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ABSTRACT We present a self-consistent field approximation approach to the problem of the genetic switch composed of two
mutually repressing/activating genes. The protein and DNA state dynamics are treated stochastically and on an equal footing. In
this approach the mean influence of the proteomic cloud created by one gene on the action of another is self-consistently
computed. Within this approximation a broad range of stochastic genetic switches may be solved exactly in terms of finding the
probability distribution and its moments. A much larger class of problems, such as genetic networks and cascades, also remain
exactly solvable with this approximation. We discuss, in depth, certain specific types of basic switches used by biological systems
and compare their behavior to the expectation for a deterministic switch.

INTRODUCTION

Genetic switch systems are an elementarymeans of regulatory

control present in every living organism. Their complexity

and details differ, but the general mechanism, that of the

expression of a given gene being regulated by proteins, is

believed to be universal (Ptashne and Gann, 2002). They are

building blocks of larger regulatory elements: genetic

networks and signaling cascades. The pathways by which

these systems operate are passed on from generation to gen-

eration. Understanding their stability and characteristics is

therefore fundamental. A lot of previous work has considered

a deterministic description of genetic switches (Ackers et al.,

1982; Hasty et al., 2001). The need for a stochastic treatment

of genetic switches, due to the single copy of the DNA

molecule and multiple protein molecules in the cell, has been

largely recognized (Sneppen and Aurell, 2002; Kepler and

Elston, 2001).

The most general way of accounting for nondeterministic

processes is to write down the master equation for a given

system. To define the state of the switch, one must specify

the DNA binding states of particular genes and the number of

proteins of each type. The probability distribution for even

a single switch consisting of two genes, the product proteins

of which act as regulator proteins for the system, may not be

determined exactly and approximations must be considered

(Bialek, 2001; Hasty et al., 2000; Sneppen and Aurell, 2002).

Several approaches to account for the probabilistic nature

of chemical reactions have been undertaken, ranging from the

Langevin description of single genes (Bialek, 2001), and two

interacting gene switches (Hasty et al., 2000), to the master

equation reduced to Fokker-Planck equation considerations

(Kepler and Elston, 2001; Hasty et al., 2001a). A dynamical

action formulation has also been used (Sneppen and Aurell,

2002) to determine the lifetimes of states of the switch. A

popular alternative to purely analytical methods, which often

need to make approximations or are limited to very simple

model systems, has been to conduct stochastic simulations of

genetic switches. Two types of simulations aremostly used. In

the first, the randomness of the system is introduced bymeans

of a Monte Carlo algorithm with a fixed time step (Paulsson

et al., 2000). The second is based on the Gillespie algorithm

(Gillespie, 1977) to predict the probability of a given reaction

occurring (Arkin et al., 1998). For single-gene systems, sto-

chastic simulations have shown that the stochasticity in the

system is responsible for the bimodal probability distributions

(Cook et al., 1998) that have been experimentally observed.

These methods prove very useful, because they allow us to

test the theoretical predictions onmodel systems that might be

hard to build experimentally. However, this approach often

does not enable us to gain intuition or insight into the mech-

anisms behind the functioning of the system. The aim of the

present work is to gain a better and deeper understanding

of the device physics of genetic switches. We therefore, con-

trary to many important previous discussions (McAdams and

Arkin, 1997; Aurell et al., 2002; Vilar et al., 2003), do not

present a specific concrete biological system, but discuss

generic behavior and try to understand its sources. Our

approximation also allows for an exact solution of a broad

class of genetic switch systems without any further assump-

tions and with little computational effort. Hasty et al. (2001b)

present an overview of the existent theoretical approaches.

A popular approximation assumes that the DNA binding

state reaches equilibrium much faster than the protein

number state. Therefore the adiabatic approximation is often

considered (Ackers et al., 1982; Sneppen and Aurell, 2002;

Darling et al., 2000), allowing for a thermodynamic

treatment (Ackers et al., 1982) of the DNA binding state.

The protein number fluctuations are then treated stochasti-

cally. Even before the statistical thermodynamics approach
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of Ackers et al. (1982) using partition functions, much

previous work assumed the DNA binding and unbinding can

simply be accounted for by an equilibrium constant, since the

relaxation timescales for equilibration of the DNA state are

much larger than those of the protein numbers, which require

protein synthesis and degradation to change. The partition

function approach has also been successful for looking at

logic gates built from switches (Buchler et al., 2003). The

adiabatic approximation is believed to hold true in many

cases, judging by the experimental parameters of biological

switches (Darling et al., 2000). But as the experiments of, for

example, Becskei et al. (2001) show, not all switches need to

function within the adiabatic limit and the nonadiabatic limit

may result in new phenomena. We therefore consider a wide

range of parameter ratios in our discussion.

In this article we explore more fully an approximation,

previously used by Sasai and Wolynes (2003) for the

variational treatment of the problem, the self-consistent

proteomic field (SCPF) approximation. Within this approx-

imation one assumes that the probability of finding the switch

in a given state is a product of the probabilities of states of

individual genes. One can then solve the steady-state master

equation for the probability distribution of many regulatory

systems exactly. We discuss the approximation and present

a detailed study of different classes of genetic switches, some

of which have never been considered theoretically. We con-

sider separately several particular features of such systems

that are found in known switches, to be able to charac-

terize their contributions to the behavior of the whole system.

To be specific, starting from a symmetric toggle switch, we go

on to compare the effects of multimer binding, and of the

production of proteins in bursts, on the stability of the switch.

The stochastic effects prove to be modest for symmetric

switches without bursts, especially if the genes have a basal

production rate. We find the deterministic and stochastic

SCPF solutions to have similar probabilities of particular

genes to be on, and similar mean numbers of proteins of

a given species in the cell. However, in the nonadiabatic

limit, when the unbinding rate from the DNA is smaller than

the death rate of proteins, the probability distributions have

two well-defined peaks, unlike in the deterministic approx-

imation or adiabatic limit of the stochastic SCPF solution.

We also show that the effect of stochasticity on the observ-

ables becomes more apparent when proteins are produced

in bursts. In these types of switches, the definition of the

adiabatic limit, which was clear for the switches in which

proteins are produced separately, is no longer simple. Our

discussion shows that the properties of genes often analyzed

in the deterministic limit, may be strongly influenced by

stochasticity in this case. Randomness in a biological reaction

system leads to quantitative and, in many examples, even

qualitative changes, from predictions of deterministic

models.

We also discuss the differences in the behavior of asym-

metric and symmetric switches. We point to the mechanisms

resulting in different types of bifurcations and show how

they are influenced by noise. Within the SCPF approxima-

tion, switches that are regulated by binding and unbinding

of monomers do not have regions of bistability. This holds

true for both symmetric and asymmetric switches. When pro-

teins are produced individually rather than in bursts, fast

unbinding from the DNA can effectively minimize the

destructive effect of protein number fluctuations on the

stability of the DNA binding state. Furthermore, a detailed

analysis of the probability distributions shows that they have

long tails, and are far from Poissonian in both the adiabatic

and nonadiabatic limits. We discuss the properties of the

system in terms of clouds of proteins buffering the DNA. We

show how fast or slow DNA binding characteristics and

protein number fluctuations influence the stability of the

buffering clouds, leading to specific emergent behavior of

observables. Throughout the article, a comparison is made

between results of the exact stochastic solution, to solutions

of the deterministic kinetic equations for the system within

the self-consistent proteomic field approximation.

We establish a base of potential building blocks of more

complicated switches and systems, such as networks and

signaling cascades, for which an exact solution within the

present approximation can also be obtained. A detailed dis-

cussion of these larger systems will be the topic of another

article. We also present limitations of the present style of

analysis where exact solutions are not possible.

There are two aims of this article. The first is to discuss the

self-consistent field approximation and show that it has an

exact solution that could be extended to a large class of

systems. This approximation lets one deal in a straightfor-

ward and computationally inexpensive manner with the

effect of random processes on genetic networks. The second

is to discuss the many components of biological switches

present in nature and in engineered systems, in the necessary

stochastic framework.

THE SELF-CONSISTENT PROTEOMIC
FIELD APPROXIMATION

The basic mechanism of gene transcription regulation in

prokaryotes may be reduced to the binding and unbinding of

regulatory proteins, repressors, and activators, to the operator

site of the DNA. If we use this simplified treatment, which

neglects extra levels of regulation such as the binding of

RNA polymerase, effectively each gene can be described as

being either in an active (on) state, when the repressor is

unbound (activator bound); or in an inactive (off) state, with
the repressor bound (activator unbound). The stochastic

system of a single gene and its product proteins is described

by the joint probability distribution P~ðn; tÞ ¼ ðP1ðn; tÞ;
P2ðn; tÞÞ of the number of product proteins in the cell n,
and the DNA binding-site state, as on (protein not bound) ¼
1; and off (protein bound) ¼ 2. To conserve probability,

+
n
ðP1ðn; tÞ1P2ðn; tÞÞ ¼ 1:
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If one considers two interacting genes, the description in

terms of a joint probability vector needs to be extended to

four states: both genes may be on, or off; or one of the genes
may be on, and the other off. If the two genes do not interact,
as would be the case for two self-regulatory proteins, the

probability of finding the two-gene system in a given state,

defined by both the number of product proteins and the DNA

binding-site state, would be the product of the states of par-

ticular genes Pjj#(n1,n2;t)¼ Pj(n1;t)Pj#(n2;t). This is generally
not true for two interacting proteins, as is the case in a genetic

switch. However, as a first approximation to the problem,

one can ignore correlations between the spaces of the two

genes and assume the space of the switch is a sum of spaces

of the genes that compose it. Since we are looking for

solutions in which the symmetry of the system is broken and

different behaviors of the on- and off-state of a gene are

possible, we must allow for different probability distribution

functions for the on- and off-states. This is analogous to the

unrestricted Hartree approximation in quantum mechanics,

where allowing different spatial functions for spin-up and

spin-down states results in breaking of the symmetry of the

bound molecular orbital solution to the dissociated solution

of two separate hydrogen atoms with opposite spin-states for

large internuclear distances. We therefore allow for multiple

solutions for a given set of parameters. The total probability

of having a given gene state j and ni proteins of that type is
simply given by Pj(ni,ni#) ¼ Pj,j#¼0(ni,ni#) 1 Pj,j#¼1(ni,ni#).
The self-consistent approximation is a crude one, since in

the case of the genetic switch, the state of a given gene is often

determined by the number of protein products of the other

gene. However, within this approximation, one can solve the

master equation for the probability distribution exactly, with-

out any further approximations. This yields a powerful com-

putational tool, which simultaneously gives useful insight.

