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The efficient recognition of pathogens by the adaptive immune system relies on the diversity of
receptors displayed at the surface of immune cells. T-cell receptor diversity results from an initial
random DNA editing process, called VDJ recombination, followed by functional selection of cells
according to the interaction of their surface receptors with self and foreign antigenic peptides. To
quantify the effect of selection on the highly variable elements of the receptor, we apply a probabilistic
maximum likelihood approach to the analysis of high-throughput sequence data from the β-chain
of human T-cell receptors. We quantify selection factors for V and J gene choice, and for the length
and amino-acid composition of the variable region. Our approach is necessary to disentangle the
effects of selection from biases inherent in the recombination process. Inferred selection factors differ
little between donors, or between naive and memory repertoires. The number of sequences shared
between donors is well-predicted by the model, indicating a purely stochastic origin of such “public”
sequences. We find a significant correlation between biases induced by VDJ recombination and our
inferred selection factors, together with a reduction of diversity during selection. Both effects suggest
that natural selection acting on the recombination process has anticipated the selection pressures
experienced during somatic evolution.

Significance statement

The immune system defends against pathogens via
a diverse population of T-cells that display different
antigen recognition surface receptor proteins. Recep-
tor diversity is produced by an initial random gene
recombination process, followed by selection for a de-
sirable range of peptide binding. Although recombina-
tion is well-understood, selection has not been quan-
titatively characterized. By combining high through-
put sequencing data with modeling, we quantify the
selection pressure that shapes functional repertoires.
Selection is found to vary little between individuals or
between the naive and memory repertoires. It rein-
forces the biases of the recombination process, mean-
ing that sequences more likely to be produced are also
more likely to pass selection. The model accounts for
“public” sequences shared between individuals as re-
sulting from pure chance.

The T-cell response of the adaptive immune system be-
gins when receptor proteins on the surface of these cells
recognize a pathogen peptide presented by an antigen
presenting cell. The immune cell repertoire of a given
individual is comprised of many clones, each with a dis-
tinct surface receptor. This diversity, which is central to
the ability of the immune system to defeat pathogens, is
initially created by a stochastic process of germline DNA
editing (called VDJ recombination) that gives each new
immune cell a unique surface receptor gene. This initial
repertoire is subsequently modified by selective forces,
including thymic selection against excessive (or insuffi-
cient) recognition of self proteins, that are also stochas-

tic in nature. Due to this stochasticity and the large
T-cell diversity, these repertoires are best described by
probability distributions. In this paper we apply a prob-
abilistic approach to sequence data to obtain quantita-
tive measures of the selection pressures that shape T-cell
receptor repertoires.

New receptor genes are formed by choosing at random
from a set of genomic templates for several sub-regions
(V, D and J) of the complete gene. Insertion and dele-
tion of nucleotides in the junctional regions between the
V and D and D and J genes greatly enhances diversity
beyond pure VDJ combinatorics [1]. The variable region
of the gene lies between the last amino acids of the V
segment and the beginning of the J segment; it codes
for the Complementarity Determining Region 3 (CDR3)
loop of the receptor protein, a region known to be func-
tionally important in recognition [2]. Previous studies
have shown that immune cell receptors are not uniform
in terms of VDJ gene segment usage [3–6], or probabil-
ity of generation [1], and that certain receptors are more
likely than others to be shared by different individuals
[4, 7]. In other words, the statistical properties of the
immune repertoire are rather complex, and their accu-
rate determination requires sophisticated methods.

Over the past few years, advances in sequencing tech-
nology have made it possible to sample the T-cell re-
ceptor diversity of individual subjects in great depth [8],
and this has in turn led to the development of sequence
statistics-based approaches to the study of immune cell
diversity [9, 10]. In particular, we recently quantita-
tively characterized the primary, pre-selection diversity
of the human T-cell repertoire by learning the probabilis-
tic rules of VDJ recombination from out-of-frame DNA
sequences that cannot be subject to functional selection
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and whose statistics can reflect only the recombination
process [1]. After generation, T-cells undergo a somatic
selection process in the thymus [11] and later in the pe-
riphery [12]. Cells that pass thymic selection enter the
peripheral repertoire as ‘naive’ T-cells, and the subset of
naive cells that eventually engage in an immune response
will survive as a long-lived ‘memory’ pool. Even though
we now understand the statistical properties of the ini-
tial repertoire of immune receptors [1], and despite some
theoretical studies of thymic selection at the molecular
level [13, 14], a quantitative understanding of how selec-
tion modifies those statistics to produce the naive and
memory repertoires is lacking.

In this paper, we build on our understanding of the
primitive pre-selection distribution of T-cell receptors to
derive a statistical method for identifying and quantify-
ing selection pressures in the adaptive immune system.
We apply this method to naive and memory DNA se-
quences of human T-cell β chains obtained from periph-
eral blood samples of nine healthy individuals (Fig. 1).
Our goal is to characterize the likelihood that any given
sequence, once generated, will survive selection. Our
analysis reveals strong and reproducible signatures of se-
lection on specific amino acids in the CDR3 sequence, and
on the usage of V and J genes. Most strikingly, we find
significant correlation between the primitive generation
probability of a sequence and the probability it will pass
selection. This suggests that natural selection, which acts
on very long time scales to shape the generation mecha-
nism itself, may have tuned it to anticipate somatic se-
lection, which acts on single cells throughout the lifetime
of an individual. The quantitative features of selection
inferred from our model vary very little between donors,
indicating that these features are universal. In addition,
our measures of selection pressure on the memory and
naive repertoires are statistically indistinguishable, con-
sistent with the hypothesis that the memory pool is a
random subsample of the naive pool.

I. METHODS

We analyzed human CD4+ T-cell β-chain DNA se-
quence reads (60 or 101 nucleotides long) centered around
the CDR3 region. T-cells were obtained from nine in-
dividuals and sorted into naive (CD45RO-) and mem-
ory (CD45RO+) subsets, yielding datasets of ∼200,000
unique naive and ∼120,000 unique memory sequences per
individual, on average. The datasets are the same as
those used in [1] and were obtained by previously de-
scribed methods [15, 16].

In [1] we used the “nonproductive” sequences (those
where either the J sequences are out of frame, or the
CDR3 sequences have a stop codon) to characterize the
receptor generation process. The result of that analysis
was an evaluation of the probability Ppre(~σ) that a VDJ
recombination event will produce a β-chain gene consis-
tent with the specific DNA sequence read ~σ. In this study

we focus instead on the in-frame, productive, sequences
(from both the naive and the memory repertoires) with
the goal of quantifying how the post-selection probabil-
ity distribution on sequences is modified from the origi-
nal distribution Ppre(~σ). In what follows we distinguish
between the read ~σ and the CDR3 region ~τ , the latter
defined to run from a conserved cysteine near the end of
the V segment to the last amino acid of the read (leaving
two amino acids to the conserved Phe). The CDR3 amino
acid sequence can be uniquely read off from each in-frame
sequence read; by contrast, the specific V- and J-genes
responsible for the read may not be uniquely identifiable
(because of the relatively short read length). An unam-
biguous selection effect can be seen by comparing the
length distribution of CDR3 regions between the pre-
selection ensemble and the naive, or memory, datasets
(Fig. 2A): sequences that are longer or shorter than the
mean are suppressed resulting in a more peaked distri-
bution.

