local information from the topology-based folding simulations. (A) The
probability of occurrence of every possible folding macro-state at 11 different tempratures near Tf extracted from the simulations (x-axis) or
computed with the coarse-grain model (y-axis) after fitting the elementary parameters. (B–D) Values for the elementary parameters extracted from
fitting the conformational distribution in every macro-state of every protein from the topological folding simulations to the coarse-grained model.
doi:10.1371/journal.pcbi.1000070.g006
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repeat-protein domain, and the spontaneous population of them

might be functionally relevant, as discussed below.

Experimental Observations
Both the one-dimensional model and the native topology-based

perfect funnel simulations presented above show a fundamental

relationship between the stability and the cooperativity of the

folding of repeat-containing proteins. The model predicts that

single site mutations will affect both of these global folding

descriptors simultaneously. In order to test this prediction, we

collected data from the literature for several independent folding

experiments performed on distinct repeating proteins [8,18,38–

40]. As mentioned earlier, the folding profiles for these relatively

short proteins (between 4 and 7 repeats) can usually be

approximated by a two-state folding model, so a single m-value

and the free energy in water is usually reported. Figure 9A shows

the experimental folding parameters for single amino acid

mutations performed on several ankyrin-repeat proteins. Indeed,

a steep relation is found between the two global folding

descriptors, even when the proteins analyzed have different

numbers of repeats, the mutations are not necessarily analogous,

and are distributed along different units. The slope of the m vs. DG

plot is constant for each set of mutants, and we attribute the offset

between them to the fact that the proteins themselves and the

experimental conditions under which they were measured are not

identical, and are expected to change the definition of ‘native’

stability. This indicates that the (de)stabilizing effect of a single

mutation can be explained only in terms of the alteration it causes

to the interactions of the repeat with its immediate neighbors,

modifying the cooperative behavior of the whole system, as

predicted from the analytical model (Figure 3C).

When the same mutations done on a single protein are analyzed

by denaturation with urea or guanidine hydrochloride, the

extracted folding parameters may differ, an effect often attributed

to differences in residual structure of the unfolded state or changes

in the solution conditions (i.e. ionic strength) during denaturation.

Figure 9B shows that the linear relationship between DGwater and

m-value still holds when different denaturants are used to probe

the folding transitions [18]. The change in slope of the plot is

directly related to the change in the denaturation midpoint (xc in

the model), that is expected to change with denaturant. We further

note that the width in the distribution of the data points is different

for each denaturant. This observation is well modeled by a change

in the repeat interaction parameter (eS), suggesting that the

solution conditions modify the interfaces between the repeating

Figure 7. Application of the coarse-grained model to predict
the chemical denaturant induced unfolding. (A) The computed
free energy in water and m-value for the coarse grain model with the
elementary parameters from Figure 6, and T = 0.9147 Tf, a= 1.7 (closed
circles), and the experimentally determined values (open circles). (B)
Folding curves predicted for TPR proteins of different lengths (from 5 to
30), at T = 0.9 Tf. (C) Folding curves predicted for TPR proteins of
different lengths (from 5 to 30), at T = 1.1 Tf.
doi:10.1371/journal.pcbi.1000070.g007

Figure 8. Folding energy landscape of repeat-proteins. (A) A 5-
element repeat-protein folding landscape is shown. Each macrostate is
depicted as function of the number of folded elements, their internal
energy, and added entropy. The population of each possible macro-
state is shown colored according to its free energy. Some of the
macrostates are labeled according to the location of the folded
elements from N to C termini (00000 fully unfolded, 11111 fully folded).
(B) Change in the relative population of each configuration as the
temperature changes.
doi:10.1371/journal.pcbi.1000070.g008
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elements as well as the folding of the elements themselves. In

principle, the detailed thermodynamic contribution of each ‘unit’

can be extracted from experiments by analyzing the effect that

analogous mutations along the repeating domain cause on the

global folding parameters. In the large N limit, the slope of the mx

vs DGx
water plot is cx~

a

kbb



Tf eizesð Þ{s0

� �. In order to

decompose the contributions from these energy scales, the effects

on the cross-correlation of the folding elements of several

independent mutations should be evaluated. Unfortunately, in

the laboratory, temperature unfolding of these proteins is often

irreversible owing to aggregation, limiting the strict quantification

of the thermodynamic profiles at this stage.