THE TOGGLE SWITCH

For clarity of exposition, we show how the problem may be

solved exactly within the self-consistent proteomic field

approximation on a well-defined system of the toggle switch.

We then expand the method to apply to other systems. The

elementary system we use as an example is composed of two

genes, labeled 1 and 2, as presented in Fig. 1. Gene 1 produces
proteins of type 1, which act as regulatory proteins, i.e.,

repressors, on gene 2. The product of gene 2, proteins of type

2, in turn repress gene 1. In this simplified model, we assume

that protein production occurs instantaneously upon un-

binding of the repressor. For now, we assume that repressor

proteins bind as dimers, since that is a common scenario in

biological systems, but we do not treat dimerization kinetics

explicitly. For simplicity, the coupling form between the

genes responsible for binding will be taken to be of the form

hin
p
3�i; where p is the order of the multimerization of the

repressor. This form is a small approximation to the more

exact hin3�i(n3�i� 1). . .(n3�i� p1 1).Wehave checked that

using the simpler monomial does not influence the results in

any regime discussed. We also do not account for the exis-

tence of mRNA molecules and the consequent time delays

owing to their synthesis as intermediates. The extensions of

the model are discussed later.

Within the self-consistent proteomic field approximation,

the set of master equations for the corresponding system is of

the form

@P1ðniÞ
@t

¼ g1ðiÞ½P1ðni � 1Þ � P1ðniÞ�1 ki½ðni 1 1ÞP1ðni 1 1Þ

� niP1ðniÞ� � hin
2

3�iP1ðniÞ1 fiP2ðniÞ;
@P2ðniÞ

@t
¼ g2ðiÞ½P2ðni � 1Þ � P2ðniÞ�1 ki½ðni 1 1ÞP2ðni 1 1Þ

� niP2ðniÞ�1 hin
2

3�iP1ðniÞ � fiP2ðniÞ; (1)

for n $ 1 where the i ¼ 1,2 refers to the gene label. P1(n1)
describes the probability of gene 1 being in the on-state and

there being n1 protein molecules of type 1 in the cell. The

first term on the right-hand side of Eq. 1 describes the

production of proteins of type i with a production rate gj(i),
where j¼ 1, 2, depending on whether the gene is in the on- or

off-state. The second term accounts for the destruction of

proteins with rate ki. The binding of repressor proteins

produced by the other gene is proportional to the number

of dimer molecules present in the system n3�i with rate hi.
We assume unbinding occurs with a constant rate fi. Binding
and unbinding contributes to the kinetics of the DNA bind-

ing states, as described by the last two terms. This set is

supplemented by the Pj(ni ¼ 0) equations to account for

boundary conditions.

@P1ðni ¼ 0Þ
@t

¼ �g1ðiÞP1ðni ¼ 0Þ1 kiP1ðni ¼ 1Þ

� hin
2

3�iP1ðni ¼ 0Þ1 fiP2ðni ¼ 0Þ;

FIGURE 1 A schematic representation of the toggle switch. Gene 1

produces proteins of type 1, which repress gene 2; and gene 2 produces

proteins of type 2, which repress gene 1.
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@P2ðni ¼ 0Þ
@t

¼ �g2ðiÞP2ðni ¼ 0Þ1 kiP2ðni ¼ 1Þ

1 hin
2

3�iP1ðni ¼ 0Þ � fiP2ðni ¼ 0Þ: (2)

For convenience, let us define+
ni
PjðniÞ ¼ Cj; the probability

of finding the DNA binding site in a given state. One can now

sum the Pj(1) equations over the number states of the second

protein with P1(2)1 P2(2), and likewise the Pj(2) equations.

Due to the SCPF approximation, the only term affected is

the repressor binding term h1ðn22Þ; and since +
n2
P1ð2Þ1

P2ð2Þ ¼ 1; the summation results in +
n2
h1ðn22ÞðP1ð2Þ1

P2ð2ÞÞ ¼ h1ðC1ð2ÞÆn212æ1C2ð2ÞÆn222æÞ ¼ h1Fð2Þ, where Æn2j2æ
is the second moment of the number distributions of type 2

proteins producedwhen gene 2 is in the jth state. The equations
ofmotion of themoments of the probability distribution are of

the form

@CjðiÞÆnk

jiæ
@t

¼ gjðiÞ½Æðnji 1 1Þkæ� Ænk

jiæ�CjðiÞ1 ki½Ænjiðnji � 1Þkæ

� Ænk11

ji æ�CjðiÞ1 ð�1ÞjhiFð3� iÞÆnk

1iæC1ðiÞ
1 ð�1Þj11

fiÆnk

2iæ C2ðiÞ: (3)

The steady-state equations for the moments of the distribu-

tions that follow are closed-form; the nthi order moment

equation of motion depends only on the lower moments of

the ith gene and n23�i:
To analyze the behavior of switches we introduce the

following scaled parameters: the adiabaticity parameter vi ¼
fi/ki, which represents the characteristic rate of change of

the DNA state compared to the characteristic rate of change

in protein number, Xeq
i ¼ fi=hi measures the tendency for

proteins to be unbound from the DNA; Xad
i ¼ ðg1ðiÞ1

g2ðiÞÞ=ð2kiÞ the effective production rate; and dXsw
i ¼

ðg1ðiÞ � g2ðiÞÞ=ð2kiÞ distinguishes between the two DNA

states in terms of protein dynamics. We present a detailed

derivation of the moment equations in Appendix A.

The resulting equations for the 0th moments couple to the

higher moments by the interaction function F(i). These lower
moments can be solved self-consistently. The resulting

solution predetermines all the other moments, which com-

pletely describe the probability distribution. Each gene

therefore couples to the other gene by the influence of the

self-consistently generated proteomic field. One could define

the generating function and calculate the probabilities of

having a given DNA binding state j for the ith gene when

there are ni proteins of type i in the cell. In practice, it is

easier to go back to the steady-state master equation and

solve directly for the probability distributions than sum an

infinite number of moments. Rewriting the steady-state

master equation (Eq. 1) one gets

P1ðniÞ ¼
1

X
ad

i 1dX
sw

i 1vi

Fð3� iÞ
X

eq

i

1n

½ðXad

i 1dX
sw

i ÞP1ðni�1Þ

1ðni11ÞP1ðni11Þ1viP2ðniÞ�:

P2ðniÞ ¼
1

Xad

i �dXsw

i 1vi1n
½ðXad

i �dXsw

i ÞP2ðni�1Þ

1ðni11ÞP2ðni11Þ1vi

Fð3� iÞ
X

eq

i

P1ðniÞ�: ð4Þ

These sets of equations give recursion relations for Pj(ni) that
one can use to express Pj(ni) as a function of P1(0) and P2(0).

The normalization condition+
ni
ðP1ðniÞ1P2ðniÞÞ ¼ 1 gives

Pj(0) in term of constants and the result is the probability

function Pj(ni) as a series. The SCPF approximation reduces

the two-gene problem to a one-gene problem parameterized

by the moments of the second gene, which can be worked out

independently, as we have already shown, and these are re-

presented by F(3�i)—which is a constant in terms of this

calculation.

To see the effect of the stochastic nature of the system, we

compare the exact solutions of the self-consistent field

approximation equations to the results that would follow

from deterministic kinetic rate equations for the number of

proteins of each type and the fraction of on/off DNA binding

states for each gene,

C1ðiÞ ¼
X

eq

i

X
eq

i 1n
2ð3� iÞ

nðiÞ ¼X
ad

i 1dX
sw

i ðC1ðiÞ�C2ðiÞÞ; (5)

where n(i) is the number of proteins of type i present in the

cell. The exact SCPF equations reduce to the deterministic

kinetic equations in the limit of large v and Xad for the case

discussed above. The F(3–i) term in the stochastic SCPF

equations is replaced by the n2(3–i) term in the deterministic

kinetic rate equations. For the toggle switch, where repres-

sors bind as dimers, it is easily shown that the interaction

functional may be rewritten in the form

FðiÞ ¼ ðXad

i Þ
2
1X

ad

i 1ðdXsw

i Þ21dX
sw

i ðC1ðiÞ

�C2ðiÞÞð112X
ad

i Þ�4viðdXsw

i Þ2 C1ðiÞC2ðiÞ
vi1C1ðiÞ

¼ ÆnðiÞæ2 vi11

vi1C1ðiÞ
1 ÆnðiÞæ; (6)

which in the large v-limit reduces to F(i) ¼ Æn(i)æ2 1 Æn(i)æ.
So for large mean numbers of proteins present in the cell,

which corresponds to large effective production rates Xad,

Æn(i)æ of the order of hundreds is a small correction to Æn(i)æ2.
We therefore reproduce the deterministic kinetics result.

As shown by Sasai and Wolynes (2003), the difference in

the probability that gene 1 is active and that gene 2 is active,

DC ¼ jC1(1)–C1(2)j, plays the role of an order parameter.

We can now consider a family of switches and discuss their

stability, sensitivity of regions of bistability to control param-

eters, and types of bifurcations.