For each receptor sequence, we define a selection fac-
tor Q(~σ) that quantifies whether selection (thymic se-
lection or later selection in the periphery) has enriched
or impoverished the frequency of ~σ compared to the
pre-selection ensemble. Since the generation probabil-
ity of sequences varies over many orders of magnitude,
such a comparison is the only way to define selection
strength. Denoting by Ppost(~σ) the distribution of se-
quences in the selected naive or memory pools, we will
set Ppost(~σ) = Q(~σ)Ppre(~σ). Due to the large number of
possible sequences, we cannot sample the post-selection
probability Ppost for each sequence directly from the
data; we need a reduced complexity model to estimate
it. We propose a simple model, summarized in Fig. 1A,
that we we will show captures the main features of selec-
tion:

Q(~τ , V, J) =
Ppost(~τ , V, J)

Ppre(~τ , V, J)
=

1

Z
qL qV J

L∏
i=1

qi;L(ai),

(1)
where V and J denote the choice of V and J segments
in the sequence ~σ, L is the amino-acid length of the
CDR3 specified by the read, (τ1, . . . , τ3L) is CDR3 nu-
cleotide sequence, and (a1, . . . , aL) its amino-acid se-
quence. The factors qL, qi;L(a) and qV J denote, respec-
tively, selective pressures on the CDR3 length, its com-
position, and the associated VJ identities. Note that
the D segment is entirely included in this junctional re-
gion, so selection acting on it is encoded in the qi;L
factors. Z enforces the model normalization condition∑
~τ,V,J Q(~τ , V, J)Ppre(~τ , V, J) = 1.
It is important to understand why we do not write

Q directly as a function of the read ~σ. While (~τ , V, J)
determines ~σ and ~σ determines ~τ , V and J cannot always
be inferred deterministically from the read ~σ. The VJ
assignment of any given read will have to be treated as
probabilistically defined hidden variables. In addition,
because of correlations in Ppre, the q factors cannot be
identified with marginal enrichment factors (so that, for
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FIG. 1: A. T-cell receptor β chain sequences are formed dur-
ing VDJ recombination. Sequences from this probability dis-
tribution, described by Ppre, are then selected with a factor
Q defined for each sequence, resulting in the observed Ppost

distribution of receptor sequences. Selection is assumed to
act independently on the V and J genes, the length of the
CDR3 region and each of the amino acids, ai, therein. B.
A schematic of the fitting procedure: the parameters are set
so that Ppost fits the marginal frequencies of amino acids at
each position, the distribution of CDR3 lengths and VJ gene
choices. Since the latter is not known unambiguously from
the observed sequences, it is estimated probabilistically using
the model itself in an iterative procedure.

example, Pi;L,data(ai)/Pi;L,pre(ai), cannot be set equal to
qi;L(ai)). For all these reasons, we must use a maximum
likelihood procedure to learn the qL, qi;L and qV,J factors
of Eq. 1. We use an expectation maximization algorithm
(EM) that iteratively modifies the q′s until the observed
marginal frequencies (for CDR3 length, amino acid usage
as a function of CDR3 position, and VJ usage) in the
data match those implied by the model distribution Eq. 1
(the pre-selection distribution Ppre being taken as a fixed,
known, input). The procedure is schematically depicted
in Fig. 1B (see the appendices for full details).

One important assumption of the model is that se-
lection factors act independently of each other on the
sequence. Consequently, while the model is fit only to
single point marginal frequencies, and not to pairwise
frequencies. To check the validity of this assumption,
we plot the correlation functions of amino acid pairs in
the model post-selection repertoire vs the observed naive
ones (Fig 2B). These pairwise correlations are well pre-

dicted, even though they are not model inputs. It is
also noteworthy that they are nonzero, even though the
selection model does not take into account the possibil-
ity of interactions in the selection factors qi;L. This is
because the pre-selection distribution does not factorize
over amino acids in the CDR3 region, and has correla-
tions of its own, as shown by the green points of Fig 2B
(note that these pre-selection correlations do not agree
well with those observed in the post-selection data).

Another assumption of our model is that selection acts
at the level of the amino acid sequence, regardless of the
underlying codons. To test this, we learned more general
models where a represented one of the possible 61 codons,
instead of one of the 20 amino acids. We found that
codons coding for the same residue had similar selection
factors (see Fig. 8), except near the edges of the CDR3
where amino acids may actually come from genomic V
and J segments and reflect their codon biases.

To compare the different donors, we learned a distinct
model for each donor, as well as a “universal” model for
all sequences of a given type from all donors taken to-
gether (see the appendices for details). We also learned
models from random subsets of the sequence dataset to
assess the effects of low-number statistical noise.

II. RESULTS

A. Characteristics of selection and repertoire
variability

The length, single-residue, and VJ selection factors,
learned from the naive datasets of all donors taken to-
gether, are presented in Fig. 2A,C,D. The qV J distribu-
tion shows that the different V and J genes are subject to
a wide range of selection factors (note that these factors
act in addition to the quite varied gene segment usage
probabilities in Ppre(~σ)). We looked for correlations be-
tween the selection factors qi;L(a) on amino acids and
a variety of amino-acid biochemical properties [17]: hy-
drophobicity, charge, pH, polarity, volume, and propensi-
ties to be found in α or β structures, in turns, at the sur-
face of a binding interface, on the rim or in the core [18]
(see the appendices for details and references). We found
no significant correlations, save for a negative correlation
with amino acid volume and α helix association, as well
as a positive correlation with the propensities to be in
turns or in the core of an interacting complex (Fig. 13).

To estimate differences between datasets, we calcu-
lated the correlation coefficients between the logs of the
qV J and qi;L(a) selection factors (see Fig. 10). Compar-
ing naive vs. naive, memory vs. memory or naive vs.
memory between donors (see Fig. 3A-C for an example
for qi;L, and Fig. 9 for qV J) gave correlation coefficients
of ≈ 0.9 in log qi;L, while the naive vs. memory reper-
toires of the same donor gave 0.95. To get a lower bound
on small-number statistical noise, we also compared the
factors inferred from artificial datasets obtained by ran-
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FIG. 2: A. CDR3 length distributions, pre- and post-
selection and the length selection factor qL (green). Selection
makes the length-distribution of CDR3 regions in the pre-
selection repertoire more peaked for the naive and memory
repertoires (overlapping). Error bars show standard variation
over 9 individuals. B. Comparison between data and model
of the connected pairwise correlation functions, which were
not fitted by our model. The excellent agreement validates
the inference procedure. As a control, the prediction from the
pre-selection model (in gray) does not agree with the data as
well. C. Values of the inferred amino-acid selection factors
for each amino acid, ordered by length of the CDR3 region
(ordinate) and position in the region (abscissa). D. Values of
the V J gene selection factors.

domly shuffling sequences between donors (see the appen-
dices), yielding an average correlation coefficient of 0.98.
Repeating the analysis for log qV J , we found correlation
coefficients of ≈ 0.8 between datasets of different donors,
0.84 for the naive and memory dataset of the same donor,
all of which must be compared to 0.94 obtained between
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FIG. 3: A.-C. Variability between repertoires. The scatter
between qi;L selection factors between two sample individuals
A and B for naive (A) and memory repertoires (B) compared
to that of memory and naive repertoires for the same individ-
ual (C) shows great similarity between them. See also Fig. 11.
D. The entropy of the pre-selection repertoire (top) is reduced
in the post-selection repertoire (bottom). E.-F. Distribution
of V J (E) and DJ (F) insertions in the pre-selection and
naive repertoires shows elimination of long insertions. Error
bars show standard deviations over 9 donors. The insertion
distributions for the memory repertoire are the same as for
the naive repertoire (see scatter plots in insets).

shuffled datasets. Thus, the observed variability between
donors of qi;L and qV J are small, and consistent with
their expected statistical variability.