Concluding Remarks
Repeat proteins constitute excellent biological systems for which

simple physical folding models can be directly evaluated. In

contrast to globular domains they lack interactions distant in

sequence and have fairly regular architectures. This features

greatly simplifies the coarse-graining of the interactions internal to

and between the folding elements. The Ising model was originally

conceived as a description of magnetism in crystalline materials,

and has been applied to model phenomena as diverse as the

freezing and evaporation of liquids, the behavior of glassy

substances, flocking birds, neural networks, and the folding of

protein secondary structures. Recently this type of model has been

also applied to describe the experimental folding of repeat proteins

(for a recent review see [2]). Here, we have shown how some

puzzling features of the folding of repeat proteins when analyzed

viewing them as single cooperative units like globular proteins in

fact follow from their one dimensionality. The finite correlations

intrinsic to one dimensionality yield a direct relationship between

stability and cooperativity of the folding transitions. We have

shown how this relationship arises, and how this relation changes

in different parameter regimes (Figures 1–3). Depending on the

balance between the folding energy of each unit and the

interactions with neighbors, very different behavior can be

obtained when the whole repeating array is evaluated. In which

parameter space do natural repeat-containing proteins exist? It is

experimentally observed that single-site mutations affect both

stability and cooperativity simultaneously in the same direction,

and we show this is most likely a consequence of changing the

interaction energy between repeats. Moreover, from the large

absolute values that the single-site mutations exert on both stability

and cooperativity, we speculate that the natural wild-type proteins

may well be ‘poised’ at particular ratios of inter/intra element

energetics that allows small local perturbations to yield large

effects. The linear relationship between these global parameters is

expected to break down at extreme ratios (Figures 1–3), either

when the correlation length spans the whole repeating array or the

interactions between some elements is low enough to ‘decouple’

them. In line with this prediction, a detailed series of experiments

was recently presented by Street et al showing that the m-value

change upon destabilization saturates when sufficiently large

destabilizations are probed [17]. A local effect is felt globally

because the near interactions play extraordinarily large roles in

stabilizing the repeats, and weak biases can tip the balance to

complete folding [16,41]. It has been observed that single

substitutions that affect local biases (such as helix propensity),

exert profound effects on the overall folding of these domains

[18,40,42].

Modeling folding cooperativity is functionally relevant and was

previously addressed in lattice and off-lattice models of globular

proteins [43,44]. In the model presented here, the folding

cooperativity can be directly related to the correlation length of

the repeating array, and this in turn is a function of the local

interaction parameters. Taking the native TPR topology as an

example, we have shown that the m-value derived from the 2-state

approximation corresponds to the cooperative parameter derived

from the one-dimensional description (Figure 5). Within the 2-state

approximation it is the relative population of spectroscopically

indistinguishable folding intermediates that affects the m-value

determination. We found a correlation length of 3 repeats. It is

probably not a coincidence that this seems to be also the smallest

functional unit for TPRs, found via bioinformatic analysis [45].

Figure 9. Experimental observations of the effect of single
point mutants on the overall folding behavior. (A) Folding
parameters determined by urea denaturation of various mutants of
ankyrin repeat proteins, upon fitting to two-state models [8,18,38–40].
(B) Folding parameters determined by urea (closed circles) or
guanidinum hydrochloride (open circles) denaturation of various
mutants of IkB-a, upon fitting to two-state model [18].
doi:10.1371/journal.pcbi.1000070.g009
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This correlation length has also been directly measured by NMR

[46]. As the protein grows larger, the repeating array is more likely

to tolerate ‘cracks’ and the folding at either end may become

anticorrelated. If the protein is sufficiently large the energy of the

fully folded state needs to be so favorable (or the temperature so

low), that partially cracked species will become dominant under

physiologically relevant conditions. There are at least three

examples for which partially folded species have been experimen-

tally characterized in repeat-proteins [18,19,42]. The largest

repeat protein characterized to date is D34 a 12-ankyrin repeat

fragment of the AnkyrinR protein. This fragment populates

partially folded species and subtle perturbation of the repeat

energetics has been shown to ‘mold’ the ensembles [19].