THE SYMMETRIC TOGGLE SWITCH

For pedagogic purposes we will start by analyzing the single

symmetric toggle switch, such as discussed above, in which

SCPFT of Stochastic Gene Switches 831
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repressors bind as dimers, with v1 ¼ v2 ¼ v, Xad
1 ¼ Xad

2 ¼
Xad; dXsw

1 ¼ dXsw
2 ¼ dXsw; and Xeq

1 ¼ Xeq
2 ¼ Xeq; as it is the

most intuitive and shows the most generic behavior. It is an

academic example, as even individual genes in switches

engineered in the laboratory mostly have different chemical

parameters. Yet a lot can be learned from this simple system.

The general mechanism of the phase transition

Fig. 2 shows the phase diagrams for the system, jDCj, as
a function of reservoir protein number and the adiabaticity

parameter for the exact SCPF equations for growing values

of the parameter describing the tendency that proteins are

unbound from the DNA, Xeq. The deterministic kinetics and

exact SCPF approximations give qualitatively similar

results. The analogous deterministic kinetic phase diagrams

agree with the SCPF solutions in the large v- and Xad-limit,

hence they become more similar with growing Xeq, as the

bifurcation occurs at larger effective production rates for

larger Xeq. For large fluctuations and a small unbinding rate,

neither gene 1 nor gene 2 is favored and the probability of

a given gene to be on is determined solely by the effective

production rate of the other gene and decreases in a quadratic

manner as the number of repressor proteins grow (Fig. 3).

Since the switch is symmetric, the system has one stable

state, DC ¼ 0, where the probabilities of the genes to be on
are equal. As the relative protein number fluctuations get

smaller and the DNA unbinding rate grows, a proteomic

cloud buffers the repressed gene, keeping it repressed. The

symmetry of the system is broken and the solution bifurcates

into two separate basins of attraction. For the stochastic

SCPF equations the bifurcation takes place for larger

effective production rates (larger Xad), than for the de-

terministic equations, even in the large v-limit, which

depicts their sensitivity to fluctuations. The critical number

of reservoir proteins necessary for the bifurcation of the

solution to take place is the same in both approximations and

is determined by Ænæc ¼ (Xeq)½ (Fig. 3). In the discussed

example, Ænæc ¼ 32 ¼ 1000½, for Xeq ¼ 1000. For the

deterministic kinetic switch the bifurcation takes place when

C1(i) ¼ (1 1 Æn(3–i)æ2/Xeq)�1 ¼ 0.5, due to the simple form

of the interaction function equal to Æn(3–i)æ2 ¼ (2XadC1

(3–i))2. So C1(i) ¼ 0.5 is equivalent to the Æn(3–i)æ2/Xeq ¼ 1.

In a noisy system larger effective production rates are needed

to achieve the critical value of proteins. The interaction func-

tion in this case may be written as FðiÞ ¼ ÆnðiÞæ2ðv11=
ðv1C1ðiÞÞÞ1ÆnðiÞæ; and ðv11= ðv1C1ðiÞÞÞ$1; always. So
at Ænæc, F(3–i)/Xeq . 1 and the probability of the genes to be

on is ,0.5, therefore Cbiff;SCPF
1 ðiÞ , Cbiff;kin

1 ðiÞ: The mech-

anism of the bifurcation requires the two genes to be more

likely to be unbound than bound for the phase transition to

take place. The curvature of the null clines presented in

Fig. 2 can be simply worked out to be of the form

v ¼ ðz1=ðj1Xad21j2X
ad1z2ÞÞ � j2; with zi,ji constants

determined by the specific value of C1(1), C1(2).

Adiabaticity parameter dependence

As the adiabaticity parameter decreases, the area of phase

space corresponding to multiple solutions decreases (Fig. 2).

For very small values of the adiabaticity parameter, there

exists only one solution that corresponds to a state in which

the two genes are off. The value of v below which only one

solution exists decreases with the tendency for proteins to be

bound, but exists for all values of Xeq. Therefore if the two

genes have very high repressor binding affinities, the critical

number of proteins necessary for the phase transition to take

place cannot be formed, even for very high production rates.

This region of parameter space where one solution is

possible corresponds to a situation in which a buffering

proteomic cloud may not form, due to a very fast destruction

rate of proteins or a very small unbinding rate from the DNA.

The critical number of proteins necessary for the bifurcation

to occur grows with the tendency for proteins to be unbound

from the DNA (Xeq), as the cloud buffering the genes needs

to be bigger and exhibit smaller relative protein number

fluctuations, which effectively decrease with the growth of

the adiabaticity parameter. This is further discussed in terms

of the probability distributions. Therefore a monostable

solution exists at all values of the effective growth rate, Xad,

for larger values of v at large Xeq than at smaller Xeq values.

The bifurcation point is a result of competition between the

number of reservoir repressor proteins and the tendency for

proteins to be unbound from the DNA. This is clear from the

dependence of the number of proteins present in the cell at

FIGURE 2 Phase diagram obtained

as an exact solution within the SCPF

approximation for the single symmetric

switch when repressors bind as dimers

with Xeq¼ 1 (A), 100 (B), and 1000 (C).
Contour lines mark values of DC.
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the bifurcation point on the relative values of Xad and Xeq, but

not the adiabaticity parameter v.

Mean protein numbers

The total number of proteins present in the cell, produced

both in the on- and off-states, asymptotically away from the

bifurcation points is the same for the deterministic and

stochastic approximations, and it is given by Æn(i)æ ¼ 2Xad,

when C1(1) � 1 the probability of the gene to be on is close

to unity. The number of proteins of a given type present in

the cell, when the gene that produces them is in the on-state,

is always considerably smaller in the noisy system than in the

deterministic case (Fig. 3 C). Since the production rate in the
off-state was assumed zero, in the deterministic case no

proteins of a given type are present in the cell if the gene is

in the off-state, unlike in the noisy system. Therefore the

number of proteins in the deterministic system is nonzero

only if the gene is on. But interaction of the DNA binding

state with the proteins buffering it results in a residual

number of proteins present in the off-state for all values of v.

The region of bistability of the switch in parameter space

grows as the binding rate increases with respect to the

unbinding rate, stabilizing the DNA binding states. As

the susceptibility of the system to fluctuations increases, the

deterministic equations prove to be a poor approximation to

describe the state of the system.

Gene-buffering proteomic cloud interactions

The stochastic nature of the system also manifests itself at

the DNA level (Fig. 2). As the tendency for proteins to be

unbound from the DNA grows, the area of parameter space

wherein multiple solutions are possible decreases—since

a larger number of proteins is needed to reach a state in

which two genes are more likely to be repressed (protein

bound state) than at small Xeq. For small unbinding rates or

large binding rates, regardless of the ratio of the rate of

unbinding of repressors from the DNA to protein degrada-

tion, bistability requires smaller numbers of proteins, which

correspond to larger relative fluctuations, than for large Xeq.

Therefore a larger unbinding rate relative to the binding rate

makes the system more susceptible to protein number noise.

Competition between Xeq and Æn(i)æ results in Xeq, for a given

null cline, being a parabolic function of Xad, for the dimer

binding case, with coefficients determined by v and C1(i).
This is easily generalized to higher order functions for higher

order (p) oligomers, and results in p-order dependence. The
switching region, by which we mean that the region of

parameter space between the bifurcation point and DC. 0.9

decreases as the binding and unbinding rates become com-

parable (Xeq decreases). As discussed above, the probability

of the genes to be on at the bifurcation point tends to 0.5 as

the adiabaticity parameter grows (Fig. 3), therefore the

probability to be on has to increase by a smaller DC to reach

C1(i) ¼ 1. Therefore the switching region decreases also as

the unbinding rate from the DNA grows, since smaller

effective production rates are needed to reach DC ¼ 1, than

for small v. Small values of v correspond to large

fluctuations in the DNA binding state as well as the protein

number state, and result in destabilizing the gene-buffering

protein cloud interactions. Hence very large effective

production rates are needed for DC . 0.9. Therefore the

DNA unbinding rate must become considerably faster

compared to the protein degradation rate for the switch to

have two stable solutions in a large region of parameter

space.

The probability distributions

A better understanding of the bifurcation can be gained from

examining the probability distributions. Fig. 4, A and B, and
Fig. 4, C and D, show the evolution of the probability

distributions of gene 1 and gene 2, respectively, to be on and
off as functions of Xad. The peak of the distribution decreases

and the width spreads out as the control parameter grows,

until it reaches the bifurcation point at Xad ¼ 44. Then the

value of the probability function corresponding to the most

probable number of proteins grows again. The spread of the

functions grows as the effective production rate in the on-

state increases; it narrows, however, with the increase of the

adiabaticity parameter, as would be expected, since the DNA

state fluctuations become smaller with v. The average

number of proteins in the cell in the on-state (DC. 0.9) does

not show a dependence on v. Yet as the unbinding rate from

the DNA becomes very fast compared to the protein number

FIGURE 3 Probability that genes are

in the active state (A), the mean number

of proteins of each type present in the

cell Æn(i)æ(B), and the mean number of

proteins of each type present in the cell

if gene i is in the on-state Æn1(i)æ (C) as
a function of Xad ¼ dXsw for a symmet-

ric switch. Exact solutions of the SCPF

approximation equations comparedwith

deterministic kinetic rate equations solu-

tions, for a single symmetric switch,

Xeq ¼ 1000, v ¼ 0.5.
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fluctuations, the system switches often between the two

states, hence a large number of proteins is present even in the

off-state. If the DNA unbinding rate is small, the protein

number characteristics follow the DNA state having time to

reach a steady state within each well, before the DNA

binding site switches into the other state, so the number of

proteins in the off-state falls to zero (Fig. 5, A and B). This
results in a two-peak, bimodal probability distribution

(Fig. 4). If v is large, random fluctuations in the DNA state

do not change the effective state of the system, since

a residual high mean protein number is present even in the

off-state. In such a case, lower effective production rates than

for small v result in higher protein yields, and hence smaller

switching regions.