We use Shannon entropy, S =
−∑~σ Ppost(~σ) log2 Ppost(~σ), to quantify the diver-
sity of the naive and memory distributions. Entropy is
a diversity measure that accounts for non-uniformity
of the distribution and is additive in independent
components. Since S = log2 Ω when there are Ω equally
likely outcomes, the diversity index 2S can be viewed as
an effective number of states. The entropy of the naive
repertoire according to the model is 38 bits (correspond-
ing to a diversity of ∼ 3.0 · 1011) down from 43.5 bits
in the primitive, pre-selection repertoire (Fig. 3D). This
is a reduction of ∼ 6 bits, or 50-fold in diversity. The
majority of the reduction comes from insertions and
deletions, which accounted for most of the diversity
in the pre-selection repertoire. The entropies of the
memory and naive repertoires are the same, indicating
that selection in the periphery does not further reduce
diversity.
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FIG. 4: Probability of passing selection. A.-B. Ratio of the
distributions of sequence-wide selection factors Q between the
observed sequences and the pre-selection ensemble (red line),
plotted as a function of Q for naive (A.) and memory (B.)
repertoires. The model prediction Ppost(Q)/Ppre(Q) = Q is
shown in black, and the pre-selection and observed distribu-
tions of Q are shown in the insets. The selection ratio saturate
around ≈ 7, which may be interpreted as the maximum prob-
ability of being selected. Naive and memory repertoires show
similar behaviors. C. A cartoon of the effective selection land-
scape captured by our model (red line). Our method does not
capture localized selection pressures (such as avoiding self)
specific to each individual, but captures general global prop-
erties.

Knowing the post-selection distribution of sequences,
we can ask how different features of the recombination
scenario fare in the face of selection. This does not imply
that selection acts on the scenarios themselves —it acts
on the final product— but it is an a posteriori assessment
of the fitness of particular rearrangements. For example,
the distributions of insertions at VD and DJ junctions in
the post-selection ensemble have shorter tails (Fig. 3E-
F), while the distribution of deletions at the junctions
seems little affected by selection (Fig. 11), although large
numbers of deletions are selected against.

B. Selection factor as a measure of fitness

The selection factor Q is a proxy for the probability
of a particular sequence to be selected or amplified, and
sequences with large Q values should thus be enriched in
the observed dataset. To test this, we consider the dis-
tributions of Q both in the pre-selection model, Ppre(Q),
and in the dataset from which Q was learned, Pdata(Q)
(insets of Fig. 4; see the appendices for details on how
the distributions are calculated when V and J are hidden
variables). This approach is very similar to the one used
by Mustonen et al. [19, 20] to characterize the fitness
landscape of transcription factor binding sites.

By construction, the distribution of Q in the post-
selection model satisfies exactly Ppost(Q) = QPpre(Q).
In Fig. 4A-B we plot the ratio Pdata(Q)/Ppre(Q) as a
function of Q, both for the naive and memory models
learned from all donors. We observe that for Q ≤ 5, i.e.
for > 90% of sequences, this ratio is exactly equal to Q —
a validation of our model prediction at the sequence-wide
level. For larger values of Q however, this ratio saturates
to around Qmax ≈ 7.

This plateau may be viewed as a limiting value, above
which selection is insensitive to Q. A similar plateau
was observed in the fitness of transcription factor binding
sites below a certain binding energy [20]. In the case con-
sidered here, the plateau can be rationalized if we assume
that Q is proportional to the probability for a sequence
to be selected, Psel(~σ) = αQ(~σ). Since Psel cannot exceed
one, Q cannot exceed α−1. The average probability of se-
lection is given by

∑
~σ Ppre(~σ)Psel(~σ) = α. The observed

plateau gives a lower bound to the true maximum of Q:
α−1 ≥ Qmax, and thus the average fraction of cells to
pass selection satisfies α ≤ 15%. This can be compared
to estimates [2] for passing positive and negative thymic
selection: 10− 30% for positive selection only, and ≈ 5%
for both. This analysis only includes the β chain, and
including the α chain could further reduce our estimate.

The saturation also seems to indicate that our model
may be too simple to describe the very fit (high Q) se-
quences. Because of its fairly simple factorized structure,
our model can only account for the coarse features of
selection, and may not capture very individual-specific
traits such as avoidance of the self (corresponding to
Q � 1 in localized regions of the sequence space) or
response to pathogens (Q� 1 for particular sequences).
This individual-dependent ruggedness of the fitness land-
scape Q, schematized in Fig. 4C, is probably ignored by
our description, and may be hard to model in general.

To check that the saturation does not affect our infer-
ence procedure, we relearned our model parameters from
simulated data, where sequences were generated from
Ppre and then selected with probability min(Q/Qmax, 1)
(see the appendices for details), and we found that the
model was correctly recovered (Fig. 12).

C. Natural selection anticipates somatic selection

Comparing the pre- and post-selection length distri-
butions in Fig. 2A shows that the CDR3 lengths that
were the most probable to be produced by recombina-
tion are also more likely to be selected. Formally, Spear-
man’s rank correlation coefficient between Ppre(L) and
qL is 0.76, showing good correlation between the prob-
ability of a CDR3 length and the corresponding selec-
tion factor. We asked whether this correlation was also
present in the other sequence features. The histogram
of Spearman’s correlation between the selection factors
qi;L(a) and the pre-selection amino-acid usage Pi;L,pre(a)
for different lengths and positions (i, L) (Fig. 5A) shows
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FIG. 5: Correlations between the pre- and post-selection
repertoires. A. A histogram of Spearman’s correlation coeffi-
cient values between the qi;L(a) selection factors in the CDR3
region and their generation probabilities Pi;L,pre(a) for all i, L
shows an abundance of positive correlations. B. Heatmap of
the joint distribution of the pre-selection probability distri-
bution Ppre and selection factors Q for each sequence shows
the two quantities are correlated. C. Sequences in the ob-
served, selected repertoire (green line) had a higher probabil-
ity to have been generated by recombination than unselected
sequences (blue line). Agreement between the post-selection
model (red line) and data distribution (green line) is a vali-
dation of the model.

a clear majority of positive correlations. Likewise, the
selection factors qV J are positively correlated with the
pre-selection VJ usage PV J,pre (Spearman’s rank correla-
tion 0.3, p < 2 · 10−20).

The correlations observed for each particular feature
of the sequence (CDR3 length, amino acid composition
and VJ usage) combine to create a global correlation
between the probability Ppre(~σ) that a sequence ~σ was
generated by recombination, and its propensity Q(~σ) to
be selected (Spearman’s rank correlation 0.4, p = 0,
see Fig. 5B). Consistent with this observation, the post-
selection repertoire is enriched in sequences that have a
high probability Ppre(~σ) to be produced by recombina-
tion (Fig. 5C). This enrichment is well predicted by the
model, providing another validation of its predictions at
the sequence-wide level.

Taken together, these results suggest that the mech-
anism of VDJ recombination (including insertions and
deletions) has evolved to preferentially produce sequences
that are more likely to be selected by thymic or periph-
eral selection.