Repeat-proteins, as any other natural protein, are unlikely to

function alone, without interacting with other macromolecules.

We envision that many more natural repeat-proteins will show this

relative ‘instability’ of certain parts of the array, since it may be

functionally indispensable to undergo folding transitions upon

binding, as in the case for IkBa and Notch [47,48]. Our

observations describe how changing the stability of a single

repeating element (by posttranslational modifications or binding of

other macromolecules) would affect the behavior at a distant site,

providing a coupling mechanism that can transmit allosteric

signals to long distances within a single repeating array.

Methods

Numerical Methods
The numerical evaluations of the coarse-grained model as well

as the fitting procedures were performed using in-house Matlab

scripts, available upon request.

Perfectly Funneled Folding Simulations
The simulations were performed with a topological CÆ - based

Gõ model, that takes into account only interactions present in the

native structure and therefore does not include energetic

frustration. Details of the model have been previously described

when simulating the folding of other repeat-containing proteins

[15]. Here, the high resolution structures of CTPR3 protein was

used as a starting point (PDB id code: 1NA0). The parameters

(contacts and dihedrals) of the central TPR repeat of this protein

were repeated from 1 to 6 times, and the end-repeats were

conserved, generating a family of 3 to 8 CTPR-like proteins. For

generating the potential for fully homogeneous TPR-proteins, only

the central TPR repeat of CTPR3 was repeated 3, 5, or 7 times.

Further details can be found in the supplementary material (Text

S1 and Figure S1).

Graphical Representations
Proteins were visualized using VMD [49]. All other graphical

representations were done using Matlab and Kaleidagraph.

Supporting Information

Figure S1 Folding free energy surfaces of individual elements

from a repeat-protein. The free energy surfaces of the elements of

the simulated CTPR3 protein are plotted as a function of the

intra-element native contacts (Qi) versus the total number of native

contacts (Qt). Each element is defined as the set of all non intra-

helical native contacts each TPR helix makes. The color scale

represents the free energy calculated at the folding temperature

and is in units of e. Mainly two low free energy states are

distinguished in every case. The line makes the cut-off value used

to assign the folding status of each element (see main text).

Found at: doi:10.1371/journal.pcbi.1000070.s001 (2.57 MB TIF)

Text S1 Supplementary text. Text contains details of the

methods used.

Found at: doi:10.1371/journal.pcbi.1000070.s002 (0.09 MB

DOC)

Acknowledgments

We thank Jacob Stevenson for stimulating discussions and his matlab

expertise.

Author Contributions

Conceived and designed the experiments: DF AW EK PW. Performed the

experiments: DF AW. Analyzed the data: DF AW EK PW. Wrote the

paper: DF AW PW.

References

1. Weiss O, Jimenez-Montano MA, Herzel H (2000) Information content of

protein sequences. J Theor Biol 206: 379–386.

2. Kloss E, Courtemanche N, Barrick D (2008) Repeat-protein folding: new

insights into origins of cooperativity, stability, and topology. Arch Biochem
Biophys 469: 83–99.

3. Ivankov DN, Garbuzynskiy SO, Alm E, Plaxco KW, Baker D, et al. (2003)

Contact order revisited: influence of protein size on the folding rate. Protein Sci

12: 2057–2062.

4. Chavez LL, Onuchic JN, Clementi C (2004) Quantifying the roughness on the
free energy landscape: Entropic bottlenecks and protein folding rates. J Am

Chem Soc 126: 8426–8432.

5. Feynman RP (1998) Statistical Mechanics: A Set of Lectures. Cambridge,

Massachusetts: Perseus Books Group.

6. Zimm BH, Bragg JR (1959) Theory of the phase transition between helix and

random coil in polypeptide chains. J Chem Phys 31: 526–535.