For small v one might expect Poisson distributions of

proteins in each of the DNA states, since the unbinding rate

from the DNA is smaller than the protein degradation rate, so

the proteins may reach a steady state without the DNA state

changing. Hence, effectively proteins would feel the effect of

only one well and be subject to a birth/death process. This is

not true, however. The difference between the exact solution

and a solution obtained within a Poissonian approximation to

the state of the system is surprisingly large, owing to the

skewed tails of these distributions. Fig. 5, C andD, compares

these probability distributions with distributions for the same

system if one assumes a Poissonian probability function. The

distributions obtained as an exact solution within the SCPF

approximation are clearly not symmetric, but exhibit long

tails toward zero. Therefore, although the most probable

values of the two types of distributions are similar, noise has

a destructive impact on the system, resulting in a larger

probability of having a smaller number of proteins in the cell

than expected based on a Poissonian distribution, whose

higher moments are equal to the mean. Therefore, a larger

production rate is needed for one of the states to be favored as

a result of noise, than that predicted from a symmetric

probability distribution. The most probable number of

proteins in the on-state, if the unbinding from the DNA is

slow, is zero, unlike the number predicted by Poissonian

distributions. The influence of noise on protein number

fluctuations brings the protein-number means down, as can

also be seen from Fig. 3 C. Overall, the spread of the proba-

bility distributions is large, and their characteristics for small

values of the control parameters are different from those

predicted by Poissonian distributions, let alone by determin-

istic kinetic equations; therefore the effects of stochasticity

may not be neglected.

The nonzero basal effective production rate case

The above analysis concerns a switch with a zero basal pro-

duction rate, so proteins were not produced in the off-state. In

a number of biological systems (Ptashne and Gann, 2002) a

nonzero basal production rate exists and we now turn to

consider the effect of this on a symmetric switch. Fig. 6 B
shows the dependence of the bifurcation curves for different

values of the effective basal production rate g2/(2k). Values
,1, when the death rate is larger than the production rate,

show that, for the symmetric switch, assuming the effective

production rate to be zero in the off-state is a reasonable

approximation. If the on-state has a positive input to the

number of reservoir proteins present due to g2/k . 1, the

probability of the active gene to be on, even for very large

FIGURE 4 Evolution of probability distributions for the probability of

the gene that will be active (on) after the bifurcation to be on (A) and off (B)

and the gene that will be inactive (off) to be on (C) and off (D) as a function

of the order parameter Xad for a symmetric switch. The bifurcation occurs at

Xad ¼ 44, Xeq ¼ 1000, v ¼ 0.5.

FIGURE 5 Probability distributions for the gene to be in the on-state (A)

and off-state (B) for a gene in the active state for different values of the

adiabaticity parameter v ¼ 0.5, 10, 100. Xeq ¼ 100, Xad ¼ dXsw ¼ 100.

Comparison of probability distributions obtained by exactly solving the

steady-state equations in the SCPF approximations with analogous

Poissonian distributions (C and D). Symmetric switch, Xad ¼ 44, Xeq ¼
1000, v ¼ 0.5.
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on-state effective production levels Xad, is,1. Hence the off-

state contributes considerably to the steady-state number of

proteins. The solution that corresponds to the more active of

the two states may effectively be an off-state, since it hasC1(i)
, 0.5, although the effective production rate in the on-state in

the bifurcated region of parameter space ismuch larger than in

the off-state (for example, the g2/(2k)¼ 20 line in Fig. 6B). As
the effective basal production rate increases, a larger pro-

duction rate in the on-state than for small g2/(2k) . 1 is

required to reach the critical number of proteins for the

bifurcation to take place, which is given by Æn(i)æ¼ 2XadC1(i)
� g2/k(2C1(i) – 1). For this reason, even for the deterministic

approximation at the bifurcation point, the two genes must be

more probable to be off, as can also be seen for the exact SCPF
solutions from the probability distributions (Fig. 7, B, C, E,
and F). Fig. 6 A shows the dependence of the bifurcation

curves on the adiabaticity parameter, which tend to the

deterministic case for largev. A closer analysis of the g2/k. 1

case, since the g2/k , 1 is analogous to the zero basal

production rate case, which has already been discussed,

shows that mean properties of the system are in even better

agreement with the deterministic solution than the g2¼ 0 case

(Fig. 7, A and D). The genes have a nonzero probability of

being in the off-state, with the probability distribution of the

off-gene having a long tail toward higher protein numbers

(Fig. 7, E and F). In the off-state the effective production rate
g2/(2k) is small and the noise input is small, relative to the

large protein numbers present in the system. The small effect

of stochasticity results in the observed similar mean

characteristics. Yet the form of the probability distributions

for the genes to be on before the transition is especially broad,
with a far smaller probability than those of the off-state (Fig. 7,

B, C, E, and F). These clearly show that the two genes are

more probable to be in the off-state before the bifurcation

point. Therefore, although the average observables are similar

for the deterministic and SCPF stochastic solutions, the

predicted distributions are unusual.

Summary

The symmetric switch is based on a competition between the

accessibility of the repressor site and the number of repressor

proteins present in the cell. The bifurcation is solely a result

FIGURE 6 Nullclines for a symmetric switch, where proteins bind as

dimers, when the effective base production rate is g2/(2k) 6¼ 0. (A)

Dependence on the adiabaticity parameter v ¼ 0.005, 0.05, 0.5, 5, and 50,

compared to the deterministic equations solution, g2/(2k) ¼ 5. (B) De-

pendence on g2/(2k) ¼ 0.01, 0.1, 0.5, 1.0, 5, 10, and 20, v ¼ 0.5. Xeq ¼
1000.

FIGURE 7 Probability of genes to be

on (A) and mean number of proteins of

a given type present in the cell (D) for
a symmetric switch with an effective

base production rate. Evolution of

probability distributions for the proba-

bility of the gene that will be active

after the bifurcation to be on (B) and off

(C) and the gene that will be inactive to

be on (E) and off (F) as a function of the

order parameter Xad for the same sys-

tem. The bifurcation occurs at Xad ¼
61, g2/(2k) ¼ 5, v ¼ 0.5, Xeq ¼ 1000.
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of the nonlinearity of the system and introducing noise

simply affects the region in parameter space where given

states occur. The protein number fluctuations have a de-

structive role in determining the stability of the bifurcated

solution; however, fast DNA unbinding rates can compen-

sate for the destabilizing effect of protein number fluctua-

tions. In this region the stochastic solution predicts similar

means to the deterministic case, but the form of the prob-

ability distributions which depends on a large number of

higher moments is nontrivial. It is a result of the interplay of

the DNA binding and protein degradation kinetics.

THE ASYMMETRIC TOGGLE SWITCH

Most switches found in nature are not symmetric. For

asymmetric switches, when proteins bind as dimers, the two

genes interact, resulting in probabilities to be on, different
from those imposed purely by the equilibrium between

binding and unbinding. The steady-state solution is a com-

promise between the tendency that repressors are unbound

from the initially off-gene (Xeq
1 for the forward transition, Xeq

2

for the backward in the following discussion) and the

effective production rate of the initially on-gene (Xad
2 ;

forward; Xad
1 ; backward transition), at least for the de-

terministic case. This results in the characteristic S-curve

bifurcation diagram, as presented in, for example, Fig. 12,

with possible forward and backward transitions, hence

hysteresis. We refer to the transition that occurs with

increasing Xad
1 as the forward transition, and that with

decreasing Xad
1 as the backward transition. Since Xad

i is

a well-defined function of the probabilities that the genes are

on, the simplicity of the deterministic equations allows for

a completely analytic discussion of the asymmetric switch.

The more complicated form of the exact SCPF equations

makes this approach impossible. However, the deterministic

rate solution offers valuable insight into the basic mechanism

behind the transition.

The general mechanism

By combining the steady-state equations of motion for the

probabilities of the two genes to be on and noting that, with

a zero basal production rate ÆnðiÞæ ¼ 2Xad
i C1ðiÞ; one can

derive the form of the deterministic bifurcation curves as

X
ad

1 ðC1ð2ÞÞ ¼
X

eq1
2

2

2
11

ð2Xad

2 C1ð2ÞÞ2

X
eq

1

� �
1

C1ð2Þ
�1

� �1
2

(7)

as a function of C1(2), and

X
ad

1 ðC1ð1ÞÞ ¼
X

eq1
2

2

2C1ð1Þ
2X

ad

2

1

C1ð1Þ
�1

� �
X

eq

1

� �1
2

�1

0
BBB@

1
CCCA

1
2

; (8)

as a function of C1(1). The transition points are determined

as the extrema of Eqs. 7 and 8, which are functions solely of

the scaled parameter Xad2
2 =Xeq

1 and are plotted on the

bifurcation graphs. It is worth noticing that the bifurcation

points C1(i) do not depend on the value of X
eq
2 ; the parameter

describing the gene binding kinetics of the gene that is on
initially. This is not true for the exact SCPF solution, which

cannot be solved analytically, but the bifurcation curve has

the more complex form of

X
ad

1 ðC1ð2ÞÞ ¼
1

2

1

C1ð1Þ
�1

� �
X

eq

2

� �1
2 v11C1ð1Þ

11v1

11

 !1
2

0
@

�v11C1ð1Þ
11v1

1
A 1

2C1ð1Þ
; (9)

where C1(1) is a function of v2, X
eq
1 ; C1(2), and Xad

2 : The
bifurcation point is therefore determined by the protein (Xad

i )

and DNA (Xeq
i ) characteristics and mutual interactions (vi) of

their two genes. The deterministic approximation therefore

greatly simplifies the mathematical mechanism of the

transition. This may lead to large errors when studying

more complicated biologically relevant systems, where one

considers asymmetric switches with nonzero basal pro-

duction rates and proteins are produced in bursts. The case of

the nonzero basal production rate within the deterministic

approximation also cannot be solved analytically.