D. Shared sequences between individuals

The observation of unique sequences that are shared
between different donors has suggested that these se-
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FIG. 6: Shared sequences between individuals. A. The
mean number of shared sequences between any pair of indi-
viduals compared to the number expected by chance (model
prediction) for one common model for all individuals (red
crosses) and private models learned independently for each
individual (blue crosses). Error bars are standard deviations
from distributions over pairs. The distribution of shared se-
quences between triplets (B.) and quadruplets (C.) of indi-
viduals for the data (black histogram), from common (red
line) and private models (blue line). D. The shared sequences
are most likely to be generated and selected: comparison of
the Ppost post-selection distribution for sequences from the
pre-selection (dotted line), and post-selection repertoires (ac-
cording to the model in gray, and to the data in black), as
well as the sequences shared by at least two donors (model
prediction in magenta, data in red).

quences make up a “public” repertoire common to many
individuals, formed through convergent evolution or a
common source. However, it is also possible that these
common sequences are just statistically more frequent,
and are likely to be randomly recombined in two individ-
uals independently, as previously discussed by Venturi et
al. [6, 7, 21]. In other words, public sequences could just
be chance events. Here we revisit this question by asking
whether the number of observed shared sequences be-
tween individuals is consistent with random choice from
our inferred sequence distribution Ppost.

We estimated the expected number of shared sequences
between groups of donors in two ways: (i) by assuming
that each donor α had its own “private” model learned
from his own sequences or (ii) by assuming that sequences
are drawn from a “universal” model learned from all
sequences together. While the latter ignores small yet
perhaps significant differences between the donors, the
former may exaggerate them where statistics are poor.
For details on how these estimates are obtained from the
models, we refer the reader to the appendices. In Fig. 6A
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we plot, for each pair of donors, the expected number of
shared nucleotide sequences in their naive repertoires un-
der assumptions (i) and (ii), versus the observed number.
The number is well predicted under both assumptions,
the universal model assumption giving a slight overes-
timate, and the private model giving a slight underes-
timate. We repeat the analysis for sequences that are
observed to be common to at least three or at least four
donors (Fig. 6B-C). The universal model predicts their
number better than the private models, although it still
slightly overestimates it.

These results suggest that shared sequences are indeed
the result of pure chance. If that is so, shared sequences
should have a higher occurrence probability than average;
specifically, the model predicts that the sequences that
are shared between at least two donors are distributed
according to Ppost(~σ)2 (see the appendices). We test this
by plotting the distribution of Ppost for regular sequences,
as well as for pairwise-shared sequences, according to the
model and in the naive datasets (Fig. 6D), and find ex-
cellent agreement. In general, sequences that are shared
between at least n individuals by chance should be dis-
tributed according to Ppost(~σ)n. For triplets and quadru-
plets, this model prediction is not as well verified (see
Fig. 14). This discrepancy may be explained by the fact
that such sequences are outliers with very high occur-
rence probabilities, and may not be well captured by the
model, which was learned on typical sequences.

We repeated these analyses for sequences shared be-
tween the memory repertoires of different individuals,
with very similar conclusions, except for donors 2 and
3, and donors 2 and 7, who shared many more sequences
than expected by chance (see Fig. 15). We conclude that
the vast majority of shared sequences occur by chance,
and are well predicted by our model of random recombi-
nation and selection.

III. DISCUSSION

We have introduced and calculated a selection factor
Q(~σ) that serves as a measure of selection acting on a
given receptor sequence ~σ in the somatic evolution of the
immune repertoire. Our approach accounts for the fact
that the pre-selection probabilities of sequences vary over
orders of magnitude.

Using this measure, we show that the observed reper-
toires have undergone significant selection starting from
the initial repertoire produced by VDJ recombination.
We find little difference between the naive and memory
repertoires, in agreement with recent findings showing
no correlation between receptor and T-cell fate [22], as
well as between the repertoires of different donors. This
is perhaps surprising, because the donors have distinct
HLA types (which determine the interaction between
T-cell receptors and peptide-MHC complexes), and we
could expect their positive and negative selective pres-
sures to be markedly different. Besides, memory se-

quences have undergone an additional layer of selection
compared to the naive ones —recognizing a pathogen—
and we could also expect to see different signatures of
selection there. A possible interpretation is that our
model only captures coarse and universal features of se-
lection related to the general fitness of receptors, and
not the fine-grained, individual-specific selective pres-
sures such as avoidance of the self, as illustrated schemat-
ically in Fig. 4C. In other words, our selection factors may
“smooth out” the complex landscapes of specific reper-
toires and fail to capture their rough local properties,
such as would be expected from specific epitopes that
would correspond to very tall peaks or deep valleys in
the landscape of selection factors. To really probe these
specific deep valleys, we need to develop methods based
on accurate sequence counts. Another interesting future
direction would be to see whether at this global level
the signatures of selection are similar between (relatively)
isolated populations. Lastly, comparing data from differ-
ent species (mice, fish), in particular where inbred indi-
viduals with the same HLA type can be compared, would
be an interesting avenue for addressing these issues.

Our results suggest that natural selection has refined
the generation process over evolutionary time scales to
produce a pre-selection repertoire that anticipates the
actions of selection. Sequences that are likely to be elim-
inated and fail selection are not very likely to be produced
in the first place. Because of this “rich become richer” ef-
fect, the diversity of the repertoire is significantly reduced
by selection, by a 50-fold factor in terms of diversity in-
dex. This does not mean that only 2% of the sequences
pass selection. In fact, our results are consistent with
as much as 15% of sequences passing selection. This ap-
parent paradox is resolved by noting that selection, by
keeping clones that were likely to be generated, get rids
of very rare clones that contributed to the large initial
diversity.

Although we did observe sequences that were present
in the repertoires of different donors, we showed using our
model that their number was broadly compatible with
that expected by pure chance. This suggests that the
“public” part of the repertoire is made of sequences that
are just more likely to be randomly produced and se-
lected.

To summarize, our work clearly shows that thymic se-
lection and later peripheral selection modify the form of
the generated repertoire. Our work is a starting point for
a description of a mechanism of the two processes.
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Appendix A: Data

The DNA nucleotide data used in our analysis con-
sists of human CD4+ naive (CD45RO-) or memory
(CD45RO+) β chain sequences from 9 healthy indi-
viduals, sequenced and made available to us by H.
Robins and already used in [1]. Reads are 60 base
pair long for 6 donors and 101 base pair long for 3
donors (individuals 2, 3 and 7) and contain the CDR3
region and neighboring V and J gene nucleotides. All
end at the same position in the J gene, with four nu-
cleotides between this position and the first nucleotide
of the conserved phenylalanine. The data were divided
into out-of-frame reads (non-coding), used to learn the
pre-selection model as described in [1] and in-frame
(coding) reads used in the analysis presented in this
paper. The sequence data we used are available at
http://princeton.edu/~ccallan/TCRPaper/data/.

In our study we limit ourselves to unique sequences.
The experimental procedure and initial assessment of the
quality of the reads were done in the Robins lab following
the procedures described in [15, 23]. Each sequence was
read multiple times, allowing for the correction of most
sequencing errors. The numbers of unique sequences used
in each dataset is shown in Table SI.

Naive Memory

Donor 1 311917 177744

Donor 2 242254 135567

Donor 3 195007 119906

Donor 4 130958 142017

Donor 5 147848 32468

Donor 6 187245 104119

Donor 7 251335 136419

Donor 8 42326 120527

Donor 9 254349 89830

TABLE I: Number of unique coding sequences in each
datasets.

The alignment to all possible V and J genes was done
using the curated datasets in the IMGT database [24].
There are 48 V genes, 2 D genes and 13 J genes plus a
number of pseudo V genes that cannot lead to a function-
ing receptor due to stop codons. We discarded sequences
that were associated to a pseudo-gene as our model only
accounts for coding genes. The germline sequences of the
genes used in our analysis are the same as were used in
[1] to analyze the generative V(D)J recombination pro-
cess. The complete list of gene sequences can be found at
http://princeton.edu/~ccallan/TCRPaper/genes/.

