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Flocking is a typical example of emergent collective behavior,
where interactions between individuals produce collective pat-
terns on the large scale. Here we show how a quantitative micro-
scopic theory for directional ordering in a flock can be derived
directly from field data. We construct the minimally structured
(maximum entropy) model consistent with experimental correla-
tions in large flocks of starlings. The maximum entropy model
shows that local, pairwise interactions between birds are sufficient
to correctly predict the propagation of order throughout entire
flocks of starlings, with no free parameters. We also find that
the number of interacting neighbors is independent of flock den-
sity, confirming that interactions are ruled by topological rather
than metric distance. Finally, by comparing flocks of different sizes,
the model correctly accounts for the observed scale invariance of
long-range correlations among the fluctuations in flight direction.

animal groups ∣ statistical inference

The collective behavior of large groups of animals is an impos-
ing natural phenomenon, very hard to cast into a systematic

theory (1). Physicists have long hoped that such collective beha-
viors in biological systems could be understood in the same way
as we understand collective behavior in physics, where statistical
mechanics provides a bridge between microscopic rules and
macroscopic phenomena (2, 3). A natural test case for this ap-
proach is the emergence of order in a flock of birds: Out of a
network of distributed interactions among the individuals, the
entire flock spontaneously chooses a unique direction in which
to fly (4), much as local interactions among individual spins in
a ferromagnet lead to a spontaneous magnetization of the system
as a whole (5). Despite detailed development of these ideas (6–9),
there still is a gap between theory and experiment. Here we show
how to bridge this gap by constructing a maximum entropy model
(10) based on field data of large flocks of starlings (11–13). We
use this framework to show that the effective interactions among
birds are local and that the number of interacting neighbors is
independent of flock density, confirming that interactions are
ruled by topological rather than metric distance (14). The statis-
tical mechanics models that we derive in this way provide an
essentially complete, parameter-free theory for the propagation
of directional order throughout the flock.

We consider flocks of European starlings, Sturnus vulgaris, as in
Fig. 1A. At any given instant of time, following refs. 11–13, we can
attach to each bird i a vector velocity ~vi and define the normalized
velocity ~si ¼ ~vi∕j ~vij (Fig. 1B). On the hypothesis that flocks have
statistically stationary states, we can think of all these normalized
velocities as being drawn (jointly) from a probability distribution
Pðf ~sigÞ. It is not possible to infer this full distribution directly
from experiments, because the space of states specified by f ~sig
is too large. However, what we can measure from field data is
the matrix of correlations between the normalized velocities,
Cij ¼ h ~si · ~sji. There are infinitely many distributions Pðf ~sigÞ that
are consistent with the measured correlations, but out of all these
distributions, there is one that has minimal structure: It describes
a system that is as random as it can be while still matching the

experimental data. This distribution is the one with maximum
entropy (10).

It should be emphasized that the maximum entropy principle
is not a “modeling assumption;” rather it is the absence of
assumptions. Any other model that accounts for the observed
correlations will have more structure and hence (explicitly or im-
plicitly) assumes something about the nature of the interactions
in the flock beyond what is required to match the data. Of course
the fact that the maximum entropy model is minimally structured
does not make it correct. It could be, for example, that individual
birds set their flight direction by computing a complicated non-
linear combination of the velocities from multiple neighbors,
in which case correlations among pairs of birds would be insuffi-
cient to capture the essence of the ordering mechanism. We view
the maximum entropy model as a powerful starting point, from
which, as we will see, we can generate detailed and testable pre-
dictions.

The maximum entropy distribution consistent with the direc-
tional correlations Cij is

Pðf ~sigÞ ¼
1

ZðfJijgÞ
exp

�
1

2∑
N

i¼1
∑
N

j¼1

Jij ~si · ~sj

�
; [1]

where ZðfJijgÞ is the appropriate normalization factor, or parti-
tion function; the derivation follows ref. 10, as explained in the
SI Appendix. Notice that there is one parameter Jij corresponding
to each measured element Cij of the correlation matrix. To finish
the construction of the model, we have to adjust the values of the
Jij to match the experimentally observed Cij,

h ~si · ~sjiP ¼ h ~si · ~sjiexp; [2]

where the symbol h·iP indicates an average using distribution P
from Eq. 1, whereas h·iexp indicates an average over many experi-
ments. This matching condition is equivalent to maximizing the
likelihood that the model in Eq. 1 will generate the data from
which the correlations were computed.

The probability distribution in Eq. 1 is mathematically identi-
cal to a model that is familiar from the physics of magnets—
the Heisenberg model (5)—in which a collection of spins ~si inter-
act so that their energy (or Hamiltonian) is Hðf ~sigÞ ¼
−ð1∕2Þ∑i;jJij ~si · ~sj; Eq. 1 then describes the thermal equilibrium
or Boltzmann distribution at a temperature kBT ¼ 1. In this con-
text, the constants Jij are the strength of interaction between
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spins i and j, where J > 0means that these elements tend to align.
For many physical systems, once we know the Hamiltonian there
is a plausible dynamics that allows the system to relax toward
equilibrium, which is the Langevin dynamics

d ~si
dt

¼ −
∂H
∂ ~si

þ ~ηiðtÞ ¼ ∑
N

j¼1

Jij ~sj þ ~ηiðtÞ; [3]

where ~ηiðtÞ is an independent white noise “force” driving each
separate degree of freedom. Finding trajectories ~siðtÞ that solve
Eq. 3 produces samples that are drawn out of the probability
distribution in Eq. 1. The interesting point is that this kind of
dynamical model also is well known in biology: The direction
of motion of an individual evolves in time according to “social
forces” reflecting a weighted sum of inputs from neighboring
individuals, plus noise (4). In this framework, Jij measures the
strength of the force that tries to align the velocity of bird i along
the direction defined by bird j. We emphasize that we are doing
an analogy but a mathematical equivalence.

In contrast to most networks, the connectivity in a flock of
birds is intrinsically dynamic—birds move and change their neigh-
bors. Thus, it may not make sense to talk about matrix of correla-
tions Cij or interactions Jij between labeled individuals. On
the other hand, the continuous and rapid change of neighbors
induced by motion implies that the interaction Jij between bird
i and bird j cannot depend directly on their specific identities but
only on some function of their relative positions.

The simplest form of interaction that is independent of the
birds’ identity is one in which each bird interacts with the same
strength, J, with the same number of neighbors, nc (or with all
birds within the same radius rc; see below). If the interactions
are of this form, then Eq. 1 simplifies to

Pðf ~sigÞ ¼
1

ZðJ; ncÞ
exp

�
J
2∑

N

i¼1
∑
j∈ni

c

~si · ~sj

�
; [4]

where j ∈ ni
c means that bird j belongs to the first nc nearest

neighbors of i. It is important to note that Eq. 4 can be also
derived, without any assumption, as a maximum entropy distribu-
tion consistent with an experimental quantity simpler than the
full correlation matrix. Instead of the correlationCij for each pair
of individuals, we can measure its average value over birds within
a neighborhood of size nc, i.e.,

Cint ¼
1

N∑
N

i¼1

1

nc ∑
j∈ni

c

h ~si · ~sji ≈
1

N∑
N

i¼1

1

nc ∑
j∈ni

c

~si · ~sj: [5]

It can be easily shown (see SI Appendix) that the maximum en-
tropy distribution consistent with this scalar correlation is in fact
the distribution [4]. As in the more general problem, finding the

values of J and nc that reproduce the observed correlation Cint is
the same as maximizing the probability, or likelihood, that model
Eq. 4 generates the observed configuration of flight directions
f ~sig in a single snapshot. Biologically, Eqs. 4 and 5 encapsulate
the concept that the fundamental correlations are between birds
and their directly interacting neighbors; all more distant correla-
tions should be derivable from these correlations. If this concept
is correct, a model as in Eq. 4 that appropriately reproduces
the fundamental correlations up to the scale nc must be able to
describe correlations on all length scales.

Importantly, with large flocks we can estimate the correlations
among interacting neighbors from a single snapshot of the birds’
flight directions f ~sig, as indicated in the second step of Eq. 5.
In contrast, if we were trying to estimate the entire correlation
matrix in Eq. 2, we would need as many samples as we have birds
in the flock (see SI Appendix), and we would have to treat expli-
citly the dynamic rearrangements of the interaction network
during flight. This situation is an extreme version of the general
observation that the sampling problems involved in the construc-
tion of maximum entropy models can be greatly reduced if we
have prior expectations that constrain the structure of the inter-
action matrix (15, 16).

Results
We now apply this analysis to data on real flocks of starlings.
Given a snapshot of the flock, we have the configuration f ~sig,
and we need to evaluate the probability Pðf ~sigÞ in Eq. 4 for
any value of J and nc, then maximize this probability with respect
to these parameters (see Materials and Methods and SI Appendix
for details of the computation). Special care must be devoted to
birds on the outer edge, or border, of the flock, because these
individuals have very asymmetric neighborhoods and may receive
inputs from signals outside the flock. If we take the flight direc-
tions of these border birds as given, we can study how information
propagates through the flock, without having to make assump-
tions about how the boundary is different from the interior. Tech-
nically, then, we describe the flock with Eq. 4 but with the flight
directions of the border birds fixed (again, see Materials and
Methods and SI Appendix for details).