The general picture behind the transition is seen from the

deterministic approach. The larger the tendency for proteins

to be unbound from the DNA, the larger the effective pro-

duction rate Xad
1 must be for the transition, from one gene to

be active, to the other to be active, to take place —inasmuch

as repressor proteins are less likely to bind to the on-gene (i)
at large Xeq

i than at small Xeq
i : However, if one considers

a noisy system, it is effectively harder for proteins to stay

bound to the initially off-gene due to the destabilizing effect

of DNA binding noise (Fig. 8). For the stochastic system,

apart from very low values of the adiabaticity parameter

(v , 0.1) (Fig. 11), there is a threshold number of reservoir

proteins that will cause a rapid transition. If we start with

a small effective production rate for one type of protein and

increase this rate, keeping the production rate of the other

gene fixed at an initially higher value, the proteins produced

by the gene with the initially smaller production rate repress

it gradually and ineffectively, until they reduce the

probability of the gene to be on to one-half, for the exact

SCPF solution. The number of proteins present in the on-

state decreases much more rapidly with the change of

Xad
1 —whether it be an increase for the forward transition or

a decrease for the backward transition in the examples

presented—than the number of proteins in the off-state

grows (Fig. 10). Hence, the probability of the initially active

gene to be on shows a larger sensitivity to the change of Xad
1

than does the off-state probability. This leads to a rapid
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transition of the previously active gene to an inactive state

(Fig. 9). Such behavior is described by Ptashne (1992) and

Ptashne and Gann (2002) in the l-phage switch; they point

out its role as a ‘‘buffer against ordinary fluctuations in

repressor concentration.’’ The observed system switches

when the ‘‘repression probability’’ drops to 50%, as in the

solutions of this model. Our analysis seconds the hypothesis

of Ptashne and Gann, inasmuch as the deterministic system

lacks this behavior, the transition is rapid, and for certain

values of parameters, takes place when the probability of the

initially on-gene drops to 80% (Fig. 8). The buffering capa-

bilities of the stochastic system are clearly seen in the long

tails toward n ¼ 0 of the probability distributions of the gene

that is switching from the on- to the off-state (Fig. 9, A and B).

The effect of noise on the bifurcation mechanism

Themean number of proteins at the transition point differs for

the deterministic and exact SCPF solution (Fig. 10). More

repressors are needed to induce the transition in the

deterministic approximation than in the stochastic system,

since, due to the form of the interaction function for the exact

case, F(i) ¼ Æn(i)æ2(v 1 1)/(v 1 C1(i)) 1 Æn(i)æ . Æn(i)æ2. A
smaller number of proteins is therefore needed for the inactive

gene to become competitive with the active gene. The

mechanism of the transition is different from the symmetric

gene case, where a critical number of proteins needs to be

reached. The asymmetric switch is based on the competition

between the probability that proteins of one kind will repress

the opposing genes and the analogous probability for the other

kind of proteins. The repression capability is governed by

Xad2
3�i=X

eq
i ; which might be looked upon as the product of the

probability of having a certain number of repressor proteins

(3–i) in the cell and the tendency for them to be bound to

the opposing gene (i). In fact, the transition point in the

deterministic case is purely a function of such ratios,

Xad2
3�i=X

eq
i ¼ f ðXad2

i =Xeq
3�iÞ: In both the stochastic and de-

terministic cases, the transition points are set by the

interaction function which regulates the on- and off-state

probabilities of a given gene Fð3� iÞ=Xeq
i ¼ C2ðiÞ=C1ðiÞ:

Inclusion of noise in the system effectively increases the

nonlinearity of the system, which results in the already

discussed buffering capabilities of the system. Stochasticity

alters the very simple competitive mechanism seen in the

deterministic kinetics to allow formore levels of control of the

stability of the state of the system against randomfluctuations.

Further comparison of solutions of the deterministic and

stochastic equations leads to the same conclusions as for

a symmetric switch. As the tendency for proteins to be

unbound from the DNA grows, the difference in the critical

number of reservoir proteins necessary for the transition to

take place increases for both approximations. The critical

FIGURE 9 Evolution of the probability distributions for the two genes to

be active for the forward transition (A and B) and the backward (C and D) as
a function of Xad

1 ¼ dXsw
1 for Xeq

2 ¼ 50 with Xeq
1 ¼ 1000; v1 ¼ v2 ¼ 0.5;

Xad
2 ¼ dXsw

2 ¼ 80 for an asymmetric switch.

FIGURE 8 Dependence of the prob-

ability of genes to be on in an

asymmetric switch as a function of

increasing parameters of one gene

Xad
1 ¼ dXsw

1 in the forward (top) and

backward (bottom) transition for differ-

ent values of Xeq
2 : 5, 50, and 500. All

other parameters fixed at Xeq
1 ¼ 1000;

v1 ¼ v2 ¼ 0:5; and Xad
2 ¼ dXsw

2 ¼ 80:

Comparison of solutions of determinis-

tic and exact SCPF equations.
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number of proteins produced by a given gene necessary for

the transition to take place for both genes is, inmost cases (see

v dependence discussion), smaller for the exact solutions of

the SCPF equations and the difference between the stochastic

and deterministic result grows with both Xeq
i and decreases

withvi (Fig. 10). It has a value of 15 forX
eq
2 ¼ 500;v1¼v2¼

0.5 and 2 for Xeq
2 ¼ 500; v1 ¼ v2 ¼ 10.

Consider the forward transition. The initially inactive gene

is buffered by a cloud of repressor proteins. As one increases

the effective production rate of the proteins produced by the

inactive gene (Xad
1 ), the number of proteins that are able to

repress gene 2 grow slowly and linearly ÆnðiÞæ ¼ 2Xad
1 C1ð1Þ;

where C1(1) ;const, and form a buffering proteomic cloud

around it. In the results presented in the figures of this article,

the tendency that proteins are unbound from gene 2, (Xeq
2 ), is

smaller than Xeq
1 ; so gene 1 is able to produce enough re-

pressors to form a stable buffering cloud around gene 2 and

turn it into the inactive state at quite modest values of Xad
1 : If

Xeq
1 , Xeq

2 ; gene 1 produces proteins less effectively, as the

probability of it being repressed is larger than in the previous

case, and larger values of Xad
1 are needed to produce enough

repressors to achieve a high effective probability of binding,

Xad2
1 =Xeq

2 : An example of how Xad;crit
1 grows as Xeq

1 /Xeq
2 ; is

seen by comparing the Xad
1 ;33 for Xeq

1 ¼ 1000; Xeq
2 ¼ 50

(Fig. 8) and Xad
1 ;300 for Xeq

1 ¼ 100; Xeq
2 ¼ 50 (Fig. 11).

Adiabaticity parameter dependence

The interaction of the buffering proteomic cloud with the

DNA can be altered when the ratio of the DNA unbinding

rate compared to the protein degradation rate is changed. For

small vi values the unbinding rate of repressors from the

DNA is slower than the destruction of the produced proteins.

Apart from very small v-values, as long as there is a critical

number of repressor proteins in the buffering cloud, the off-

gene is repressed and it responds by turning on, but only
once the initially on-gene is nearly totally repressed. Large

adiabaticity parameters result in the efficient formation of the

buffering proteomic cloud. For the initially off-gene, a small

DNA unbinding rate of the off-gene decreases the effective-

ness of the buffering proteomic cloud around it, as the

protein number state can reach a steady state before the DNA

state does. The hindered DNA reaction to the protein-number

state effectively increases the tendency of repressor proteins

to be unbound from the DNA for a given Xad
1 : This, in turn,

decreases the probability of the initially on-gene to be on,
leading to rapid switching behavior as can be seen for gene 2

in the forward, or gene 1 in the backward, transition for v.

0.1 in Fig. 11 A. The initially on-gene reacts to the interaction
function of the initially off-gene, for which F(i) / Æn(i)æ2/
C1(i) 1 Æn(i)æ in the small v-limit. Therefore, the interaction

function is effectively increased for C1(i) � 0, leading to the

FIGURE 10 Mean number of pro-

teins of each type present in the cell,

according to exact solutions of the

SCPF approximation and deterministic

kinetic rate equations for an asymmetric

switch, with Xeq
1 ¼ 1000; v1 ¼ v2 ¼

0.5, Xad
2 ¼ dXsw

2 ¼ 80, and Xeq
2 ¼ 50

and 500 during the forward (A) and

backward (B) transitions in an asym-

metric switch.

FIGURE 11 Bifurcation diagrams

for an asymmetric switch, presenting

Xad
1 ¼ dXsw

1 as a function of C1(2) (A–

C), and C1(1) (D–F) for different values

of the adiabaticity parameter: v1 ¼ v2

(A,D), v2, with v1 ¼ 0.001 ¼ const

(B,D), v1, with v2 ¼ 0.001 ¼ const

(C,F). Xeq
1 ¼ 100; Xeq

2 ¼ 50; and Xad
2 ¼

dXsw
2 ¼ 80:
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enhanced buffering. The reaction of the initially off-gene is

unaltered, as for C1(i) � 1 F(i) ¼ Æn(i)æ2 1 Æn(i)æ ;const, if
C1(i) remains close to 1. However, if v is very small (black
dash-dot curve in Fig. 11, A and D), the buffering proteomic

cloud is not given a chance to form due to a very high

degradation rate of proteins and gene 2 is simply repressed in

a gradual transition. If v1 is extremely small and v2 large, the

buffering proteomic cloud around gene 1 cannot form and

the probability of it to be off in the forward transition

decreases gradually. A buffering proteomic cloud exists

around gene 2, hence the backward transition is reminiscent

of the deterministic result (Fig. 11, B and E). The most in-

teresting case is shown in Fig. 11, C and F, where a large v1

acts as a buffer against fluctuations in the number of proteins,

which repress gene 1. For large production rates of re-

pressors the probability of gene 2 to be on for the forward

transition decreases faster than in the deterministic solution;

however, the buffering cloud repressing gene 1 allows gene 2

to remain in the on-state. A buffering proteomic cloud does

not form around gene 2, and it remains on until the number of

proteins produced by gene 1 grows considerably, as the

effective production rate, Xad
1 ; is increased. The effective

production rate of gene 1 must be very large to sustain a

sufficient steady-state number of proteins to repress gene 2

to the point that C1(1) , 0.5, which leads to switching. For

the backward transition, the lack of a buffering proteomic

cloud around gene 2 results in destabilizing gene 1 for larger

Xad
1 effective production rates than for large v2 values. These

examples show how certain combinations of values of adi-

abaticity parameters can lead to a system with a larger

switching region than the deterministic model predicts. This

property may be useful when engineering artificial switches.