Appendix B: Pre-selection model

The pre-selection, or generative model, assumes the
following structure for the probability distribution of re-

combination scenarios S [1]:

Ppre(S) =P (V )P (D,J)P (insVD)P (insDJ)

P (delV|V )P (dellD,delrD|D)P (delJ|J)

P (s1)P (s2|s1) · · ·P (sinsVD|sinsVD−1)

P (t1)P (t2|t1) · · ·P (tinsDJ|tinsDJ−1),

(B1)

where a scenario is given by the VDJ choice, the
number of insertions insVD, insDJ and the num-
ber of deletions (delV,dellD), (delrD,delJ) at each
of the two junctions, together with the identi-
ties (s1, . . . , sinsVD),(t1, . . . , tinsDJ) of the inserted nu-
cleotides. It is worth noting that the insertions are as-
sumed to be independent of the identities of the genes
between which insertions are made. By contrast, the
deletion probabilities are allowed to depend on the iden-
tity of the gene being deleted. These validity of these
assumptions is verified a posteriori.

Appendix C: Model fitting

1. Maximum likelihood formulation

The model probability to observe a given coding nu-
cleotide sequence is:

Ppost(~τ , V, J) = Q(~τ , V, J)Ppre(~τ , V, J), (C1)

where ~τ = (τ1, . . . , τ3L) is the nucleotide sequence of the
CDR3 (defined as running from the conserved cysteine
in the V segment up to the last amino acid in the read,
leaving two amino acids between the last read amino acid
and the conserved phenylalanine in the J segment), L is
the length of the CDR3, and V and J index the choice
of the germline V and J segments (which completely de-
termine the sequence outside the CDR3 region). The D
segment is entirely absorved into ~τ , and is not explicitly
tracked in assessing selection. The selection factor Q is
assumed to take the following factorized form:

Q(~τ , V, J) =
1

Z
qL qV,J

L∏
i=1

qi;L(ai). (C2)

where ~a = (a1, . . . , aL) is the amino-acid sequence of the
CDR3, and Z is a normalization constant that enforces∑

~τ,V,J

Ppost(~τ , V, J) = 1. (C3)

The probability, Ppre(~τ , V, J), of generating a specific
sequence in a V(D)J recombination event can be ob-
tained from the noncoding sequence reads by the meth-
ods explained in [1]. Specifically, the pre-selection model
gives the probability Ppre(S) of a recombination scenario
S = (V,D, J, insVD, insDJ,delV, . . .) as given by Eq. B1.
A scenario S completely determines the sequence ~τ , but



9

a
CDR3

sequence read (60 or 100 nt)

. . .

V J

data sequences

generated sequences (V and J are known)

ξM

ξ1

1

N

. . .

1

M

V1

VM

J 1

J M

1

N

FIG. 7: Summary of the notations used in this paper for the
sequences. The CDR3 region is defined from the conserved
cysteine around the end of the V segment to the last amino-
acid in the read, leaving two amino acids to the conserved
phenylalanine in the J segment. The nucleotides in the read
are defined as σi, the nucleotides in the CDR3 region as τi
and the amino acids in the CDR3 region as ai. The data
sequences therefore can be defined in terms of ~σ, or their V ,
J genes and ~τ . The generated sequences, with known V and

J genes, are defined in terms of ~ξ for the whole sequence or ~ρ
for only the CDR3.

the converse is not true. The pre-selection probability
for a coding sequence is thus given by

Ppre(~τ , V, J) =
1

pcoding

∑
S→(~τ,V,J)

Ppre(S) (C4)

where we sum over scenarios resulting in a particular
CDR3 sequence ~τ and a particular V, J pair. The nor-
malization factor pcoding ≈ 0.26 corrects for the fact that
a randomly generated sequence is not always productive
(i.e. in-frame and with no stop codon). From this point
on, we regard the initial generation probability of any
specific read as known. When we make statements about
the pre-selection distribution of CDR3 properties, such as
length or amino acid utilization, they are derived from
synthetic repertoires drawn from the above pre-selection
distribution.

We want to infer the parameters qL, qV,J and qi;L(·) of
the model from the observed coding sequence repertoires.
Formally we want to maximize the likelihood of the data
given the model. Unfortunately the sequence reads from
the data are not long enough to fully specify the V and
J segments, so we cannot use Ppost(~τ , V, J) as our raw
likelihood. Instead, we need to write the probability of
observing a given (truncated) read ~σ, of length 60 or 101

nucleotides, depending on the donor:

Ppost(~σ) =
∑

(V,J,~τ)→~σ

Ppost(~τ , V, J). (C5)

where we note again that (~τ , V, J) fully specifies ~σ, while
~σ fully specifies ~τ , but not V and J. Given a dataset of
N sequences, ~σ1, . . . , ~σN (see Fig. 7 for notations), the
likelihood reads:

L(Q) =

N∏
a=1

Ppost(~σ
a). (C6)

Our goal is maximize L with respect to the parameters
qL, qV,J , and qi;L(·) (globally refered to as Q).

2. Expectation maximization

Calculating Ppost(~σ) is computationally intensive.
Given the form of the model, it seems more natural to
work with Ppost(~τ , V, J), but this likelihood involves the
“hidden” variables V and J . To circumvent this problem,
we use the expectation maximization algorithm [25, 26].
This algorithm uses an iterative two-step process, with
two sets of model parameters Q and Q′. The log-
likelihood of the data is calculated using the set of param-
eters Q′; in the “Expectation” step, this log-likelihood is
averaged over the hidden variables with their posterior
probabilities, which are calculated using the second set
of parameters Q. In the “Maximization” step, this av-
erage log-likelihood is maximized over the first set Q′,
while keeping the second set Q fixed. Then Q is updated
to the optimal value of Q′, and the two steps are repeated
iteratively until convergence.

In practice, starting with a test set of parameters Q,
we calculate, for each sequence of the data, the posterior
probability of a (V, J) pair:

Ppost(Va, Ja|~σa) =
Q(~τa, Va, Ja)Ppre(~τ

a, Va, Ja)∑
V,J Q(~τa, V, J)Ppre(~τa, V, J)

.

(C7)
The log-likelihood, expressed in terms of the hidden vari-
ables V and J , is maximized after averaging over V and
J using that posterior. Specifically we will maximize:

L̂(Q′|Q) =

N∑
a=1

〈logPpost(~τ
a, Va, Ja;Q′)〉Q

≡
N∑
a=1

∑
V a,Ja

Ppost(Va, Ja|~σa;Q) logPpost(~τ
a, Va, Ja;Q′).

(C8)

Here we have added the Q dependencies explicitly be-
cause there are two different parameter sets Q and
Q′. The maximization is performed over Q′, which
parametrizes the log-likelihood itself, while keeping Q,
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which parametrizes how the average is done over the hid-
den variables, constant. After each maximization step we
substitute:

Q← argmaxQ′L̂(Q′|Q), (C9)

and iterate until convergence. This procedure is guaran-
teed to find a local maximum of the likelihood L(Q).