Inferring the Interaction Parameters from Data. We proceed as fol-
lows. For a single flock, at a given instant of time, we compute the
correlation Cint predicted by the model in Eq. 4 as a function of
the coupling strength J and compare it with the experimental va-
lue of the correlation (Fig. 2A). The equation CintðJ; ncÞ ¼ Cexp

int
fixes JðncÞ for each value of nc. Then we fix the interaction range
by looking at the overall probability of the data as a function of nc.
In general there is a clear optimum (Fig. 2B), from which we
finally infer the maximum entropy value of both parameters, nc
and J. We repeat this procedure for every snapshot of each flock
and compute the mean and standard deviation of the interaction
parameters for each flock over time. Alternatively, for a given
flock we can average the log–likelihood over many snapshots,
and then optimize, and this procedure gives equivalent results
for J and nc (see SI Appendix, section V).

In Fig. 2 C and D we report the value of the interaction
strength J and of the interaction range nc for all flocks, as a func-
tion of the flock’s spatial size, L. The inferred values of J and
nc are reproducible, although error bars are larger for smaller
flocks. In particular, J and nc do not show any significant trend
with the flocks’ linear dimensions, with the number of birds, or
with the density. This result is not obvious, nor is it in any way
built in to our framework; for example, if the real interactions
extended over long distances, then our fitting procedure would
produce an increase of nc and J with the size of the flock.

In Fig. 2E we also show that the interaction range nc does not
depend on the typical distance between neighboring birds, r1,
which is closely related to the flock’s density. Of course, we can

A B

Fig. 1. The raw data. (A) One snapshot from flocking event 28 − 10,
N ¼ 1;246 birds (see SI Appendix, Table S1). (B) Instantaneous vector velocities
of all the individuals in this snapshot, normalized as ~si ¼ ~vi∕j ~vi j.
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run exactly the same method using a metric interaction range, rc,
rather than a topological range, nc. We simply set Jij ¼ J if and
only if birds i and j lie within rc meters. In this way we find that the
metric range rc does depend on the nearest neighbor distance r1,
in contrast with the topological range nc (Fig. 2F). This result
provides strong support for the claim put forward in ref. 14 that
birds interact with a fixed number of neighbors, rather than with
all the birds within a fixed metric distance.

Model Predictions. Having fixed J and nc by matching the scalar
correlation in the flock, we have no free parameters—everything
that we calculate now is a parameter-free prediction. We begin by
computing the correlations between pairs of birds as a function of
their distance, CðrÞ ∼∑ij ~si · ~sjδðr − rijÞ, as shown in Fig. 3A.
There is extremely good agreement across the full range of dis-
tances. As we have seen, our maximum entropy calculation finds
local interactions, i.e., a relatively small value of nc (nc ∼20
for flocks of up to thousands birds). This result implies that the
scalar correlation Cint, used as an experimental input to the cal-
culation, is the integral of CðrÞ only over a very small interval
close to r ¼ 0: Only the average value of pair correlations at very
short distances is used as an input to the calculation, whereas all
the long range part of CðrÞ is not. Nevertheless, we have very
good agreement out to the overall extent of the flock itself.
This finding confirms our expectation that a model for the local
correlations is able to describe correlations on all length scales.
We draw attention to the fact that the apparent correlation
length, defined by Cðr ¼ ξÞ ¼ 0, is predicted to scale with the lin-
ear size of the flock (ξ ∝ L, Fig. 3A, Inset), as observed experi-
mentally (17).

Correlations exist not just between pairs of birds, but among
larger n-tuplets. In Fig. 3B we consider the correlations among
quadruplets of birds. Although these correlations are small, their
shape is nontrivial and quite noiseless. The model, which takes
only local pairwise correlations as input, reproduces very accu-
rately these four-body correlations, including a nonmonotonic

dependence on distance, out to distances comparable to the full
extent of the flock. Again, we are not making a fit but a para-
meter-free prediction.

Finally, instead of measuring correlations, we can ask the mod-
el to predict the actual flight directions of individual birds in the
interior of the flock, given the directions chosen by birds on the
border. This prediction can’t work perfectly, because within the
model individual birds have an element of randomness in their
choice of direction relative to their neighbors, but as shown in
Fig. 3D the overlap between predicted and observed directions
is very good, not just for birds close to the border but throughout
the entire “thickness” of the flock. This result shows that the in-
ference procedure and the model predictions work remarkably
well for all individuals in the group. For a discussion of variability
across different snapshots and flocks see SI Appendix.

Testing the Mechanistic Interpretation.The maximum entropy mod-
el has a mechanistic interpretation, from Eq. 3, in terms of social
forces driving the alignment of the flight directions. Given the
success of the model in predicting the propagation of order
throughout the flock, it is interesting to ask whether we can take
this mechanistic interpretation seriously. As a test, we have simu-
lated a population of self-propelled particles in three dimensions
moving according to social forces that tend to align each particle
with the average direction of its neighbors, as described by Eqs. 9
and 10 in Materials and Methods. We then compared the simula-
tion parameters ðJ sim; nsim

c Þ to the values ðJmem; nmem
c Þ obtained

by applying the maximum entropy method to snapshots drawn
from the simulation, just as we have analyzed the real data. Both
the strength and the range of the interaction given by the max-
imum entropy analysis are proportional to the “microscopic”
parameters used in the simulation (Fig. 4 A and B), although
the maximum entropy interaction range nmem

c is roughly 3 ×
larger than the true number of interacting neighbors, nsim

c . We
believe that this overestimation is due to the fact that birds (un-
like spins) move through the flock, encountering new neighbors
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Fig. 2. Setting the strength and range of interactions. (A) The predicted strength of correlation, C int, as a function of the interaction strength J, with nc ¼ 11,
for the snapshot in Fig. 1. Matching the experimental value of Cint ¼ 0.99592 determines J ¼ 45.73. (Inset) Zoom of the crossing point; error bars are obtained
from the model’s predictions of fluctuations of C intðJ; ncÞ. (B) The log-likelihood of the data per bird (hln Pðf ~sigÞiexp∕N) as a function of nc with J optimized for
each value of nc ; same snapshot as in A. There is a clear maximum at nc ¼ 11. (Inset) the log-likelihood per bird for other snapshots of the same flocking event.
(C) The inferred value of J for all observed flocks, shown as a function of the flock’s size. Each point corresponds to an average over all the snapshots of
the same flock. Error bars are standard deviations across multiple snapshots. (D) As in C but for the inferred values of nc . Averaging over all flocks we find
nc ¼ 21.2� 1.7 (black line). (E) The inferred value of the topological range n−1∕3

c as a function of the mean interbird distance in the flock, for all flocks. Error
bars are standard deviations across multiple snapshots of the same flock. (F) As in E but for the metric range rc . If interactions extend over some fixed metric
distance r0, then we expect n−1∕3

c ∝ r1∕r0 and rc ¼ constant; we find the opposite pattern, which is a signature of interactions with a fixed number of
topological neighbors (14).
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before losing memory of the earlier flight directions and in so
doing propagate information and correlation more effectively
than if they were sitting on a fixed network. In other words, the
maximum entropy model, where interactions are static by con-
struction, compensates the dynamical nature of the true inter-
action network by giving a larger effective value of nc. Hydro-
dynamic theories of flocking (7, 8) provide an analytic treatment
of this effect, which is essential for collective motion of large
two-dimensional groups. Indeed, in the limit of very large flocks,
this ratio between the microscopic range of interactions and the
effective range recovered by maximum entropy methods is pre-
dicted by the hydrodynamic theory (7, 8) to become arbitrarily
large, but the flocks we study here seem not to be big enough
for this effect to take over. If we use the “calibration” of the mod-
el from Fig. 4B, then the observation of nc ¼ 21.6 in the real
flocks (Fig. 2) suggests that the true interactions extend over
nc ¼ 7.8, in reasonable agreement with the result from (14, 18),
nc ¼ 7.0� 0.6, using very different methods.

Discussion
To summarize, we have constructed the minimal model that is
consistent with a single number characterizing the interactions
among birds in a flock, the average correlation between the flight
directions of immediate neighbors. Perhaps surprisingly, this pro-
vides an essentially complete theory for the propagation of direc-
tional order throughout the flock, with no free parameters. The
theory predicts major qualitative effects, such as the presence of
long range, scale-free correlations among pairs of birds, as well
as smaller, detailed effects such as the nonmonotonic distance
dependence of (four-point) correlations among two pairs of birds.
The structure of the model corresponds to pairwise interactions
with a fixed number of (topological) neighbors, rather than with
all neighbors that fall within a certain (metric) distance; the re-
levant number of neighbors and the strength of the interaction
are remarkably robust across multiple flocking events.