If one has a constraint on the production rates of the genes,

one can use repressors with different binding affinities to

achieve switching in the desired region of parameter space.

In this simple system slow unbinding from the DNA can

compensate for the destabilizing of the DNA state by protein

number fluctuations. As the probability of the initially active

gene to be on gradually decreases, the initially repressed gene
becomes active only once the probability of the other gene to

be on has fallen below a certain value, a. The susceptibility of

the system to protein number fluctuations may be estimated

by the value of a. For small v, which is still able to sustain

a buffering proteomic cloud, this value tends to be 0.5. The

incapability of the system to form a buffering proteomic cloud

is much stronger if both adiabaticity parameters are small,

since the reaction of both genes to the change in the number

of proteins is hindered (Fig. 11, A and D). DNA state

fluctuations contribute to effectively faster protein number

fluctuations, therefore the exact solution exhibits the very

small v-characteristics, where a buffering proteomic cloud

cannot form, for a slightly wider range of the adiabaticity

parameter than one would expect with a Poissonian distribu-

tion (results not shown). Combining these observations,

a switchworksmost effectively if the change of theDNA state

compared to the protein number fluctuations of one gene is

sufficiently smaller than that of the other gene, to allow for

effective buffering.

The nonzero basal production rate

The asymmetric switch, in which both genes have a nonzero

basal effective production rate, proves to be susceptible to

noise. In Fig. 12, we show the dependence of C1(1), with

g2(1)/(2k) ¼ g2(2)/(2k) ¼ 5 and C1(2), with g2(1)/(2k) ¼
g2(2)/(2k) ¼ 0.5 in the small vi limit. The stochastic

solutions converge to the deterministic solutions for large v.

If gene 2 is initially in the on-state, the majority of proteins

are produced with the high fixed rate in the on-state, as g1(2)
� g2(2). The repression of gene 2 is, in turn, governed by the
interaction function of gene 1. If Xad

1 is small the number of

proteins produced in the on- and off-states by gene 1 are

comparable. Since the number of proteins produced by gene

1 grows faster the larger g2 is, gene 2 gets repressed more

effectively at smaller Xad
1 values. This results in a smaller

number of repressors produced by gene 2, and the transition

from gene 1 being on to its being off, takes place for smaller

Xad
1 ; effective growth rate values, than for small g2.
The deterministic solution is much more influenced by the

production of proteins in the off-state than the stochastic

FIGURE 12 Bifurcation diagrams as a function of Xad
1 ¼ dXsw

1 12g2=ð2kÞ
for C1(1), with g2(1)/(2k) ¼ g2(2)/(2k) ¼ 5 (A) and C1(2) g2(1)/(2k) ¼ g2(1)/
(2k) ¼ 0.5 (B) for Xeq

2 ¼ 5; 50, and 500. Comparison of exact solutions of

the SCPF and deterministic kinetic equations for an asymmetric switch.

v1 ¼ v2 ¼ 0.5, Xeq
1 ¼ 1000; and Xad

2 ¼ dXsw
2 ¼ 80:
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solution. In the exact SCPF solution, slow DNA unbinding

rates compared to protein degradation rates are another

means of control of the stability of the DNA state against

random protein number fluctuations. The state of the system

is far less influenced by the exact protein numbers than in the

deterministic solution. So until the probability of a gene to be

on is larger than that of being off, the fraction of proteins

produced with a smaller effective production rate in the off-

state is treated as a random fluctuation by the system. Once

again, the SCPF system demonstrates its susceptibility to

protein number fluctuations.

The influence of the off-state protein production on the

total repressor yield may also be seen in the fast decrease of

C1(2) and increase of C1(1) in the forward transition. If g2
is considerably large, its effect can also be seen in the

stochastic solution; hence even when gene 1 is in the on-

state, it never reaches C1(1) ¼ 1, although gene 2 is totally

repressed (Fig. 12 B; results not shown for gene 2). The

magnitude of the probability of gene 1 to be on for very large
effective production parameters strongly depends on the ten-

dencies of the proteins to be unbound from gene 1. As Xeq
1

increases, the asymptotic Xad
1 limit of C1(1) becomes smaller,

as it is effectively harder for repressors to stay bound to

the DNA. The gene is more likely to be in the off-state,

which, however, manages to sustain the necessary number of

proteins produced by gene 1 to repress gene 2. As g2
increases, the region of bistability grows into areas of

parameter space, in which the tendency of proteins to be

unbound, Xeq
2 ; is larger than for small g2. For small values

of Xeq
2 ; the number of repressors produced by gene 1 in the

off-state is sufficient to repress gene 2, and one observes

a smooth and slow transition in terms of Xad
1 : If g2 is con-

siderably large, the transition takes place for larger values

of Xad
1 in the stochastic solution than in the deterministic

solution, hence showing the large buffering region that the

interplay of DNA and protein number fluctuations provides.

This also results in an effective similarity of the deterministic

and stochastic solutions. In regions of parameter space, in

which the transition takes place, the deterministic and

stochastic solutions differ, apart from the large v-limit.

Most experimentally observed proteins have very small basal

production rates, which seconds our analysis that it is func-

tionally unfavorable for large basal production to occur. The

dependence on other parameters is analogous to the case

without a basal production rate.

The region of bistability

The backward transition, as already discussed, is analogous to

the forward transition. In most cases, the regions of bistability

(Fig. 11) in parameter space are reduced in size by noise.

When engineering artificial switches, onemay be interested in

making sure the forward and backward transition takes place

for considerably different production rates. We therefore

consider how the region of bistability, defined as the

difference in the critical effective production rate for the

forward and backward transition, depends on the parameters

of the model. For the deterministic case the region of

bistability depends on the tendencies that proteins are

unbound from the DNA in a quadratic manner, as can easily

be seen from the bifurcation equations (Eqs. 7 and 8) and

which is demonstrated in Fig. 13. The SCPF solution shows

the same behavior. For large values of the adiabaticity

parameter the size of the region of bistability is independent

of v, as is the form of the bifurcation curve (Fig. 13). The

approach to this plateau is very rapid and is given by the ratio

of polynomials. However, the size of the region of bistability

for the v1 ¼ v2 never reaches that of the deterministic so-

lution, as even in the large v-limit the greater nonlinearity

of the interaction function F(i) results in a more complex

SCPF curve that does not reduce to deterministic solution, but

X
ad

1 ðC1ð2ÞÞ/ððððC�1

1 ð1Þ�1ÞXeq

2 Þ
1
211Þ

1
2 �1Þ=ð4C1ð1ÞÞ

6¼ X
eq1

2
2 ð11ð2Xad

2 C1ð2ÞÞ2=Xeq

1 ÞðC
�1

1 ð2Þ�1Þ
1
2=2: (10)

This effect is true for both curves, as the presented graphs

show C1(1) hysteresis and the chosen equations C1(2). The

same behavior is observed for the case with a zero and a

nonzero basal production rate. The increase with Xeq
2 is

slightly slower in the g2 6¼ 0 case as the bifurcation curve is

smaller by jg2/k(C1f(i) – C1in(i)) – ln(C2f(i)/C1in(i))/2j.

Summary

After the transition, the number of proteins produced by the

now on-gene follows a linear dependence on Xad, similarly to

FIGURE 13 Region of C1(1) hysteresis for an

asymmetric switch for the SCPF and deterministic

approximations as a function of v1 ¼ v2, with

Xeq
2 ¼ 50 ðAÞ and Xeq

2 with v1 ¼ v2 ¼ 100 (B).

Xeq
1 ¼ 100; Xad

2 ¼ dXsw
2 ¼ 80; g2/(2k) ¼ 0.5.
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the symmetric switch. The number of proteins in the cell is

independent of the DNA dynamical characteristics, as those

remain constant in that region of parameter space. The

number of proteins of the on-gene rapidly falls before the

transition takes place. Based on the bifurcation diagram of

Fig. 12 the phase transition is discontinuous. The region of

parameter space where switching may occur may be roughly

estimated by the parameters of the genes which must be

competitive, (Xad
1 =Xad

2 Þ2 � Xeq
2 =Xeq

1 : This has a major impli-

cation for biological systems, such as the l-phage, where

many mechanisms are used to achieve balance between two

genes. The first-order phase transition, as opposed to the sec-

ond order present in the symmetric system, is a result of the

breaking of symmetry and is clearly seen in the evolution of

probability distributions in phase space (Fig. 9). The gene

that is on after the transition rapidly increases its probability

of being on, whereas the off-gene decreases with a rapid drop
in the number of proteins it produces.

THE CASE WHEN PROTEINS BIND
AS MONOMERS

Equations 1 and 2 can easily be augmented to describe the

binding of monomers or higher order oligomers by changing

the form of the binding term to hin
p
3�i; where p ¼ 1 for

monomers. The equations remain solvable for any value of p.

Monomers do not make good
repressors/activators

The behavior of the system is quite different if we consider

the case when proteins bind as monomers. For a symmetric

switch there is no region of the parameter space in which one

observes switching. The SCPF equations may be reduced to

a single quadratic equation,

2dX
sw
C1ðiÞ21ðXeq

1X
ad �X

swÞC1ðiÞ�X
eq ¼ 0; (11)

which has, at most, only one positive solution. Therefore the

probability of one gene to be in the active state is always

equal to that of the other to be in the active state, and no

switching is observed. Equation 11, above, is independent

of v, the adiabaticity parameter; therefore, it is solely

a consequence of the lack of nonlinearity in the binding of

proteins and cannot be influenced by very slow DNA un-

binding rates. By writing down deterministic equations

we can also show that when proteins bind as monomers,

switching does not occur. A similar equation to Eq. 11, also

independent of v, holds for asymmetric switches. It also has

one positive solution, and, therefore, the parameters of the

model predetermine the solution and each gene has a

probability to be on, determined by its kinetic rates. Since the

rates are different for the two genes, the gene with the larger

production rate will be in the active state, repressing the

weaker gene (Fig. 14 A).