3. Equivalence with fitting marginal probabilities

The expectation-maximization step can be simplified
by noting that at the maximum, derivatives vanish:

∂L̂(Q′|Q)

∂Q′
= 0. (C10)

Precisely, we take derivatives with each of the param-
eters, qL, qV J etc. and set them to zero. Since
Ppost(~τ , V, J) is naturally factorized in the Q parameters,

we obtain simple expressions, e.g. ∂L̂/∂ log q′L = 0 gives:

N∑
a=1

∑
V a,Ja

Ppost(Va, Ja|~σa;Q)

(
δLa,L −

∂ logZ

∂ log q′L

)
= 0,

(C11)
where δa,b is Kronecker’s delta function. The term in the
sum gives the total number of sequences in the data with
length L. Besides we have:

∂ logZ

∂ log q′L
=
∑
~τ,V,J

δL(~τ),LPpost(~τ , V, J ;Q′) = Ppost(L;Q′).

(C12)
Hence the maximality condition simply becomes:

Pdata(L) = Ppost(L;Q′), (C13)

i.e. that the length distribution of the model must be
equal to that of the data. Similarly, maximizing with
respect to qi;L(ai) entails that single amino-acid frequen-
cies at a given position are matched between data and
model:

Pi;L,data(ai) = Pi;L,post(ai;Q
′). (C14)

The condition for qV J is slightly different, because we do
not directly have the frequencies of V and J in the data.
This is replaced by their expected frequency under the
posterior Ppost(Va, Ja|~σa) taken with parameters Q:

1

N

N∑
a=1

Ppost(V, J |~σa;Q) = Ppost(V, J ;Q′), (C15)

where again the left-hand side is the empirical distribu-
tion of V and J (indirectly estimated with the help of the
model with parameters Q), and the right-hand side is the
model distribution of the same quantities (estimated with

parameters Q′, which are then varied to achieve equal-
ity with the data estimate). The approach of iteratively
adjusting model parameters to match a corresponding
set of data marginals is a conceptually clear and com-
putationally effective implementation of the expectation
maximization algorithm.

4. Gauge

As defined above, the model is degenerate: for each
i, L, the factors qi;L(a) and Z may be multiplied by a
common constant without affecting the model. We need
to fix a convention, or gauge, to lift this degeneracy. We
impose that, for each i, L:

20∑
a=1

Pi;L,pre(a)qi;L(a) = 1. (C16)

where Pi;L,pre(a) is the probability of having amino-acid
a at position i in CDR3s of length L.

5. Numerical implementation

To solve the fitting equations (C13)-(C15) in practice,
we use a gradient descent algorithm:

qL ← qL + ε [Pdata(L)− Ppost(L;Q′)] , (C17)

and similarly for qi;L and qV J . To do this, we
must be able to calculate the marginals Ppost(L;Q′),
Pi;L,post(ai;Q

′) and Ppost(V, J ;Q′) from the model at
each step.

This leaves us with the problem of estimating
marginals in the model, which we do using importance
sampling. Although it is easy to sample sequences from
Ppre by picking a random recombination scenario, sam-
pling from Ppost = QPpre is much harder, as the qi;L, qL
and qV J factors introduce complex dependencies between
the different features of the recombination scenario. To
overcome this issue, we sample a large number M of
(~τ , V, J) triplets from Ppre(~τ , V, J), and, when estimating
Ppost expectation values, weight the contribution of each
sequence with its Q(~τ , V, J) value (this is a particularly
simple instance of importance sampling). The generated
triplets are denoted by [(~ρ1, V1, J1), . . . , (~ρM , VM , JM )],

and the corresponding reads by (~ξ1, . . . , ~ξM ) (see Fig. 7
for notations). The marginal probability distribution of
lengths, for instance, is estimated by

Ppost(L;Q′) ≈
∑M
b=1 δLb,LQ

′(~ρb, Vb, Jb)∑M
b=1Q

′(~ρb, Vb, Jb)
. (C18)

and similar expressions give estimates of Pi;L,post(ai;Q
′)

and Ppost(V, J ;Q′). Since we are optimizing over Q′, the
sequences (~ρb, Vb, Jb) can be generated once and for all at
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the beginning of the algorithm. Then the marginal prob-
abilities are updated according to the modified Q′ using
Eq. C18. Finally, the normalization constant is evaluated
by calculating:

Z ≈ 1

M

M∑
b=1

qLb
qVbJb

Lb∏
i=1

qi;Lb
(abi ). (C19)

so that∑
~τ,V,J

Ppost(~τ , V, J) ≈ 1

M

M∑
b=1

Q(~ρb, Vb, Jb) = 1. (C20)

6. Equivalence with minimum discriminatory
information

The principle of minimum discriminatory information
is to look for a distribution that reproduces exactly some
mean observables of the data, such as position-dependent
amino-acid frequencies, while being minimally biased
with respect to some background distribution. When
the background distribution is uniform, this principle is
equivalent to the principle of maximum entropy.

Taking Ppre as our background distribution, assume
we are looking for the distribution Ppost that satisfies
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FIG. 11: The effects of selection on deletion profiles. Distribu-
tion of V (A), D left-hand side (B), D right-hand side (C),
and J (D) deletions in the pre-selected (black lin e), naive
(colored line) and memory (gray dashed line) repertoires. Er-
ror bars show standard deviation over 9 individuals. Results
using 9 separate models learned for each of the individuals.
The deletion distributions for the memory repertoire are the
same as for the naive repertoire. Selection has a slight effect
on favoring distributions with non-extreme deletion values of
deletions for V and J deletions, and does not have a signifi-
cant effect on D deletions.

Eqs. (C13)-(C15) while minimizing the divergence or rel-
ative entropy with respect to Ppre, defined as:

DKL(Ppost‖Ppre) =
∑
~τ,V,J

Ppost(~τ , V, J) log
Ppost(~τ , V, J)

Ppre(~τ , V, J)
.

(C21)
Solving this problem is mathematically equivalent

to solving the maximum likelihood problem described
above.

Appendix D: Individual, universal and shuffled
donors

We partition the data in three different ways to learn
the model. First, we learn a distinct model for each
donor, and for each of the naive and memory pools. For
each donor, we have a distinct Ppre learned from the out-
of-frame sequences of that donor (although in fact they
differ little from donor to donor as discussed in [1]). Sec-
ond, we pool all the sequences of a given type (naive
or memory) from all nine donors together, and learn a
“universal” or average model. For this we use a mean
Ppre averaged over all nine donors, and then learn Q us-
ing all sequences. Third, to assess the effect of finite-size
sampling in the universal model, we partition the data
from all donors into nine random subsamples of equal
sizes. This way we can estimate how much variability
one should expect from just sampling noise.
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Appendix E: Entropy, distributions of Ppre, Ppost and
Q

To estimate global statistics, such as entropy, from the

model, we draw a large set of sequences (~ξ1, . . . , . . . , ~ξM )
from Ppre, and weight them according to the inferred
(normalized) Q values. Specifically, for each generated
sequence, we estimate its primitive generation probabil-
ity by summing over all the possible scenarios that could
have given rise to it:

Ppre(~ξ
b) =

1

pcoding

∑
S→ξb

Ppre(S) (E1)

where ~ξb is the full nucleotide sequence, including the
CDR3 ~ρb as well as the Vb and Jb segments. The entropy
(in bits) of the selected sequence repertoire is defined as

H[Ppost] = −
∑
~σ

Ppost(~σ) log2 Ppost(~σ) (E2)

and, to include selection effects, we estimate it by

H[Ppost] ≈ −
1

M

M∑
b=1

Q(~ρb, Vb, Jb) log
[
Q(~ρb, Vb, Jb)Ppre(~ξ

b)
]
.