For a long time, theoretical studies of collective animal beha-
vior have relied on arbitrary (albeit reasonable) modeling
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Fig. 3. Correlation functions predicted by the maximum entropy model vs. experiment. The full pair correlation function can be written in terms of a long-
itudinal and a perpendicular component, i.e., h ~si · ~sji ¼ hsLi sLj i þ h ~πi · ~πji. Because the two components have different amplitudes, it is convenient to look at
them separately. (A) Perpendicular component of the correlation, CPðrÞ ¼ h ~πi · ~πji, as a function of the distance; the average is performed over all pairs ij
separated by distance r. Blue diamonds refer to experimental data (for the snapshot in Fig. 1), red circles to the prediction of the model in Eq. 4. The dashed
linemarks themaximum r that contributes to C int, which is the only input to themodel. The correlation function is well fitted over all length scales. In particular,
the correlation length ξ, defined as the distance where the correlation crosses zero, is well reproduced by the model. (Inset) ξ vs. size of the flock, for all the
flocking events; error bars are standard deviations across multiple snapshots of the same flocking event. (B) Four-point correlation function
C4ðr1; r2Þ ¼ hð ~πi · ~πjÞð ~πk · ~πlÞi, where the pairs ij and kl are as shown in the Inset (see also SI Appendix). The figure shows the behavior of C4ðr1; r2Þ as a function
of r2, with r1 ¼ 0.5. (C) Longitudinal component of the correlation CLðrÞ ¼ hsLi sLj i − S2, as a function of distance. Note that in the spin wave approximation,
CLðrÞ ¼ 1 − C4ð0; rÞ − S2. (D) Similarity between the predicted mean value of flight direction, h ~πii, and real data, for all individual birds in the interior of the
flock. The similarity can be quantified through the local overlap qi ¼ h ~πii · ~πexp

i ∕ðjh ~πiijj ~πexp
i jÞ, which is plotted as a function of the distance of the individual from

the border. Maximal similarity corresponds to qi ¼ 1. (Inset) Full distribution PðqÞ for all the interior birds.
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assumptions. Recently, thanks to more sophisticated experimen-
tal techniques, it has finally been made possible to directly fit the
models’ parameters to experimental data and perform model
selection (19–21). Our work, though, differs from current model
fitting approaches in two respects. First, as mentioned in the in-
troduction, we use a general guiding principle (maximum entro-
py) that spares us from the uneasiness of making assumptions.
Second, we consider large groups of individuals, up to several
thousands starlings, to be compared with a maximum of few tens
(with a typical size of four) analyzed in the lab. Hence, we derive a
quantitative theory for the large scale behavior, where the collec-
tive phenomenon is fully blown. At the moment, we do not know
to what extent the interactions inferred at the level of few indi-
viduals are linearly “scalable” up to the thousands, so it seems
important to formulate a theory directly at the collective level.

Our approach can be seen as part of a larger effort using
maximum entropy methods to link the collective behavior of real
biological systems to theories grounded in statistical mechanics
(22–34). As with these other examples, we view the success of our
theory as an encouraging first step. We have focused on the flight
directions, taking the positions of the birds as given. A full theory
must connect the velocities of the birds to their evolving positions,
which requires more accurate measurements of trajectories over
time, and we must consider the fluctuations in the speed as well
as direction of flight. There are maximum entropy approaches
to both of these problems, and the mapping from maximum
entropy models to statistical mechanics suggests that the obser-
vation of scale-free correlations in speed fluctuations (17) will
locate models of flocking at an especially interesting point in their
parameter space (35).

Materials and Methods
Data. Analyzed data were obtained from experiments on large flocks of
starlings (Sturnus vulgaris), in the field. Using stereometric photography
and innovative computer vision techniques (12, 13) the individual 3D coordi-
nates and velocities were measured in cohesive groups of up to 4,268 indi-
viduals (11, 14, 17). The dataset comprises 21 distinct flocking events, with
sizes ranging from 122 to 4,268 individuals and linear extensions from
9.1 m to 85.7 m (see SI Appendix, Table S1 for details). Each event consists
of up to 40 consecutive 3D configurations (individual positions and veloci-
ties), at time intervals of 1∕10 s. All events correspond to very polarized flocks
(polarization between 0.844 and 0.992; see SI Appendix, Table S1). Given a
flock at a given time, its exterior border can be computed using appropriate
triangulation algorithms (see ref. 13 and SI Appendix). Boundary birds are
then defined as those who belong to the exterior border.

Analytic Approach to the Maximum Entropy Model. To apply the maximum
entropy analysis, we need to compute the expected values of correlation
functions according to the measure defined in Eq. 1. To this end we must first
compute the partition function ZðfJijgÞ, which is, in general, a hard task.
Flocks, however, are very ordered groups, in that birds’ velocities are neatly
aligned to each other (17). In this case we can use the “spin wave” approx-
imation (36), which exploits the strong ordering condition. Let us call
~S ¼ ð1∕NÞ∑i ~si ¼ S ~n the global order parameter, or polarization, measuring
the degree of collective alignment, where ~n is a unit vector. Individual orien-
tations can be rewritten in terms of a longitudinal and a perpendicular com-
ponent: ~si ¼ sLi ~nþ ~πi . If the system is highly polarized, S ∼1, j ~πi j ≪ 1, and
sLi ∼ 1 − j ~πi j2∕2; we verify this last condition for our data in SI Appendix,
Fig. S1. The partition function can be written as an integral over the f ~πg,
and if S ∼1 the leading terms are (see SI Appendix, section II, for details):

ZðfJijgÞ ≈
Z

dN ~π exp
�
−
1

2 ∑
N

i;j¼1

Aij ~πi · ~πj þ
1

2 ∑
N

i;j¼1

Jij

�
; [6]

where Aij ¼ ∑kJikδij − Jij , dN ~π ¼ Q
id ~πi , and the f ~πig satisfy the constraint

∑i ~πi ¼ 0. If we consider the flight directions of birds on the border as given,
integration must be performed with respect to internal variables only (see SI
Appendix, section IV). After some algebra one gets

ZðfJijg;BÞ ¼
Z

dI ~π exp
�
−
1

2 ∑
i;j∈I

Aij ~πi · ~πj þ∑
i∈I

~πi · ~hi

þ 1

2 ∑
i;j∈I

Jij þ
1

2∑
i∈I

hL
i þ 1

2 ∑
i;j∈B

Ji;j ~si · ~sj�: [7]

Here I and B represent the subsets of, respectively, internal and border
individuals; ~hi ¼ ∑1∈BJil ~sl is a ‘field’ describing the influence of birds on the
border on internal bird i; and, now, Aij ¼ δijð∑k∈IJik þ∑l∈BJil sLl Þ. The inte-
gral in Eq. 7 can be carried out explicitly; see SI Appendix, Eqs. S35–S40. The
reduced model in Eq. 4 corresponds to Jij ¼ Jnij , with nij ¼ 1, 1∕2, or 0 accord-
ing to whether both individuals, just one, or none, belong to the local nc-
neighborhood of the other. Given the individual coordinates of birds in
space, the matrix Aij can be computed for any given snapshot, and
ZðJ; nc ;BÞ (and correlation functions) can be calculated as a function of J and
nc . These two parameters must then be adjusted to maximize the log–like-
lihood of the data,

hlogPðf ~sigÞiexp ¼ − logZðJ; nc;BÞ þ 1

2
JncNCexp

int : [8]

Maximizing with respect to J corresponds to equating expected and experi-
mental correlations. In our case, this equation can be solved analytically,
leading to an explicit expression of the optimal J vs. nc ; see SI Appendix,
Eq S46. Maximization with respect to nc can then be performed numerically.
A graphical visualization of the solution can be found in Fig. 2.

Self-Propelled Particle Model. We consider a model of self-propelled particles
extensively studied in the literature (9). Each particle moves with vector
velocity ~viðtÞ according to the following equations:

~viðtþ 1Þ ¼ v0Θ
�
α∑
j∈ni

c

~vjðtÞ þ β∑
j∈ni

c

~f ij þ nc ~ηi

�
[9]

~xiðtþ 1Þ ¼ ~xiðtÞ þ ~viðtÞ; [10]

where Θ is a normalization operator Θð ~yÞ ¼ ~y∕j ~yj that serves to keep the
speed fixed at j ~vj ¼ v0, and j ∈ ni

c means that j belongs to the nc interacting
neighbors of i. The distance-dependent force ~f ij acts along the direction
connecting i and j; following ref. 9, if ~eij is the unit vector between i and
j, we take

~f ijðrij < rbÞ ¼ −∞ ~eij; [11]

~f ijðrb < rij < raÞ ¼
1

4
·
rij − re
ra − re

~eij; [12]

~f ijðra < rij < r0Þ ¼ ~eij: [13]

Finally, ~ηi is a random unit vector, independent for each bird and at each
moment of time. The parameters α and β tune the strength of the alignment
and of the cohesion force, respectively; in particular, the strength of align-
ment is given by J ¼ v0α∕nc. To test the maximum entropy analysis, we mod-
ified the model in such a way that we could vary nc. Specifically, we
introduced an angular resolution μ such that only neighbors with mutual an-
gles larger than μwere included in the neighborhood. When μ is of the order
of the Voronoi angle the model is statistically equivalent to the original
version (where Voronoi neighbors were considered), but increasing (decreas-
ing) μ one can decrease (increase) the value of nc . In this way both the
number nc of interacting neighbors and the strength of the interaction J
can be arbitrarily tuned. Parameters were chosen as r0 ¼ 1 (to set the scale
of distance), rb ¼ 0.2, re ¼ 0.5, ra ¼ 0.8, α ¼ 35, β ¼ 5, v0 ¼ 0.05, and we
simulated a flock of N ¼ 512 birds. Additional simulations were run (see SI
Appendix, section IX and Fig. S7) to check that the metric dependency of
the distance-dependent force does not affect the relationship between
inferred and real values of J and nc .
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SUPPORTING INFORMATION

Statistical mechanics for natural flocks of birds

W Bialek, A Cavagna, I Giardina, T Mora, E Silvestri, M Viale and AM Walczak

I. MAXIMUM ENTROPY APPROACH

The maximum entropy method [1] has a long history.
Recent developments in experimental methods have re-
newed interest in this idea as a path for constructing sta-
tistical mechanics models of biological systems directly
from real data, with examples drawn from networks of
neurons [2–7], ensembles of amino acid sequences [8–11],
biochemical and genetic networks [12, 13], and the statis-
tics of letters in words [14]. Here we give a review of the
basic ideas leading to Eq (1) of the main text, hoping to
make the discussion accessible to a wider readership.