7. Kajander T, Cortajarena AL, Main ER, Mochrie SG, Regan L (2005) A new

folding paradigm for repeat proteins. J Am Chem Soc 127: 10188–

10190.

8. Mello CC, Barrick D (2004) An experimentally determined protein folding

energy landscape. Proc Natl Acad Sci U S A 101: 14102–14107.

9. Wetzel SK, Settanni G, Kenig M, Binz HK, Pluckthun A (2008) Folding and

unfolding mechanism of highly stable full-consensus ankyrin repeat proteins.

J Mol Biol 376: 241–257.

10. Panchenko AR, Luthey-Schulten Z, Wolynes PG (1996) Foldons, protein

structural modules, and exons. Proc Natl Acad Sci U S A 93: 2008–2013.

11. Panchenko AR, Luthey-Schulten Z, Cole R, Wolynes PG (1997) The foldon

universe: a survey of structural similarity and self-recognition of independently

folding units. J Mol Biol 272: 95–105.

12. Bjorklund AK, Ekman D, Elofsson A (2006) Expansion of protein domain

repeats. PLoS Comput Biol 2: e114.

13. Barrick D, Ferreiro DU, Komives EA (2008) Folding landscapes of ankyrin

repeat proteins: experiments meet theory. Curr Opin Struct Biol.

14. Main ER, Lowe AR, Mochrie SG, Jackson SE, Regan L (2005) A recurring

theme in protein engineering: the design, stability and folding of repeat proteins.
Curr Opin Struct Biol 15: 464–471.

15. Ferreiro DU, Cho SS, Komives EA, Wolynes PG (2005) The energy landscape
of modular repeat proteins: topology determines folding mechanism in the

ankyrin family. J Mol Biol 354: 679–692.

16. Ferreiro DU, Komives EA (2007) The plastic landscape of repeat proteins. Proc

Natl Acad Sci U S A 104: 7735–7736.

17. Street TO, Bradley CM, Barrick D (2007) Predicting coupling limits from an

experimentally determined energy landscape. Proc Natl Acad Sci U S A 104:

4907–4912.

18. Ferreiro DU, Cervantes CF, Truhlar SM, Cho SS, Wolynes PG, et al. (2007)

Stabilizing IkappaBalpha by ‘‘Consensus’’ Design. J Mol Biol 365: 1201–1216.

19. Werbeck ND, Itzhaki LS (2007) Probing a moving target with a plastic unfolding

intermediate of an ankyrin-repeat protein. Proc Natl Acad Sci U S A 104:
7863–7868.

20. Tripp KW, Barrick D (2007) Enhancing the stability and folding rate of a repeat
protein through the addition of consensus repeats. J Mol Biol 365: 1187–1200.

21. Bryngelson JD, Wolynes PG (1987) Spin glasses and the statistical mechanics of
protein folding. Proc Natl Acad Sci U S A 84: 7524–7528.

22. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways,
and the energy landscape of protein folding: a synthesis. Proteins 21: 167–195.

23. Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors:
what determines the structural details of the transition state ensemble and ‘‘en-

Repeat-Protein Landscapes

PLoS Computational Biology | www.ploscompbiol.org 12 May 2008 | Volume 4 | Issue 5 | e1000070



route’’ intermediates for protein folding? An investigation for small globular

proteins. J Mol Biol 298: 937–953.
24. Koga N, Takada S (2001) Roles of native topology and chain-length scaling in

protein folding: a simulation study with a Go-like model. J Mol Biol 313:

171–180.
25. Clementi C, Jennings PA, Onuchic JN (2000) How native-state topology affects

the folding of dihydrofolate reductase and interleukin-1beta. Proc Natl Acad
Sci U S A 97: 5871–5876.

26. Levy Y, Wolynes PG, Onuchic JN (2004) Protein topology determines binding

mechanism. Proc Natl Acad Sci U S A 101: 511–516.
27. Yang S, Cho SS, Levy Y, Cheung MS, Levine H, et al. (2004) Domain swapping

is a consequence of minimal frustration. Proc Natl Acad Sci U S A 101:
13786–13791.