(E3)
The distributions of Ppre, Ppost and Q over the selected

sequences are determined from the same draw of M se-
quences from Ppre, weighted by the normalized selection
factors Q. For example the distribution of logPpre is:

P(logPpre) ≈
1

M

M∑
b=1

Q(~ρb, Vb, Jb)δ
[
logPpre − logPpre(~ξ

b)
]
.

(E4)
Marginal distributions over pairs of amino-acids

(ai, aj) at two positions i and j can also be calculated
using the ~ρb sequences and weighting them with Q. This
can be generalized to arbitrary marginals or statistics.

Appendix F: Shared sequences

The number of shared sequences in a subset of donors
is counted based on the nucleotide sequences. This em-
pirical number can then be compared to two kinds of
theoretical predictions. Either by assuming that the se-
quences of each donor were generated and selected by a

“private” model P
(α)
post, where α denotes the donor, i.e. a

model inferred from the sequences of donor α; or by as-
suming that sequences were generated and selected by a

“common” or universal model P
(u)
post inferred from all se-

quences together. The latter is justified by the fact that
differences between private models are small, and could
reflect spurious noise that would exaggerate differences
between individuals.
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FIG. 12: The saturation of the Pdata(Q)/Ppre(Q) ratio does
not affect the inference of the model. We simulated a
dataset from Ppre and selected sequences with probability
min[Q(~σ)/7, 1]. The plot compares the qi;L(a) selection fac-
tors directly inferred from data (ordinate) to values inferred
from such simulated data (blue dots: simulation). The scat-
ter in these points is compared to the scatter obtained from
learning the selection factors using a random subset of the
data (red dots: sample). The size of the points denotes the
probability Pi;l,data(a) in the data repertoire.

If we assume private models, the expected number of
shared sequences between donors α and β is:

NαNβ
∑
~σ

P
(α)
post(~σ)P

(β)
post(~σ), (F1)

where Nα and Nβ are the numbers of sequences in each
donor dataset. To estimate that number, we collect se-
quences that are shared between the generated datasets

{~ξa} of two (or more) donors, and reweight them by Q:

NαNβ
MαMβ

∑
(~ρ,V,J)∈α∩β

Q(α)(~ρ, V, J)Q(β)(~ρ, V, J), (F2)

where Mα and Mβ are the number of generated sequences
for each donor model, and where the sum is over the se-

quences found in the {~ξa} dataset of both donors. Similar
equations are used for comparing more than two donors.
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A. CC [q i ;L(a) , alpha (a) ]

A 1.29 L 1.30
R 0.96 K 1.23
N 0.90 M 1.47
D 1.04 F 1.07
C 1.11 P 0.52
Q 1.27 S 0.82
E 1.44 T 0.82
G 0.56 W 0.99
H 1.22 Y 0.72
I 0.97 V 0.91

B. CC [q i ;L(a) , beta (a) ]

A 0.90 L 1.02
R 0.99 K 0.77
N 0.76 M 0.97
D 0.72 F 1.32
C 0.74 P 0.64
Q 0.80 S 0.95
E 0.75 T 1.21
G 0.92 W 1.14
H 1.08 Y 1.25
I 1.45 V 1.49

C. CC [q i ;L(a) , turn (a) ]

A 0.78 L 0.59
R 0.88 K 0.96
N 1.28 M 0.39
D 1.41 F 0.58
C 0.80 P 1.91
Q 0.97 S 1.33
E 1.00 T 1.03
G 1.64 W 0.75
H 0.69 Y 1.05
I 0.51 V 0.47

D. CC [q i ;L(a) , surface(a) ]

A 0.065 L 0.063
R 0.059 K 0.080
N 0.053 M 0.016
D 0.074 F 0.029
C 0.015 P 0.054
Q 0.051 S 0.071
E 0.089 T 0.065
G 0.070 W 0.012
H 0.025 Y 0.033
I 0.035 V 0.048

E. CC [q i ;L(a) , rim (a) ]

A 0.047 L 0.052
R 0.068 K 0.105
N 0.062 M 0.017
D 0.071 F 0.021
C 0.015 P 0.052
Q 0.053 S 0.072
E 0.094 T 0.064
G 0.071 W 0.007
H 0.022 Y 0.032
I 0.032 V 0.048

F. CC [q i ;L(a) , core (a) ]

A 0.049 L 0.078
R 0.066 K 0.050
N 0.058 M 0.027
D 0.051 F 0.051
C 0.020 P 0.051
Q 0.051 S 0.057
E 0.051 T 0.064
G 0.060 W 0.022
H 0.034 Y 0.070
I 0.047 V 0.049

Fr
ac

tio
n 

of
 p

os
iti

on
s

G. CC [q i ;L(a) , charge(a) ]

A 0 L 0
R 1 K 1
N 0 M 0
D - 1 F 0
C 0 P 0
Q 0 S 0
E - 1 T 0
G 0 W 0
H 0 Y 0
I 0 V 0

H. CC [q i ;L(a) , pH (a) ]

A 0 L 0
R 2 K 2
N 0 M 0
D - 2 F 0
C - 2 P 0
Q 1 S - 1
E - 2 T - 1
G 0 W 1
H 1 Y - 1
I 0 V 0

−0.5 0 0.5

I. CC [q i ;L(a) , polar (a) ]

A 0 L 0
R 1 K 1
N 1 M 0
D 1 F 0
C 0 P 0
Q 1 S 1
E 1 T 0
G 0 W 1
H 1 Y 1
I 0 V 0

−0.5 0 0.5

J. CC [q i ;L(a) , hydrop(a) ]

A 1.8 L 3.8
R - 4.5 K - 3.9
N - 3.5 M 1.9
D - 3.5 F 2.8
C 2.5 P - 1.6
Q - 3.5 S - 0.8
E - 3.5 T - 0.7
G - 0.4 W - 0.9
H - 3.2 Y - 1.3
I 4.5 V 4.2

−0.5 0 0.5
Spearman’s correlation

K. CC [q i ;L(a) , volume(a) ]

A 67 L 124
R 148 K 135
N 96 M 124
D 91 F 135
C 86 P 90
Q 114 S 73
E 109 T 93
G 48 W 163
H 118 Y 141
I 124 V 105

FIG. 13: Correlation of the qi;L selection factors with several biochemical properties. Each panel shows the histogram, over all
positions and lengths, of Spearman’s correlation coefficient between the qi;L(a) values for a given amino acid and the biochemical
properties of that amino acid. The following biochemical properties are considered (from left to right, top to bottom): preference
to appear in alpha helices (A), beta sheets (B), turns (C) (source for (A-C): Table 3.3 [17]). Residues that are exposed to solvent
in protein-protein complexes (following definitions and data from [18]) are divided intothree groups: surface (interface) residues
that have unchanged accessibility area when the interaction partner is present (D), rim (interface) residues that have changed
accessibility area, but no atoms with zero accessibility in the complex (E) and core (interface) residues that have changed acces-
sibility area and at least one atom with zero accessibility in the complex (F). Rim residues roughly correspond to the periphery
of the interface region, and core residues correspond to the center. Finally we plot the basic biochemical amino acid proper-
ties (source: http://en.wikipedia.org/wiki/Amino acid and http://en.wikipedia.org/wiki/Proteinogenic amino acid):
charge (G), pH (H), polarity (I), hydrophobicity (J) and volume (K). For all properties the actual numerical values used to
calculate the correlations are listed in the inset tables. We see a positive correlation trend with turns and core residues and a
negative correlation trend with the preference of amino acids to appear in alpha helices and volume.
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If we assume a common model, the expected number
of shared sequences reads:

NαNβ
∑
~σ

[P
(u)
post(~σ)]2. (F3)

This can be estimated by:

NαNβ
M

M∑
b=1

P (u)
pre (~ξb)[Q(u)(~ρb, Vb, Jb)]

2, (F4)

where {~ξa} are sequences generated from the mean VDJ

recombination model P
(u)
pre . Similarly, the number of

shared sequences between a triplet of donors α, β, γ is:

NαNβNγ
M

M∑
b=1

[P (u)
pre (~ξb)]2[Q(u)(~ρb, Vb, Jb)]

3, (F5)

and likewise for quadruplets and more.
The expected numbers of shared sequences calculated

above are averages. Their distribution is given by a Pois-
son distribution of the same mean. We use these Poisson
distribution to estimate the error bars in Fig. 6A and
15A, as well as the distributions in Fig. 6B-C and S15B-
C.