Imagine a system whose state at any one in-
stant of time is described by a set of variables
{x1, x2, · · · , xN} ≡ x. For the moment we don’t need
to specify the nature of these variables—they could be
positions or velocities of individual birds i = 1, 2, · · ·N
in a flock, or more subtle parameters of body shape or
instantaneous posture. Whatever our choice of variables,
we know that when the number of elements in the system
N (here, the number of birds in the flock) becomes large,
the space x becomes exponentially larger. Thus there is
no sense in which we can “measure” the distribution of
states taken on by the system, because the number of
possibilities is just too large. On the other hand, we can
obtain reliable measurements of certain average quanti-
ties that are related to the state x. To give a familiar
example, we can’t measure the velocity of every electron
in a piece of wire, but certainly we can measure the aver-
age current that flows through the wire. Formally, there
can be several such functions, f1(x), f2(x), · · · , fK(x),
of the state x. The minimally structured distribution
for these data is the most random distribution P (x)
that is consistent with the observed averages of these
functions {〈fν(x)〉exp}, where 〈· · ·〉exp denotes an aver-
age measured experimentally.

To find the “most random” distribution, we need a
measure of randomness. Another way to say this is that
we want the distribution P (x) to hide as much infor-
mation about x as possible. One might worry that in-
formation and randomness are qualitative concepts, so
that there would be many ways to implement this idea.
In fact, Shannon proved that there is only one measure
of randomness or available information that is consis-
tent with certain simple criteria [15, 16], and this is the
entropy

S [P ] = −
∑
x

P (x) lnP (x) . (S1)

Thus we want to maximize S [P ] subject to the con-

straint that the expectation values computed with P
match the experimentally measured ones, that is

〈fµ(x)〉exp = 〈fµ(x)〉P ≡
∑
x

P (x)fµ(x) (S2)

for all µ [1]. The distribution P (x) must also be normal-
ized, and it is convenient to think of this as the state-
ment that the average of the “function” f0(x) = 1 must
equal the “experimental” value of 1. Our constrained
optimization problem can be solved using the method of
the Lagrange multipliers [17]: we introduce a generalized
entropy function,

S [P ; {λν}] = S [P ]−
K∑
µ=0

λµ [〈fµ(x)〉P − 〈fµ(x)〉exp] ,

(S3)
where a multiplier λµ appears for each constraint to be
satisfied, and then we maximize S with respect to the
probability distribution P (x) and optimize it with re-
spect to the parameters {λν}.

Maximizing with respect to P (x) give us

0 =
∂S [P ; {λν}]
∂P (x)

=
∂S [P ]

∂P (x)
−

K∑
µ=0

λµ
∂〈fµ(x)〉P
∂P (x)

= − lnP (x)− 1−
K∑
µ=0

λµfµ(x), (S4)

⇒ P (x) =
1

Z({λν})
exp

[
−

K∑
µ=1

λµfµ(x)

]
, (S5)

where Z({λν}) = exp(−λ0 − 1). Since optimizing with
respect to λ0 will enforce normalization of the distribu-
tion, we can write, explicitly,

Z({λν}) =
∑
x

exp

[
−

K∑
µ=1

λµfµ(x)

]
. (S6)

Optimizing with respect to {λν} gives us a set of K
simultaneous equations

0 =
∂S [P ; {λν}]

∂λµ

= 〈fµ(x)〉exp − 〈fµ(x)〉P
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⇒ 〈fµ(x)〉exp =
1

Z({λν})
∑
x

fµ(x) exp

[
−

K∑
µ=1

λµfµ(x)

]
.

(S7)

Thus, when we optimize S with respect to the parame-
ters {λν} we are enforcing that the expectation values of
the {fµ(x)} agree with their experimental values, which
is the starting point of the maximum entropy construc-
tion. Note also that, if we substitute Eq (S5) back into
Eq (S3), we obtain

S [P ; {λν}] = lnZ({λν}) +
K∑
µ=0

λµ〈fµ(x)〉exp

= −〈logP (x)〉exp, (S8)

which is minus the log probability, or likelihood, that the
model generates the observed data. The optimal values
of {λν} correspond to minima of S, as can be checked by
considering the second derivatives. Therefore, the max-
imum entropy approach also corresponds to maximizing
the likelihood that the model in Eq (S6) generates the
observed data.

The maximum entropy distributions are familiar from
statistical mechanics. Indeed we recall that a system in
thermal equilibrium is described by a probability distri-
bution that has the maximum possible entropy consis-
tent with its average energy. If the system has states
described by a variable x, and each state has an energy
E(x), then this equilibrium distribution is

P (x) =
1

Z(β)
e−βE(x), (S9)

where β = 1/kBT is the inverse temperature, and the
partition function Z(β) normalizes the distribution,

Z(β) =
∑
x

e−βE(x). (S10)

In this view, the temperature is just a parameter we have
to adjust so that the average value of the energy agrees
with experiment. The fact that equilibrium statistical
mechanics is the prototype of maximum entropy models
encourages us to think that the maximum entropy con-
struction defines an effective “energy” for the system.
Comparing Eq’s (S5) and (S9) gives us

E(x) =

K∑
µ=1

λµfµ(x), (S11)

and an effective temperature kBT = 1. This is a mathe-
matical equivalence, not an analogy, and means that we
can carry over our intuition from decades of theoretical
work on statistical physics.

In this paper, we discuss the case where the pairwise
correlations 〈~si·~sj〉 are measured experimentally. Thus
we can use the general maximum entropy formulation,

identifying x = {~si} and fµ(x) = ~si · ~sj. Since the quan-
tities that will be measured refer to pairs, it is useful to
set λµ = −Jij, and we obtain Eq (1) of the main text,
i.e.

P ({~si}) =
1

Z({Jij})
exp

1

2

N∑
i=1

N∑
j=1

Jij~si·~sj

 . (S12)

As before, the parameters {Jij} must be adjusted so that
〈~si·~sj〉P = 〈~si·~sj〉exp.

The model defined by Eq (S12) is identical to a well
known model for magnetism, the Heisenberg model. In
that case, the model describes individual spins, which
tend to mutually align according to the interactions Jij.
In this context, the effective energy is

E({~si}) = −1

2

N∑
i=1

N∑
j=1

Jij~si·~sj. (S13)

For Jij > 0, the energy is lowered when the vectors ~si
and ~sj are parallel.

Another case, which is relevant for our analysis, is the
one where the function measured experimentally is not
the full pairwise correlation matrix, but a restricted local
measure of correlation. We can for example consider the
average correlation among pairs within a neighborhood
of size nc

Cint =
1

N

∑
i

1

nc

∑
j∈ni

c

〈~si · ~sj〉 (S14)

The maximum entropy model consistent with Cint

can be found setting x = {~si} and fµ(x) =
(1/Nnc)

∑
i

∑
j∈ni

c
~si · ~sj. Since the measured quantity

is a single scalar, Cint, there is only one Lagrange mul-
tiplier, λ = −J . In this way, we immediately get Eq (4)
of the main text, i.e.

P ({~si}) =
1

Z(J, nc)
exp

J
2

N∑
i=1

∑
j∈ni

c

~si·~sj

 , (S15)

As before, for any given value of nc, the parameter J
must be adjusted so that the expected value of Cint com-
puted with the distribution (S15) be equal to the exper-
imentally measured one.

II. THE SPIN WAVE APPROXIMATION

The most demanding step in evaluating the probabil-
ity distribution in Eq (S12) is the computation of the
partition function

Z({Jij}) =

∫
dN~s exp

1

2

N∑
i=1

N∑
j=1

Jij~si·~sj

 , (S16)
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FIG. S1: Longitudinal components of the flight directions vs.
prediction of the spin wave expansion, for all individuals in
the snapshot of Fig 1 of the main text. The black line has
slope 1. Note that 95% of the birds have sLi > 0.94, and lie
well on the line.

where we recall that the {~si} are real, three dimensional
vectors of unit length and dN~s =

∏
i d~si.

In presence of strong ordering, we can use the “spin
wave” approximation [18] to compute analytically the
partition function of the Heisenberg model, Eq (S16).

Let us call ~S = (1/N)
∑
i ~si = S~n the global order pa-

rameter, or polarization, measuring the degree of col-
lective alignment, where ~n is a unit vector. Individual
orientations can be rewritten in terms of a longitudinal
and a perpendicular component with respect to ~n,

~si = sLi ~n+ ~πi , (S17)

where, by construction,
∑

i s
L
i = SN , ~πi · ~n = 0, and∑

i ~πi = 0. The partition function then reads

Z({Jij}) =

∫
dNsL dN ~π

∏
i

δ
(
(sLi )2 + |~πi|2 − 1

)
δ

(∑
i

~πi

)
exp

1

2

N∑
i=1

N∑
j=1

Jij
(
sLi s

L
j + ~πi·~πj

) ,(S18)

where dNsL =
∏

i ds
L
i and dN ~π =

∏
i d~πi. The delta

functions implement the constraint on the length of each
vector ~si and the global constraint on the ~πi. Note that
since the {~πi}’s belong to the subspace perpendicular to
~n, in Eq (S19) there are only two independent degrees
of freedom for each integration variable.