28. Ferreiro DU, Hegler JA, Komives EA, Wolynes PG (2007) Localizing frustration
in native proteins and protein assemblies. Proc Natl Acad Sci U S A 104:

19819–19824.

29. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and
motions of proteins. Science 254: 1598–1603.

30. Oliveberg M, Wolynes PG (2005) The experimental survey of protein-folding
energy landscapes. Q Rev Biophys 38: 245–288.

31. Kohl A, Binz HK, Forrer P, Stumpp MT, Pluckthun A, et al. (2003) Designed to

be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad
Sci U S A 100: 1700–1705.

32. Schellman JA (2002) Fifty years of solvent denaturation. Biophys Chem 96:
91–101.

33. Main ER, Xiong Y, Cocco MJ, D’Andrea L, Regan L (2003) Design of stable
alpha-helical arrays from an idealized TPR motif. Structure 11: 497–508.

34. Cho SS, Levy Y, Wolynes PG (2006) P versus Q: structural reaction coordinates

capture protein folding on smooth landscapes. Proc Natl Acad Sci U S A 103:
586–591.

35. Myers JK, Pace CN, Scholtz JM (1995) Denaturant m values and heat capacity
changes: relation to changes in accessible surface areas of protein unfolding.

Protein Sci 4: 2138–2148.

36. Ejtehadi MR, Avall SP, Plotkin SS (2004) Three-body interactions improve the
prediction of rate and mechanism in protein folding models. Proc Natl Acad

Sci U S A 101: 15088–15093.

37. Cliff MJ, Williams MA, Brooke-Smith J, Barford D, Ladbury JE (2005)

Molecular recognition via coupled folding and binding in a TPR domain. J Mol

Biol 346: 717–732.

38. Venkataramani RN, MacLachlan TK, Chai X, El-Deiry WS, Marmorstein R

(2002) Structure-based design of p18INK4c proteins with increased thermody-

namic stability and cell cycle inhibitory activity. J Biol Chem 277: 48827–48833.

39. Tang KS, Fersht AR, Itzhaki LS (2003) Sequential unfolding of ankyrin repeats

in tumor suppressor p16. Structure 11: 67–73.

40. Bradley CM, Barrick D (2005) Effect of multiple prolyl isomerization reactions

on the stability and folding kinetics of the notch ankyrin domain: experiment and

theory. J Mol Biol 352: 253–265.

41. Luthey-Schulten Z, Ramirez BE, Wolynes PG (1995) Helix-coil, liquid crystal,

and spin glass transitions of a collapsed heteropolymer. J Phys Chem 99:

2177–2185.

42. Bradley CM, Barrick D (2002) Limits of cooperativity in a structurally modular

protein: response of the Notch ankyrin domain to analogous alanine

substitutions in each repeat. J Mol Biol 324: 373–386.

43. Klimov DK, Thirumalai D (1998) Cooperativity in protein folding: from lattice

models with sidechains to real proteins. Fold Des 3: 127–139.

44. Munoz V (2001) What can we learn about protein folding from Ising-like

models? Curr Opin Struct Biol 11: 212–216.

45. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends

Biochem Sci 28: 655–662.

46. Cheng CY, Jarymowycz VA, Cortajarena AL, Regan L, Stone MJ (2006)

Repeat motions and backbone flexibility in designed proteins with different

numbers of identical consensus tetratricopeptide repeats. Biochemistry 45:

12175–12183.

47. Truhlar SM, Torpey JW, Komives EA (2006) Regions of IkappaBalpha that are

critical for its inhibition of NF-kappaB.DNA interaction fold upon binding to

NF-kappaB. Proc Natl Acad Sci U S A 103: 18951–18956.

48. Zweifel ME, Leahy DJ, Hughson FM, Barrick D (2003) Structure and stability of

the ankyrin domain of the Drosophila Notch receptor. Protein Sci 12:

2622–2632.

49. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics.

J Mol Graph 14: 33–38.

Repeat-Protein Landscapes

PLoS Computational Biology | www.ploscompbiol.org 13 May 2008 | Volume 4 | Issue 5 | e1000070