If we assume a common model, sequences that are
shared between at least n individuals are distributed ac-
cording to ∝ [P

(u)
post]

n. To explore the statistics of these

sequences, we take our ~ρb sequences generated from P
(u)
pre

and weigh them with [P
(u)
pre (~ρb)]n−1[Q(u)(~ρb)]n. For ex-

ample, to estimate the distribution of logPpost in shared
sequences as in Fig. 6D (for pairs), and Fig. 14 (for
triplets and quadruplets), we calculate:

P(logPpost) ≈
1

M

M∑
b=1

[P (u)
pre (~ξb)]n−1[Q(u)(~ρb, Vb, Jb)]

n

× δ
[
logPpost − logP

(u)
post(

~ξb)
]
.

(F6)

Sampling from shared sequences is equivalent to sam-
pling from the high-probability, large deviation regime of
the distribution. This statement can be made more phys-
ically intuitive by rewriting Ppost as a Boltzmann distri-

bution e−E/T with T = 1 and E = − logPpost. Consider-
ing sequences observed in at least n donors, is equivalent
to sampling from (1/Z(n))e−nE (where Z(n) is a normal-
isation constant), i.e. the Boltzmann distribution with
T = 1/n. Sequences shared between more and more in-
dividuals correspond to lower and lower temperatures,
and thus lower energies and higher probabilities. In the
low temperature regime, the roughness of the landscape
depicted in Fig. 4C is starting to become important, and
may not be well captured by our model, as suggested by
Fig. 14.
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FIG. 14: Model prediction (magenta) and observed (red) dis-
tributions of Ppost in the naive sequences that are shared be-
tween at least three (left) or four (right) donors. The model
discrepancy may be attributed to its failure to capture the
very highly probable sequences.
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FIG. 15: Comparison between data and model for the number
of shared sequences in the memory repertoires, in pairs (A),
triplets (B) and quadruplets (C) of individuals.

Appendix G: Codon model

It is reasonable to assume that selection acts on the
protein structure, at the amino acid level. But each
amino acid can be obtained using a number of differ-
ent codons, which could in principle each have a differ-
ent selection factor. We checked the robustness of our
selection coefficients by learning an alternative model in
which selection acts on codons. We present the results
of this alternative codon model in Fig. 8 on the example
of CDR3 sequences of length 12. We show the qi;L(a) se-
lection factors at each position for each amino acid, and
compare them to the selection factors obtained for the
codons coding for that amino acid. We see that, espe-
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cially in the bulk of the CDR3 sequence, selection at the
level of codons or amino acids are equivalent, proving the
generality of our approach.

Appendix H: Additional effects of selection on
repertoire properties

In the main text we present several repertoire prop-
erties, such as insertion profiles and comparisons of
the qi;L(a) selection factors between naive and memory
repertoires. In Fig. 11 we plot the deletion profiles for
V , J and D-lefthand side and D-righthand side dele-
tions, comparing the distributions for the pre-selection,
naive and memory repertoires. We note that the deletion
profiles for the V and J distributions are more peaked,
favoring intermediate deletion values. However theD dis-
tributions are little affected by selection. Similarly to the
case of insertion distributions shown in in Fig. 3E-F, the
naive and memory distributions appear indistinguishable
within the error bars.

In Fig. 3A-C, the selection factors qi;L(a) acting on
amino acids are compared between individuals and cell
type. Similarly, the selection factors acting on the genes
qV J are statistically indistinguishable between the mem-
ory and naive repertoires for one individual, compared to
the variability between the naive (or memory) repertoires
taken from two sample individuals (see Fig. 9).

To compare the repertoires of individuals as well as
the naive and memory repertoires with each other, we
consider the correlation coefficients between the selec-
tion factors log qi;L, and between the VJ gene selection
factor log qV J , of different individuals (Fig. 10). Correla-
tions between memory and naive repertoires are similar
to those between naive-naive or memory-memory reper-
toires for different individuals; all are a bit smaller than
the correlations between the artificial, shuffled sequence
datasets, where the discrepancy is entirely attributable
to statistical noise. These observations lead us to the
conclusion that at this level of description, the selection
processes that shape the memory and naive repertoires
are very similar with each other and between different
individuals.

Appendix I: Effects of saturation of global selection
factors on the inference procedure

We consider distributions of the selection factor Q in
the pre-selection ensemble Ppre(Q), in the post-selection
ensemble according to the model Ppost(Q), and in the ac-
tual data sequences Pdata(Q). These three distributions
are formally defined as:

Ppre(Q) =
1

M

M∑
b=1

δ
[
Q−Q(~ρb, Vb, Jb)

]
. (I1)

Ppost(Q) =
1

M

M∑
b=1

Q(~ρb, Vb, Jb)δ
[
Q−Q(~ρb, Vb, Jb)

]
(I2)

= QPpre(Q). (I3)

Pdata(Q) =
1

N

N∑
a=1

∑
Va,Ja

Ppost(Va, Ja|~σa)

×δ [Q−Q(~τa, Va, Ja)] (I4)

As can be seen in Fig. 4, the ratio of the distribution
of global selection factors Pdata(Q)/Ppre(Q) saturates for
large values of Q. To make sure that this saturation
does not impair our ability to correctly infer the selection
factors, we simulated a dataset from Ppre and selected
sequences with probability min[Q(~σ)/7, 1] to mimic the
effects of this plateau. We then inferred the selection
coefficients for this artificial dataset. We see that the
saturation does not affect our ability to correctly infer
the selection coefficients (Fig. 12) and the variability in
the inferred qi;L(a) selection factors is of the same order
as from using random subsamples of the original data.

Appendix J: Biochemical correlations

To check for correlations of our inferred qi;L(a) selec-
tion factors with known biochemical properties, we calcu-
lated Spearman’s coefficient between the selection factors
and a number of standard quantities (see Fig. 13 for the
full list). We find that the selection factors do not corre-
late well with most standard properties, such as charge,
hydrophobicity and polarity. However we do find a trend
of positive correlation with amino acids that are likely
to appear in turns (Fig. 13 C) and ones that have been
identified as those that make the core of the interface
in a protein-protein complexes (Fig. 13 F) [18]. We find
a trend of negative correlations with amino acids that
have large volume (Fig. 13 K) and are likely to appear in
alpha helices (Fig. 13 A). These observations are consis-
tent with the fact that structurally CDR3 regions form
loops and bulky amino acids as well as stabilizing alpha
helix-like interactions would interfere with this structure.
Core amino acids are at the center of the interface and
are known to be the main contributors to interface recog-
nition and affinity. On the other hand interface rim and
non-interface (surface) residues, which are both in touch
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to various degrees with the solvent and are not crucial
interface forming elements, show similar non-distinctive

correlation patterns.
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