If the system is highly polarized, S ∼ 1 and |~πi| � 1.
The constraint on the norm of the vectors can then be
written as sLi ∼ 1− |~πi|2/2. Note that indeed flocks are
very polarized groups (see Table S1) and this expression
is very well satisfied by the data, as shown in Fig S1.
Using this expansion the longitudinal components can
be integrated out easily. The partition function then

becomes, to leading order in the ~π’s,

Z({Jij}) =

∫
dN ~π

∏
i

1√
1− |~πi|2

 δ
(∑

i

~πi
)

exp

−1

2

N∑
i,j=1

Aij~πi · ~πj +
1

2

N∑
i,j=1

Jij

 (S19)

with

Aij =
∑
k

Jikδij − Jij . (S20)

The product over 1/

√
1− |~πi|2 in Eq (S19) is the Jaco-

bian coming from the integration over the si
L. This term

gives rise to sub–leading contributions in the spin wave
approximation, and we shall drop it. We have checked in
our computations that the corrections due to this term
are indeed negligible.

The matrix A is, by construction, a positive semi–
definite matrix. We can find eigenvalues ak and eigen-
vectors wk as usual through∑

j

Aijw
k
j = akw

k
j . (S21)

There is one zero eigenvalue, a1 = 0, cor-
responding to the constant eigenvector ~w1 =
(1/
√
N, 1/

√
N, · · · , 1/

√
N):∑

j

Aijw
1
i =

1√
N

∑
j

Aij = 0. (S22)

The argument of the delta function in Eq (S19) is re-
lated only to the projection of the {~πi} onto this zero
mode. We note that in a system with translation in-
variance, the eigenvectors are Fourier modes, or plane
waves, and these are called spin waves in the theory of
magnetism. The zero eigenmode is related to the spon-
taneous breaking of symmetry when the flock chooses a
consensus direction of flight—all directions ~n are equally
probable, a priori, and hence have equal probability or
energy, and the zero mode is the remanent of this sym-
metry; in physics this is the Goldstone mode.

We can now rewrite Eq (S19) in the orthonormal basis
defined by {~wk}:

Z({Jij}) =

∫
dN ~π′ δ (~π′1) exp

−1

2

N∑
k=1

ak|~π′k|2 +
1

2

N∑
i,j=1

Jij

,
(S23)

where ~π′k =
∑

i w
k
i ~πi. Remembering that ~π is a two-

dimensional vector, this leads to

logZ({Jij}) = −
∑
k>1

log(ak) +
1

2

N∑
i,j=1

Jij , (S24)
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where we drop constant terms independent of Jij.
Let us now proceed, at a formal level, with the maxi-

mum entropy approach. The parameters Jij are fixed by
requiring that 〈~si·~sj〉P = 〈~si·~sj〉exp. If we focus on the
perpendicular part of the correlation, this implies

〈~πi·~πj〉exp = 2
∑
k>1

wki w
k
j

ak
, (S25)

where the right hand side, the expectation value 〈~πi·~πj〉P ,
can be obtained from Eq (S23) using Gaussian inte-
gration rules, the factor 2 coming from the two inde-
pendent degrees of freedom of each ~πi. According to
this equation, the matrix Aij—and therefore the interac-
tion matrix Jij—is easily obtained by taking the inverse
of the experimental perpendicular correlation function
(once we take away the zero mode due to symmetry).
But, to be invertible, the experimental correlation ma-
trix must have N − 1 nonzero eigenvalues. This can
only be achieved by performing a huge number of exper-
iments, i.e. evaluating the experimental average over a
number of independent samples larger than the number
of birds in the flock. As discussed in the main text, the
interaction network in a flock changes continuously in
time, since individuals move and change their neighbors.
But the average over many independent realizations of
〈~si·~sj〉 would require birds to stay still at some fixed po-
sitions, while updating and realigning their velocities,
which is definitely not the case. In other terms, differ-
ent experimental samples (i.e. snapshots) correspond to
different networks Jij and cannot be averaged together.
Thus, in our case, the maximum entropy model must
be solved independently at each time step, for which we
have only one experimental sample. Unfortunately, if we
compute the correlation matrix from a single snapshot,
it has rank two and cannot be inverted. In other words,
a single sample does not provide us with a reasonable
experimental estimate of the entire correlation matrix.
This motivates, as discussed in the text, the analysis of
a more restricted problem, where we consider the aver-
age local correlations Cint defined in Eq (S14). Indeed
we note that, in large flocks, due to law of large numbers,
we have

Cint =
1

N

∑
i

1

nc

∑
j∈ni

c

〈~si · ~sj〉≈
1

N

N∑
i=1

1

nc

∑
j∈ni

c

~si · ~sj .

(S26)
In other terms, since Cint is a spatial average of a local
quantity (the correlation of a given bird with its inter-
acting neighbors), it can be estimated also from a single
snapshot.

III. COMPUTATION WITH FREE
BOUNDARIES

Let us now address more in details the reduced model
(S15) (Eq (4) in main text), where each individual inter-

acts with constant strength with its first nc neighbors.
This model can be seen as a specific case of Eq (S12),
where the Jij’s have a particularly simple form:

Jij = J nij (S27)

with

nij =


1 if j ∈ nic and i ∈ njc ,

1
2 if j ∈ nic and i /∈ njc , or vice versa, and

0 otherwise.
(S28)

Here, J indicates the strength of the interaction and nic
indicates the set of the first nc neighbors of bird i. Since
we know the spatial coordinates of all the birds in the
flock, once the parameter nc is fixed, we can compute all
the neighborhoods and determine the matrix nij. In the

spin wave expansion (S19) therefore Aij = JÃij, where

Ã = δij
∑
k nik − nij only depends on the neighborhood

relations.
Before proceeding with the full computation with fixed

boundary conditions, let us briefly look at the simplest
case, where we allow all the ~πi’s to freely fluctuate ac-
cording to Eq (S23). The result can be read directly
from Eq (S24), giving

logZ(J, nc) = −
∑
k>1

log(Jλk) +
NJnc

2
, (S29)

where the λk are the eignevalues of Ã. Similarly, we can
compute the correlation functions,

〈~πi · ~πj〉 =
2

J

∑
k>1

wki w
k
j

λk

〈sLi sLj 〉 = 1− 1

J

∑
k>1

(wki )2 + (wkj )2

λk
(S30)

where λk and wk are, again, the eigenvalues and the
eigenvectors of the matrix Ã and depend only on nc.

To build the maximum entropy model, we need to find
the appropriate values for J and nc. We have shown that
the reduced model (S15) is the maximum entropy model
consistent with the quantity Cint, i.e. the degree of cor-
relation up to the interaction range nc. The parameter
J is therefore fixed by requiring that

Cint(J, nc) = Cexp
int (S31)

where Cint(J, nc) indicates the value of Cint computed
with model (S15) (with given values of J and nc) and
Cexp

int is the experimental value of Cint in a single snapshot
(see Eq (S26)). As explained previously, this is mathe-
matically equivalent to maximizing the log–likelihood of
the experimental data, given the model. This can be
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FIG. S2: Computation with free boundary conditions vs computation with fixed flight directions on the border. (A) Values
of the parameter nc for all the flocking events; the black line is the linear regression. Error bars are standard deviations
across multiple snapshots of the same flock. (B) Values of the parameter J for all the flocking events. Inset: The product
Jnc computed with free boundary vs. Jnc computed with fixed boundary; now the slope is almost unity. (C) and (D)
Perpendicular correlation as a function of distance for event 28–10 (as in Fig 1; N = 1246 birds) and event 32–06 (N = 809
birds). Different symbols correspond to the correlation measured in experiments, the correlation computed with free boundary
conditions and the one computed with fixed boundary conditions. Taking into account the flight directions of individuals on
the border significantly improves the prediction for the correlation.

written simply as〈
logP ({~si})

〉
exp

= − logZ(J, nc) +
1

2
JNncC

exp
int ,

(S32)
Maximizing Eq (S32) with respect to J (or, equivalently,
solving Eq (S31)) gives

1

J
=
nc
2

(1− Cexp
int ) . (S33)

This equation provides an explicit expression of J as a
function of nc. At this point, we are only left with one
parameter to be fixed. To select the nc that best explains
the data, we use the principle of maximum likelihood and
maximize the likelihood (S32) also with respect to nc.
Substituting J(nc) into Eq (S32), the likelihood becomes
a function of nc only, and its maximum can be found
numerically.

We have applied this procedure to our entire data-set:
for a given flock at a given instant of time, we have com-
puted the correlation Cexp

int from the data and calculated
J and nc with the above free boundary computation.
Then, we calculated mean and standard deviation of the
interaction parameters for each flock over time. The ob-
tained values of J and nc are displayed in Fig S2, for all
the flocking events we analyzed. They are strongly cor-
related to what we find with fixed boundary conditions
(see next section): the value of nc is slightly smaller,
the value of J slightly larger, but the product Jnc is ap-
proximately the same. On the contrary, the prediction
for the perpendicular correlation as a function of dis-
tance (Fig S2, panels C and D) is less satisfactory: while
the correlation length is correctly reproduced, the decay
of the correlation with distance is significantly faster.
Besides, the value of the perpendicular correlation near
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r = 0 looks much smaller than the experimental value.
To better understand this point we note that

Cint = CP
int + S +

1− 1

N

∑
i

1

nc

∑
j∈nc

i

〈|~πj|2〉

 , (S34)

where, we recall, S is the polarization. The first term
in this decomposition of Cint represents the perpendicu-
lar part of the correlation up to scale nc, while the last
term is a ‘local’ polarization getting contributions only
from individuals on a scale nc. The maximum entropy
model, by construction, reproduces correctly the experi-
mental value of Cint. What happens in the computation
with free boundaries is that the model underestimates
the contribution on short scales (n < nc, corresponding
to spatial scales of a few meters) from the perpendicular
part of the correlation, and compensates by overestimat-
ing the polarization. The effect is more or less strong in
different flocks, as seen in Fig S2, panels C and D.