In naturally occurring biological switches and those de-

veloped experimentally, proteins bind as dimers, or higher

order multimers (Ptashne, 1992). We see cooperativity con-

tributes to improving the efficiency of a switch. A switch

controlled by monomers is shown to react ineffectively to

changes in the repressor concentration, just as in the case

of the asymmetric switch in our model discussed above.

Monomers do not have the ability to stabilize a broken

symmetry state; therefore, the solution is fragile to kinetic

rates and inefficient. Effectively monomers do not make

good repressors/activators. Ptashne and Gann (2002) explain

the cooperativity process between two monomers by claim-

ing that one monomer bound to the DNA increases the local

concentration of proteins around the binding site through

weak protein-protein interaction, thus causing the second to

bind cooperatively. Our model lacks spatial dependence,

which therefore shows that this effect need not be thought

of as due to changes in local concentration, but actually is

required by the insufficient nonlinearity for monomers,

which cannot produce bistability.

Bimodal probability distribution

Although the probabilities of the two genes to be on are equal
for thewhole region of parameter space, and themean number

of both types of proteins in the cell is the same as in the

deterministic case, the probability distributions are bimodal

when the DNA unbinding rates are slower than the protein

number fluctuations (Fig. 14,B andC). Themechanism of this

FIGURE 14 (A) Probability of genes in an asymmetric switch to be active

when proteins bind as monomers, for different values of Xeq
2 :

Xad
2 ¼ dXsw

2 ¼ 80: Probability distributions for the gene to be in the on-

state (B) and off-state (C) for a gene in the active state for different values of
the adiabaticity parameter v ¼ 0.5, 5, and 100, when proteins bind as

monomers to a symmetric switch. Xad ¼ dXsw ¼ 50, Xeq ¼ 1000.
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small v-behavior has already been discussed in the example

of the symmetric switch, when proteins bind as dimers. This

is analogous to the case when DNA fluctuations induce a

probability distribution with two peaks for the single gene

with an external inducer (Cook et al., 1998). In fact, the SCPF

approximation has reduced this two-gene system to an effec-

tive one-gene system with an external inducer. A bimodal

distribution in the small v-case is also observed for the

asymmetric switch, when proteins bind as monomers.

THE CASE WHEN PROTEINS BIND AS HIGHER
ORDER OLIGOMERS

Switches in which effector proteins bind as higher order

oligomers are omnipresent in nature and have been realized

experimentally in artificial switches (McLure and Lee, 1998).

We considered the binding of trimers ðhiðn3�iÞ ¼ hin
3
3�iÞ and

tetramers ðhiðn3�iÞ ¼ hin
4
3�iÞ in symmetric switches. The

equations of motion have the same form as before, but the

interaction functionF(i) accounts for the highermoments. For

proteins binding as kth order oligomers, it has the form

FðiÞ ¼ C1ðiÞ Ænk1ðiÞæ1C2ðiÞ Ænk2ðiÞæ: As shown when dis-

cussing the dimer binding switch, the kth order moments

have a simple form in the creation operator representation.

The general mechanism

From Fig. 15 one notes that, for the system to act as a bistable

switch, a considerably smaller number of reservoir proteins

is needed than in the case of the dimer binding switch. As the

multimericity number grows, the area of bistability of the

switch in parameter space grows. Since we assumed only one

type of protein repressed a given gene, binding of higher

order multimers is an effective model of cooperativity.

Therefore, we expect the system to have a larger region of

bistability, the higher the order of the binding multimer. The

evolution of the system in parameter space when trimers bind

is qualitatively similar to the dimer binding scenario (Fig. 16,

B and C). Fast DNA unbinding rates stabilize the system and

the bifurcation takes place for smaller effective production

rates, for large v than for small v (Fig. 16, A and D). The
critical number of proteins necessary for the bifurcation to

take place is independent of the adiabaticity parameter and

decreases with multimericity: Ænæc ¼ 32 for dimers binding,

Ænæc ¼ 8 for trimers binding, and Ænæc ¼ 4 for tetramers

binding. This along with the narrow probability distributions

(Fig. 16, E and F), small v-dependence when tetramers bind

(Fig. 15) shows that one binding event determines the result,

hence DNA binding rates do not play a role. Once there are

Ænæc proteins of a given type in the cell, a tetramer repressor

will bind and stay bound. In the deterministic case the

probability of the genes needs to fall to (p – 1)/p, where p is

the order of multimerization of the repressor, for the

bifurcation to take place. That, along with the need for the

number of repressors to be comparable with the tendency for

proteins to be unbound from the DNA, sets the critical

number of proteins necessary for the bifurcation. Hence, the

bifurcation occurs when both genes are more probable to be

on than off, for both tetramers and trimers. Therefore, for the

tetramer system, a large buffering proteomic cloud is not

needed to stabilize the DNA binding state of the switch, and

the characteristics of the system are practically independent

of the adiabaticity parameter.

Tetramer binding results in nearly
deterministic characteristics

In naturally occurring systems the production of the critical

number of proteins is slowed down by relatively high

multimerization rates and spatial dependence arising from

the need of a large number of particles to diffuse together.

These elements, which we neglect in our simple model, con-

stitute what might be called the cost of multimerization. This

analysis also explains why most repressors and activators bind

as dimers and tetramers, not trimers or pentamers. The effect

of trimers binding is not different from that of dimers: a

buffering proteomic cloud needs to be formed; the state of the

system is quite influenced by noise; and the switching region

(region in Xad parameter space from the bifurcation point to

DC . 0.9) is quite large. Yet in a real system there is an

effective cost of trimerization: the energy of trimer formation

and a need for the diffusion of particles. For tetramers the

effect of stochasticity becomes negligible. Effectively one

tetramer is sufficient for the bifurcation to take place. The

binding of tetramer repressors may be thought of as a mech-

anism for increasing the deterministic nature of the switch.

FIGURE 15 Phase diagram for the SCPF approxi-

mation for a single symmetric switch to which proteins

bind as trimers (A) and tetramers (B), with Xeq ¼ 1000.

Contour lines mark values of DC.
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Binding of higher order oligomers as a
competitive mechanism

This analysis, although it neglects some important features,

allows for a more quantitative formulation of cooperativity.

Since most biological switches are asymmetric, coopera-

tivity is also used as a means of making genes with smaller

chemical rates more competitive. Tetramer binding seems

to have a different role than that of lower order multimers.

It may be used by genes that need to react to very small

concentrations of proteins; for example, they turn on deg-

radation mechanisms when even a small number of toxic

molecules is present. Or they may act as an extra mechanism

stabilizing the existent state of a gene, as seems to be the case

for the cI gene of the l-phage. It seems that tetramers are

used either in a stabilizing role or as a drastic, all-or-none

response to the protein distributions in the system. This for-

mulation of the problem is naturally oversimplified, but it al-

lows for general observations.

THE CASE WHEN PROTEINS ARE PRODUCED
IN BURSTS

Many proteins in biological systems—for example, the Cro

protein in l-phage—are produced in bursts of N of the order

of tens. We consider a symmetric switch, where proteins

bind as dimers and are produced in bursts of N. The deri-

vation of the moment equations for this case is presented in

Appendix B.

The general mechanism

We discuss the effect of bursting phenomena based on the

example of a symmetric toggle switch in which proteins bind

as dimers, as that can offer the most insight, when compared

to previous results. In this case, switching takes place for

much smaller values of the effective production rate

parameter Xad compared to when proteins are produced

separately. Therefore, even in the large v-limit, noise

resulting from large protein number fluctuations plays

a role in defining the region of stability of the switch, as

the criterion of large Xad is not reached. The number of pro-

teins in the cell when the bifurcation occurs is determined by

the tendency that proteins are unbound from the DNA and

does not change when proteins are produced in bursts. For

the rates discussed in Fig. 17, the critical mean number of

proteins present in the cell at which the bifurcation occurs is

nc ¼ 10 ¼ Xeq ¼ 100½. If proteins are produced in bursts of

N ¼ 10, as in the left-hand figures, this value of nc is

achieved when Xad. 1 (that is, proteins must get produced at

a higher rate than they are destroyed, to be able to sustain the

steady-state number of 10 proteins in the cell). In the figures

FIGURE 16 Mean number of pro-

teins in the cell, for each type when

proteins bind as trimers (A) and

tetramers (D), v ¼ 0.5, 10, symmetric

switch. The evolution of the probability

distribution for the probability of the

gene that will be active and inactive

after the bifurcation to be on as a func-

tion of Xad for a switch when proteins

bind as trimers (B and C) and tetramers

(E and F). Xeq ¼ 1000, v ¼ 0.5.

FIGURE 17 Probability that gene i is on when proteins are produced in

bursts of N¼ 10 (A) and N¼ 100 (B). Mean number of proteins of each type

present in the cell when proteins are produced in bursts of N ¼ 10 (C) and

N ¼ 100 (D). Symmetric switch proteins bind as dimers, Xeq ¼ 100, v ¼
100. Comparison of deterministic and stochastic solutions.
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on the right-hand side of Fig. 17, proteins are produced in

bursts of N ¼ 100. In this case even when the degradation

rate is larger than the production rate, the critical steady-state

number of proteins necessary for the bifurcation to take place

can be reached and a bistable switch is possible. A bistable

switch can exist if the degradation rate exceeds the pro-

duction rate even for burst sizes present in biology. For Xeq¼
100, the order of the tendencies for proteins to be unbound

from the DNA in the l-phage, the value of N for which

Xad
c , 1 is smaller than N ¼ 20, the burst size for Cro

proteins in the l-phage. Xad at the critical point decreases as

a function of N (Fig. 18 A) and depends on the tendency that
proteins are unbound from the DNA Xeq (Fig. 18 B) and the

adiabaticity parameter, v (Fig. 19).