As discussed in the main text, there are good reasons
to think that birds on the edge of the flock should be
described differently from those in the bulk; Fig S2-C is
evidence that if we ignore these differences we really do
fail to predict correctly the correlation structure of the
flock as a whole.

IV. COMPUTATION WITH FIXED
BOUNDARIES

To improve our approach, we need to consider more
appropriate boundary conditions. As discussed in the
main text, birds on the border of the flock are likely
to behave differently from birds in the interior of the
flock. This occurs because they experience a different
kind of neighborhood, part of the space around them
being devoid of neighbors. Besides, these birds are con-
tinuously exposed to external stimuli and their dynamics
may be strongly influenced by environmental factors (ap-
proaching predators, obstacles, nearby roosts, ...). Thus,
modelling birds on the border might require taking into
account other ingredients than the interactions between
individuals. Rather than trying to making a model of
these (largely unknown) factors, we can take the veloc-
ities of these border birds as given, and ask that our
model of interactions predict the propagation of order
throughout the bulk of the flock.

If we consider the flight directions of birds on the bor-
der as given, the computation of the partition function
becomes more complicated. The starting point is anal-
ogous to Eq (S16), but integration must be performed
with respect to internal variables only. It is then conve-
nient to separate, in the exponent of Eq (S16), contri-
butions coming from internal and external birds. Let us
call I and B the subsets of internal and border individu-
als, respectively. Then, in the spin wave approximation,

we find an expression similar to Eq (S19):

Z({Jij};B) =

∫
dI~π δ

(∑
i

~πi

)
exp

−1

2

∑
i,j∈I

Aij~πi · ~πj

+
∑
i∈I

~πi · ~hi +
1

2

∑
i,j∈I

Jij +
1

2

∑
i∈I

hLi +
1

2

∑
i,j∈B

Jij~si · ~sj

 ,
(S35)

where

~hi =
∑
l∈B

Jil~sl =
∑
l∈B

Jil
(
sLl ~n+ ~πl

)
= hLi ~n+ ~hPi (S36)

Aij = δij

(∑
k∈I

Jik + hLi

)
− Jij i, j ∈ I (S37)

Here ~hi is a ‘field’ describing the influence of birds on
the border on internal bird i. The effect of this field
is to align bird i with the border birds that are within
its direct interaction neighborhood nic. Thus, when nc
is small, this field only acts on individuals close to the
border, while it is zero well inside the flock. We also
note that, as compared to Eq (S19), the matrix A is
now defined for internal birds only and gets an addi-
tional diagonal contribution coming from individuals on
the border. As a result, A no longer has a zero mode.
From a conceptual point of view, when we fix the direc-
tion of motion of birds on the border, not all directions
in the bulk are a priori equivalent; rather, the bound-
ary conditions explicitly break the symmetry. From a
computational point of view, this implies that we can-
not express in a simple way the constraint on the {~πi}’s
as we did in the case of a free boundary.

To deal with the constraint, it is convenient to use an
integral representation of the delta function

δ

(∑
i

~πi

)
=

∫
d~z

(2π)2
exp

[
i~z ·
∑
i

~πi

]
. (S38)

Substituting into Eq (S35), we obtain

Z({Jij};B) =

∫
d~z

(2π)2

∫
dI~π exp

−1

2

∑
i,j∈I

Aij~πi · ~πj

+
∑
i∈I

~πi ·
(
~hPi + i~z

)
+ i~z ·

∑
l∈B

~πl +G(B)

]
, (S39)

where G(B) is a function of boundary variables only. We
notice that all the integrals are Gaussian, and we obtain,
finally,

lnZ ({Jij};B) =
1

2

∑
ij∈I

(A−1)ij ~h
P
i · ~hPj − ln det(A)

− ln

∑
ij∈I

(A−1)ij

− 1

2

[∑
l∈B ~πl +

∑
ij∈I(A−1)ij~h

P
j

]2
∑

ij∈I(A−1)ij
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+
1

2

∑
ij∈I

Jij +
∑
i∈I

hLi +
∑
lm∈B

Jlm~sl · ~sm , (S40)

where G(B) is written explicitly. Recall that the matrix
A is only defined on internal individuals and hence the
number of eigenvalues that contribute to the computa-
tion of det(A) is given by the number of internal birds.
In the same way, we can easily compute correlation func-
tions. We find

〈~πi〉 =
∑
j∈I

(A−1)ij~h
P
i

−
∑

j∈I(A−1)ij∑
kj∈I(A−1)kj

∑
l∈B

~πl +
∑
kj∈I

(A−1)kj~h
P
j

 , (S41)

and

〈~πi·~πj〉 = 〈~πi〉·〈~πj〉+2

[
(A−1)ij −

∑
kn∈I(A−1)ik(A−1)nj∑

kn∈I(A−1)kn

]
.

(S42)
At this point, to solve the maximum entropy model for

the reduced case, we simply substitute the parametriza-
tion Jij = Jnij. The log–likelihood takes the form〈

logP ({~si})
〉

exp

= − logZ(J, nc;B) +
1

2
JncNC

exp
int .

(S43)
with Z(J, nc;B) as in Eq (S35). To find the optimal
value for the parameters J and nc we need to maximize
the likelihood. Maximization with respect to J again is
equivalent to matching the predicted correlations to the
experimental ones, Cint(J, nc;B) = Cexp

int . This equation
is represented graphically in Fig 2A in the main text. It
is worth noting that, as in the case with free boundary
conditions, it is possible to solve this equation analyti-
cally. We can define

Ã = A/J, (S44)

~̃hi = ~hi/J, (S45)

both of which are independent of J , and then, after some
algebra, we obtain

(Nin − 1)

J
=

1

2

∑
ij∈I

(Ã−1)ij~̃h
P

i · ~̃h
P

j +
∑
i∈I

h̃Li

− 1

2

[∑
l∈B ~πl +

∑
ij∈I(Ã−1)ij~̃h

P

j

]2
∑

ij∈I(Ã−1)ij

+
∑
lm∈B

nlm~sl · ~sm +
Nnc

2
(1− Cexp

int ) (S46)

where Nin is the number of internal birds. Note that the
right hand side is a function of nc only, so we have an
expression for J(nc;B). Substituting back into Eq (S43)

we get the likelihood as a function of nc only. Maximiza-
tion can be performed numerically, as shown in Fig 2B
in the main text.

Values of J and nc for all flocks are collected in Fig 2
in the main text and in Fig S2. In this figure, we see the
improvement in the prediction of the correlation function
C(r) that comes with fixed boundary conditions.

V. A GLOBAL MODEL

Given a flock of birds, so far we have solved the max-
imum entropy model for each individual snapshot inde-
pendently, and then we have averaged the inferred val-
ues of the parameters J and nc over all the snapshots.
This is the most general procedure we can use, consis-
tent with the dynamical nature of the interaction net-
work. The inferred values of J and nc fluctuate from
snapshot to snapshot, due to several factors. It is pos-
sible that birds slightly adjust interaction strength and
range during time, but there are other noisy contribu-
tions that might increase the fluctuations. The flocks
we analyzed are finite groups, ranging from a few hun-
dreds to a few thousands individuals, and we therefore
expect finite size effects. The algorithmic procedure to
reconstruct positions and velocities of individual birds
in the flock is very efficient but not perfect, and there
are fluctuations across snapshots in the number of recon-
structed individuals; see Refs [19, 20, 22] for details on
the 3D reconstructions. Finally, the log–likelihood can
be very flat in the region of the maximum: in this case
even small fluctuations can cause the value of the max-
imum to jump from a value of nc to another one quite
different. Averaging nc and J over the snapshots, we
get rid of these fluctuations. Alternatively, we can as-
sume from the start that, given a flock, there is a unique
value of nc and J through time. In this case, the log–
likelihood of each snapshot is a function of the same J
and nc and we need to optimize the global likelihood
corresponding to all the snapshots, and not each one
independently. In other terms, we first compute the av-
erage of the log–likelihood over the snapshots at J and
nc fixed, and then we maximize with respect to the two
parameters. Note that we are inverting the procedure
described in the previous sections, where, on the con-
trary, we first maximize each individual snapshot with
respect to J and nc and then we take the average over
all the snapshots of the optimal parameters. The com-
putation of the average log–likelihood can be easily done
starting from the equations for the single snapshot. Let
us denote, for future convenience, by

φα(J, nc) = − logZ(J, nc;Bα) +
1

2
JncNC

exp
int,α (S47)

the log–likelihood of the snapshot α with parameters J
and nc (see Eq (S43)). Then, the average log–likelihood
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FIG. S3: Global models of flocking events. (A) Values of the neighborhood size nc inferred from maximizing the log–likelihood
averaged over snapshots, plotted vs. the mean values obtained from maximizing log–likelihood in individual snapshots. Error
bars represent the standard deviation over snapshots for each flock. Black line has a slope 0.78. (B) As in (A), but for the
interaction strength J ; the black line has slope 0.92.

for all the snapshots is

Φglobal(J, nc) =
1

Nsnap

∑
α

φα(J, nc) , (S48)

where Nsnap is the number of snapshots available for that
flock. At this point, we need to maximize Φglobal over J
and nc. The maximization with respect to J leads, once
again, to an explicit expression for the optimal J , that
we shall call Jglobal, as a function of nc:

1

Jglobal
=

1

Nsnap

∑
α

(Nα
in − 1)

(Nglobal
in − 1)

1

Jα(nc)
(S49)

where Jα(nc) is the optimal value of J for the snapshot
α, as above, Nα

in is the number of internal individuals

in the snapshot α, and Nglobal
in is the corresponding av-

erage over snapshots. Substituting Jglobal(nc) back in
Eq (S48) we get an expression, which is a function of nc
only. The likelihood can then be maximized numerically
with respect to nc. The values nc,global and Jglobal ob-
tained in this way are plotted in Fig S3, where they are
compared to the values inferred with the more general
procedure (optimizing each snapshot independently and
then averaging). There is a very strong correlation with
slope close to one. This represents a strong consistency
check on the inference procedure.

The same contributions that increase fluctuations
from snapshot to snapshot might also affect some vari-
ability in the quality of the maximum entropy model
prediction from flock to flock. In this respect, we also
note that some flocks have lower polarization than oth-
ers (see table S1), and that the spin wave approxima-
tion is a large polarization expansion working better the
larger the polarization. An example of variability across
flocks in the quality of the model predictions is shown in

Fig S2 C and D, where the predicted correlation is com-
puted for two different flocking events, both with and
without fixed border. In Fig S4 we also plot the overlap
distribution for three different flocking events. The first
two events (blue and turquoise) are the same events as
Fig S2. The other one (in blue) corresponds to flocking
event 31-01. This flock is larger, the 3D reconstructions
of velocities were less good (in terms of percentage of the
reconstructed individuals), and the polarization is the
lowest among all the flocking events we analyzed. Thus,
this is one of those cases where we expect the model to
give less good predictions. As it can be seen from the
figure, however, the overlap distribution is nevertheless
very peaked on 1 (even if less than the other two flocks),
indicating that the large majority of velocities have been
correctly reproduced.

VI. A MODEL FOR ORDER PROPAGATION

The maximum entropy model with fixed flight direc-
tions on the border gives excellent predictions for two–
point and higher order correlation functions; see Fig 3 in
main text, Fig S2 and Fig S5. In addition, it allows to
infer—up to a calibration factor—the microscopic inter-
actions in a numerical model of self–propelled particles.
We can conclude that this model indeed offers a very
good statistical description of the flight directions of in-
dividuals in a flock. Let us then look back at the model,
and try to understand the kind of system that the model
describes.

We recall that, in this version of the model, we take
as fixed the flight directions of the individuals on the
border. Therefore, the model does not aim at predict-
ing properties of border individuals, which, as we noted,
may depend on factors other than mutual interactions.
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real and predicted velocities (see main text and Fig 3D). The
distributions are computed with a larger number of bins than
in Fig 3D, for a better comparison between different flocks.

Rather, the model focuses on internal individuals and
how ordering flows through the flock. The state of the

birds on the border generate a ‘field’ (~hi) on internal in-
dividuals, but this field is nonzero only for individuals
interacting directly interacting with birds on the bound-
ary (i.e. when Jij = Jnij 6= 0). For the values of nc
retrieved by the model (nc ∼ 20), this is only a small
shell close to the border: all individuals well inside the
flock, on the contrary, do not experience any direct in-
fluence from the border.

Still, if the model does describe what happens in a
real flock, it must predict collective coherence: all flight
directions must strongly align and internal individuals
must behave very much in unison with their exterior
companions. Does the model reproduce this behaviour?
If so, what is the mechanism leading to this kind of or-
dering? How do individuals on the border transmit infor-
mation about their flight directions to distant individuals
with whom they do not interact directly?

The formal answer to these questions can be read in
Eq’s (S41) and (S42). The first equation indicates that
the model predicts a well defined perpendicular compo-
nent of the flight direction 〈~πi〉 for each internal indi-
vidual i. Surprisingly, these perpendicular components
agree remarkably well with the ones measured experi-
mentally (see Fig 3D in main text), not only for birds
close to boundary, but also well inside the group. The
second equation provides a prediction for the correlation
function. Visualization of these correlations as a func-
tion of distance shows that these predictions also are very
good. We note that, since the longitudinal component
of the flight direction is given by 〈sLi 〉 = 1 − 0.5〈|~πi|2〉,
if we are getting the perpendicular components of the
velocity right we must also be getting the longitudinal

components right. Equations (S41) and (S42) therefore
provide correct predictions of the full flight directions for
all individuals in the flock.

The mechanism through which such ordering occurs,
is the presence of long ranged correlations in the system.
This can be seen more easily rewriting the equations in
the following way:

〈~πi〉 =
∑
j∈I

Ccon
ij
~hPj −

∑
j∈I(A−1)ij∑
kj∈I(A−1)kj

∑
l∈B

~πl (S50)

〈~πi · ~πj〉 = Ccon
ij + 〈~πi〉 · 〈~πj〉 (S51)

Ccon
ij = 2

[
A−1ij −

∑
kn∈I A

−1
ik A

−1
nj∑

kn∈I A
−1
kn

]
(S52)

where we have separated the part of the correlation,
Ccon

ij , which is locally connected (i.e. the covariance).

In Eq (S50) the first term describes a contribution
coming from individuals on the border, while the sec-
ond term is just a renormalization factor to ensure that∑

i∈I〈~πi〉+
∑

l∈B ~πl = 0. We can see from Eq (S50) that
an individual i far from the border can also feel the ef-
fect of birds on the border, provided there is a nonzero
connected correlation Ccon

ij between i and some individ-
ual j close to the border. In other terms, while direct
mutual alignment occurs only between border individu-

als and immediate neighbors (for which ~hi are non zero),
effective alignment occurs also with internal birds that

are indirectly correlated with them (for which Ccon
ij
~hj are

nonzero). If the connected correlations extend over suf-
ficiently long distances, this mechanism ensures propa-
gation of directional information trough the whole flock.

In Fig S5-B we show the behaviour of the connected
correlation as a function of distance, for one flocking
event. The scale over which this function decays, the
correlation length, is of the order of the thickness of the
flock (maximum distance between an internal point and
the border), showing that Ccon indeed is long ranged
enough to propagate ordering well inside the group. In
the inset, we show that the correlation length grows lin-
early with flock size, for all the flocking events we an-
alyzed. Thus the correlation function is scale free: no
matter how large the flock is, the correlation always ex-
tends over the whole flock.

VII. CORRELATION FUNCTIONS

In this section we summarize the definitions of all the
correlation functions introduced in the paper and we
comment on their behaviour.

The pairwise correlation. Let us start by recalling
the definition of the pairwise correlation,

〈~si · ~sj〉 = 〈sLi sLj 〉+ 〈~πi · ~πj〉 (S53)
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FIG. S5: Correlations in the interior of the flock. (A) Perpendicular component of the two–point correlation function (as in
Fig 2A) for internal birds only, as a function of distance. (B) Connected correlation function predicted in the model, as a
function of distance. Inset: correlation length vs. flock size, for all the flocks that we analyzed.

where, for future convenience, we have separated the lon-
gitudinal part of the correlation from the perpendicular
one. We note that while the sample average of the per-
pendicular flight direction is zero, (1/N)

∑
i ~πi = 0, the

same is not true for the longitudinal direction. Rather,
we have (1/N)

∑
i s

L
i = S, and the longitudinal corre-

lation is dominated by a contribution from the global
polarization S. To better investigate the degree of cor-
relation in the system, it is then convenient to focus on
fluctuations of the individual flight directions with re-
spect to the sample average. To this end, in all the fig-
ures in this paper we consider the following correlations,
where we have subtracted the sample average contribu-
tion:

CP
ij = 〈~πi · ~πj〉 (S54)

CL
ij = 〈(sLi − S)(sLj − S)〉

= 〈(1− S − 1

2
〈π2

i 〉)(1− S −
1

2
〈π2

j )〉 (S55)

Cij = CP
ij + CL

ij . (S56)

The last identity in Eq (S55) is a consequence of the spin
wave approximation.

Connected correlations. In Section IV of the SI we
have described a theory where we get nonzero expecta-
tion values for the flight directions of individual birds,
〈~πi〉 6= 0. In this case, it may be useful to look at cor-
relation functions which are locally connected, i.e. that
describe how the individual bird flight direction fluctu-
ates with respect to its own average value and not—as
in the previously defined correlations—with respect to
the sample average. To this end, we have introduced in
Section VI the following connected correlation function

Ccon
ij = 〈~πi · ~πj〉 − 〈~πi〉 · 〈~πj〉 . (S57)

We note that in our case Ccon
ij is purely a theoretical

construct. Indeed, we have applied the maximum en-
tropy approach to each single snapshot independently.
For a single snapshot, the experimental measurement of
the correlation only consists in one configuration (the
velocity field at that instant of time) and we cannot dis-
tinguish between connected and non–connected correla-
tions. The only quantity that can be compared between
theory and experiments is therefore 〈~πi · ~πj〉.

The degree of direct correlation. One important
quantity entering our computation is the degree of direct
correlation,

Cint =
1

N

∑
i

1

nc

∑
j∈ni

c

〈~si · ~sj〉, (S58)

which measures the average correlation between an in-
dividual and its first nc neighbors. This degree of di-
rect correlation is a single scalar quantity, and represents
the input observable used by our maximum entropy ap-
proach to build a statistical model for the flight direc-
tions.

The two–point correlation function. To describe
the behaviour of the correlation at different scales, it is
convenient to define the two–point correlation function

C(r) =

∑
ij Cijδ(rij − r)∑
ij δ(rij − r)

, (S59)

where rij = |~ri−~rj| is the distance between bird i and bird
j and the delta function selects pairs of individuals that
have mutual distances in a small interval around r (the
denominator representing the number of pairs in such an
interval). This function measures the average degree of
correlation between individuals separated by a distance
r. Again it is possible to distinguish a longitudinal and
a perpendicular component of these correlations,

C(r) = CL(r) + CP(r), (S60)
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describing the contributions relative to, respectively, lon-
gitudinal and perpendicular fluctuations in the flight di-
rections. Figure 3 in the main text and Fig S5 in the SI
show the two–point correlation function computed from
the maximum entropy model with fixed boundary condi-
tions. The prediction agrees nicely with the experimen-
tal one, on all scales. We stress that the maximum en-
tropy model uses as an input only Cint, which measures
the average degree of correlation up to scale nc. With the
values of nc retrieved for our events (nc = 21.2 ± 1.7),
this corresponds to a scale of the order of a few me-
ters in r. In contrast, the two–point correlation func-
tion measures the correlation on all possible scales, from
close neighbors (a few meters) to the whole extension of
the flock (hundreds of meters, for some flocks). There-
fore, the good agreement with experiments represents
a highly nontrivial prediction of the model. From Eq
(S59), the correlation function takes into account the
contribution coming from all pairs of individuals, inde-
pendent of whether they reside on the border or in the
bulk of the flock. Yet, when adopting fixed flight direc-
tions on the border of the flock, the contribution coming
from birds on the border is by construction identical in
the predicted and observed correlation functions. To test
more explicitly whether the model provides good predic-
tions for the correlations of internal individuals, we can
consider an internal correlation function, defined as in
Eq (S59), but where we only count contributions from
individuals inside the flock (i, j ∈ I); the result is in
Fig S5-A. Again, the prediction of the model is nicely
consistent with the experimental correlation.

The four–point correlation function. We can de-
fine correlation functions not only between pairs of indi-
viduals, but for more complicated arrangements of birds.
For example, let us consider a pair of birds i, j separated
by a distance r1, and measure their mutual alignment.
We might want to compare this degree of alignment to
the one that another pair of birds k, l, also separated
from one another by a distance r1, that are located in
another position in the flock.

We can then define the following four–point correla-
tion

C4(r1; r2) =

∑
ijkl〈(~πi · ~πj)(~πi · ~πj)〉∆ijkl∑

ijkl ∆ijkl
, (S61)

∆ijkl = δ(rij − r1)δ(rkl − r1)δ(rij−kl − r2)

(S62)

where rij−kl indicates the distance between the mid-
points of the pairs ij and pair kl; see Fig S6. We can
plot C4(r1; r2) as a function of the two distances r1 and
r2. For example, in Fig 3C in the main text, it is shown
for a fixed value of r1 as a function of r2. We also note
that, in the spin wave approximation, the longitudinal
correlation CL is nothing else than a particular case of
the four–point correlation,

CL(r) = 1− C4(0; r)− S2. (S63)

r2
r1

r1


i


j


k


l


FIG. S6: Sketch of the structure of the four point correlation
function. Red circles represent birds. Birds i and j have
mutual distance rij = r1; birds k and l also have mutual
distance rkl = r1. The distance between the mid-point of the
ij pair and the midpoint of the kl pair is r2.

VIII. DATA ANALYSIS AND BORDER
DEFINITION

Three-dimensional data have been obtained from
stereoscopic experiments on large flocks of starlings, dur-
ing pre-roosting aerial display [19][20][22]. Digital high-
resolution stereoscopic images were processed using in-
novative computer vision techniques [20] and 3D coor-
dinates and velocities reconstructed for individual birds
in the flock. A summary of the global properties of the
analyzed flocking events can be found in Table S1.

Given a flock, in order to compute global and sta-
tistical quantities it is necessary to appropriately define
its exterior border. Flocks are typically non-convex sys-
tems. Standard methods to define the border, like the
convex-hull, are therefore inadequate because they are
unable to detect concavities. To overcome this problem,
we used the so-called ‘α-shape algorithm [23][21]. The
main idea of this method is the following: given a set of
3D points, one ‘excavates’ the set of points with spheres
of radius α, so that all concavities of size larger than α
are detected. Formally, one selects the sub-complex of
the Delaunay triangulation on scale α (the α-complex)
and the external surface of this triangulation defines the
border. The scale α must be appropriately chosen. If
α is too large, some concavities are neglected and void
regions are included as being part of the flock. Too small
values of α, on the other hand, might cause the sphere
to penetrate the flock and break it into sub-connected
components. A robust criterion is to look at the density
of the internal points as a function of α [21][24]. This
quantity typically has a maximum, which defines a nat-
ural scale for α.

For all the analyzed flocking events, the border has
been computed following the above procedure. We note
that, since flocks change shape in time, the border must
be computed and re-defined at each instant of time. Be-
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TABLE S1: Summary of experimental data.

Eventa N S v0 (m/s) L (m)

17–06 552 0.935 9.4 51.8

21–06 717 0.973 11.8 32.1

25–08 1571 0.962 12.1 59.8

25–10 1047 0.991 12.5 33.5

25–11 1176 0.959 10.2 43.3

28–10 1246 0.982 11.1 36.5

29–03 440 0.963 10.4 37.1

31–01 2126 0.844 6.8 76.8

32–06 809 0.981 9.8 22.2

42–03 431 0.979 10.4 29.9

49–05 797 0.995 13.9 19.2

54–08 4268 0.966 19.1 78.7

57–03 3242 0.978 14.1 85.7

58–06 442 0.984 10.1 23.1

58–07 554 0.977 10.5 19.1

63–05 890 0.978 9.9 52.9

69–09 239 0.985 11.8 17.1

69–10 1129 0.987 11.9 47.3

69–19 803 0.975 13.8 26.4

72–02 122 0.992 13.2 10.6

77–07 186 0.978 9.3 9.1

aFlocking events are labelled according to experimental session
number and to the position within the session they belong to. The
number of birds N is the number of individuals for which we ob-
tained a 3D reconstruction of positions in space. The polarization
S is defined in the Methods. The linear size L of the flock is de-
fined as the maximum distance between two birds belonging to the
flock. The speed v0 is that of the centre of mass, i.e. the mean ve-
locity of the group. All values are averaged over several snapshots
during the flocking event.

sides, due to the continuous movement of individuals
through the group, the individuals belonging to the bor-
der change from time to time.

IX. ADDITIONAL NUMERICAL
SIMULATIONS

The self-propelled particle model defined in Eqs.
(9)(10) has been studied extensively in the literature,
in the case where the interacting neighbors are chosen
as the Voronoi neighbors [25][26]. From these works we
know that the alignment term in eq. (9) is the most
relevant one in determining the properties of the veloc-
ity fields. The distance dependent attraction-repulsion
force, on the other hand, acts predominantly on the
structure of the group, fixing the density and prevent-

ing collisions on the short scale. As long as the system
remains in a flock-like state, i.e. it does not crystal-
ize and diffusion of individuals occurs throughout the
group, one would not expect a significant role of this
term on the inference procedure described in this paper.
Still, one might ask how much the metric dependency of
the attraction-repulsion force affects the relationship be-
tween real and inferred parameters (Fig 4 in main text).

To investigate this point, we run a few additional sim-
ulations with the model of eqs. (9),(10). We considered
a number of interacting neighbors of order 13 (corre-
sponding to µ = 0.49), and varied the parameters enter-
ing the distance dependent term (all other parameters
being fixed as specified in the main text). We recall that
this term has the following form:

~fij(rij < rb) = −∞ ~eij (S64)

~fij(rb < rij < ra) =
1

4
· rij − re
ra − re

~eij (S65)

~fij(ra < rij < r0) = ~eij, (S66)

where rb sets the hard core below which repulsion oc-
curs, re is an “equilibrium” preferred distance (where the
attraction-repulsion force is zero), and [ra, r0] defines a
region where the force is constant [25][26].

We tried 5 different values of β (the parameter modu-
lating the strength of the attraction-repulsion force), and
4 different values of the set of parameters re, ra, rb. In
all these cases we checked that the simulated flocks had
appropriate structure and polarization (i.e. the group
had to exhibit internal diffusion, as natural flocks do,
and polarization had to be large). The results for these
new simulations are shown in Fig S7: here green points
are the new ones, red and blue points are as in Fig 4
of the main text. As can be seen from this figure, new
points lie on the same lines as old ones, demonstrating
that the metric dependency does not affect the value of
the proportionality constant between estimated and real
parameters.
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FIG. S7: Maximum entropy analysis for a model of self–propelled particles - Additional simulations. (A) Inferred value of the
parameter J vs. microscopic strength of alignment forces used in the simulation. Blue points correspond to β = 5, r0 = 1,
rb = 0.2, re = 0.5, ra = 0.8, α = 35 (and are identical to Fig 4 in main text). Green points correspond to new numerical
simulations where we fixed µ = 0.46 (corresponding to nc ∼ 13) and varied β, ra, rb, re. Inset: inferred value of J for the
new simulations as a function of β. The points at β = 5 have re ∈ [0.4, 0.7], ra ∈ [0.64, 1.12], rb ∈ [0.8, 1.4]. No significative
dependence of the value of J is observed on any of these parameters. (B) Inferred value of nc vs. the true number of interacting
neighbors in the simulation. Red points correspond to the simulations of Fig 4. Green points correspond to new numerical
simulations. Inset: inferred value of nc as a function of β. All parameters as in (A). Slopes of the lines are 2.2 and 2.7,
respectively. Error bars are standard deviations across 45 snapshots of the same simulation.
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