If proteins are produced individually, the span of the

nonadiabatic regime is clear from Fig. 19. It corresponds to

v , 1. The bifurcation curves show small discrepancies

for larger values of the adiabaticity parameter. However,

for larger burst sizes, there is a continuous change in the form

of the bifurcation curves with v. All of the solutions differ

substantially from the deterministic treatment, as shown in

Fig. 17 A.

The influence of the adiabaticity parameter on
the bifurcation mechanism

Contrary to the N¼ 1 case, the effective production rate at the

bifurcation pointXad
c growswith the increase of the adiabaticity

parameter, for considerably large burst sizes, as in theN¼ 100

example in Fig. 19. In this case each gene produces a large

number of repressors at a time. The bifurcation takes place in

a region with Xad , 1, which corresponds to very small

effective production rates, which denote very large death rates.

Therefore, in the region of parameter space before the

bifurcation takes place, both genes remain repressed (C1(i) ,
0.5) in the steady state, as opposed to the previously discussed

situations, in which both genes had equal probabilities to be

active (C1(i) . 0.5). For large N bursts, the bifurcation takes

place when one of the genes becomes unrepressed in the steady

state. That is, when the repressor cloud buffering the DNA

becomes destabilized, not when the cloud forms as in the

smallerN examples. For largeN bursts, if the rate of unbinding

from the DNA is fast compared to the protein degradation rate,

larger effective production rates are needed for the buffering

proteomic cloud to stabilize the DNA state than for small v

(Fig. 19C). The larger Xad is, the more repressor molecules are

present in the system, which corresponds to the larger protein-

number fluctuations, that are necessary for one of the genes to

become unrepressed. For slower DNA unbinding rates, the

buffering proteomic cloud is smaller, since the protein number

reaches a steady state before the DNA state does. Therefore the

buffering proteomic cloud is destabilized at smaller values of

Xad. Hence, in the case of smallv the un-repressing bifurcation

takes place for smaller effective production rates than for large

v. However, if the unbinding rate from the DNA is very small

(i.e.,v, 0.01), Xad
c as a function of the adiabaticity parameter

grows again—as this corresponds to effectively large death

rates that need very high production rates to sustain a proteomic

cloud buffering the DNA. If the effective production rate is too

small in this case, the steady-state number of proteins is too

small to form the buffering proteomic cloud, although the burst

size is enormous. In the very smallv-limit the bifurcation cloud

needs to be formed for the bifurcation to be possible, as in the

mechanism present in the small N case. The value of Xad at the

bifurcation point in both the large and smallv-limits is strongly

governed by protein and DNA binding-state fluctuations in the

system. For this reason, the deterministic solution fails. It

assumes the incorrect mechanism, in which the bifurcation is

a result of repressing one of the genes. Such a scenario is

possible if the death rate of proteins is slow enough to allow for

the existence of Æn(i)cæ repressormolecules in the systemat very

small production rates (C1(1)
biff,kin ¼ 0.5) (Fig. 17, A and B).

One can see that the order of taking the adiabatic limits in the

steady state for proteins produced in large bursts is subtle and

depends strongly on the parameters of the system, as the

bifurcation is governed mainly by relative protein and DNA

fluctuations, both of which are very large. Furthermore, the

deterministic solution is closer to the small v-limit, which

FIGURE 18 Bifurcation curves as a function of Xad ¼ dXsw, v ¼ 100 for

different burst size values N ¼ 1, 2, 5, 10, 50, and 100, with Xeq ¼ 100 (A)

and for proteins produced in bursts of N ¼ 100 (B) for different values of

Xeq ¼ 1, 10, 100, and 1000.
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corresponds to slowDNAunbinding rates compared to protein

number fluctuations. Deterministic results may therefore be

misleading in the bursting situation, even for large v.

The steady state comes about as a result of different

mechanisms, depending on the burst number N and the order

of reaching the steady state by the protein, and DNA binding

site dynamics changes depending on v. For small burst sizes,

slower DNA unbinding rates require larger effective pro-

duction rates to reach the steady-state number of proteins

necessary to form the buffering proteomic cloud than for

large N. For larger burst sizes, faster DNA unbinding rates

destabilize the buffering cloud of proteins for smaller

effective production rates than in the small N case (Fig 18 A).

Consequences of bifurcation at smaller Xad values

The divergence from the deterministic solution at the bi-

furcation point increases with the burst size, as is expected

due to the enormous noise effect due to large N, on a system

with a constant, and independent of the burst size number of

proteins at the bifurcation point. As already noted, the number

of proteins in a cell is in the range of tens to hundreds, even

if they are produced in bursts. This number is reached for

smaller effective production rates for larger burst sizes than

for small N-values. Therefore systems where proteins are

produced in bursts display smaller values of Xad and are more

susceptible to noise if the number of proteins in the cell is to be

of the order which is observed experimentally. Furthermore,

the noisy-burst systems, even for very large values of Xad, do

not converge as closely to the deterministic solution as they do

for the single protein production example. This can be seen

from the form of the steady-state moment equations. The

interaction function F(i) for theN¼ 1 case in the limit of large

v and Xad converges to F(i) / Æn(i)æ 1 Æn(i)æ2, whereas the
deterministic solution corresponds toF(i)¼ Æn(i)æ2. Therefore
for large mean values of proteins the two are equal. However,

in the case whenN. 1,F(i)/ Æn(i)æ (11 (N–1)/2)1 Æn(i)æ2,
which requires N � 2 Æn(i)æ for the effect of bursting to be

negligible at very large N. The values of the effective

production rate that correspond to values of the proteins seen

experimentally seem to be small. Therefore we can say that,

effectively, the role of bursting is to enable the existence of

a bistable solution at lower effective production rates, which

determines a region of parameter space that has been

previously unstudied. In this region, one cannot make the

adiabatic assumption that the change in the DNA state can

be integrated-out due to a separation of timescales. That

assumption leads to erroneous results, predicting a region of

bistability where explicit treatment of both timescales

suggests monostability. Furthermore, for very large N, the
region of bistability decreaseswith the adiabaticity parameter,

making the disagreement of the stochastic solutions with

those of the deterministic rate equations larger. The adiabatic

approximation and the full solutions converge only in the

regime of large v and Xad, the second of which is never

fulfilled at the bifurcation point or for biological concentration

for systems in which proteins are produced in large bursts.

Dependence on the DNA binding coefficient

Just as increasing the burst size, decreasing the tendency for

proteins to not be bound to the DNA results in a different

switching mechanism. The probability of the genes to be on
falls to far smaller values than the 0.5 of the N¼ 1 case. If the

burst size is large, both genes have a very low probability of

being on before the critical number of proteins necessary for

bifurcation is achieved. The same effect is observed if

proteins are more likely to bind to the DNA (small Xeq) (Fig.

18 B). When the genes are more probable to bind a repressor

and successful unbinding events are rare, earlier bifurcations

in terms of Xad result. As Xeq increases, the probability of the

genes to be on at the bifurcation point increases, since re-

pressors have a higher tendency of unbinding.

For very high values of the adiabaticity parameter, corre-

sponding to high unbinding rates from the DNA binding site,

the stable solution that corresponds to the off-state and the

unstable state merge and the system is monostable again,

with only the on-state present. This limit is also reached by

keeping Xad fixed but taking the burst size N / N.

Probability distributions

In the case of the rates used in Fig. 20, nc ¼ 32 is the same as

for N ¼ 1, but we note a 10-fold decrease in Xad
c compared to

when proteins are produced separately. When proteins are

produced in bursts, the probability distributions have tails

toward larger n, as opposed to the distributions for individual
protein production. The mean number of proteins in the

system for given states of the switch is similar to that of the

N ¼ 1 case; however, the distributions with bursts are much

FIGURE 19 Bifurcation curves for

proteins produced separately N ¼ 1

(A), in bursts of N ¼ 10 (B) and N ¼
100 (C) as a function of Xad ¼ dXsw for

different values of the adiabaticity pa-

rameter.
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broader, as could be expected. In this case even very fast

unbinding rates from the DNA cannot correct for the

enormous protein number fluctuations and one must

explicitly keep track of the change of the DNA binding

state. A system in which proteins are produced in bursts is

very noisy, especially compared to the nearly deterministic

case of proteins binding as tetramers.

Nonzero basal effective production rate

If there is a nonzero basal production rate, the difference

between the deterministic and stochastic solutions is also

qualitative even for relatively small burst sizes. In this case,

proteins are also produced in the off-state—so that the

number of repressors produced by the off-gene after the

bifurcation is nonzero, but equal to the burst size N, since
ÆnðiÞæ ¼ NðXad1dXswð2C1ðiÞ � 1ÞÞ/C1ð1Þ/0Ng2=k: This

number is equal for both the stochastic and deterministic

solutions and is equal to 10 in the examples presented in

Fig. 21, C and D. So production in bursts maintains a high

level of repressor proteins, even for very small g2/k values, if
the burst size is large. When using experimental data one

must be very careful to consider the burst size when

assuming the basal production level is zero. Furthermore, the

value of the interaction function of the gene in the off-state

(C1(i) ;0) for the stochastic case is much larger than for the

deterministic case, due to the multiplication of Æn(i)æ2, which
gives F(i) / Æn(i)æ2 (1 1 k/(2g2)) 1 Ng2/(2k), for large v,

the effect of which is shown in Fig. 21, A and B. The number

of repressor proteins produced by the off-gene decreases as

g2/ 0, as expected, and the probability of the on-gene to be

active tends to be 1. The dependence of the effective pro-

duction rate at which the bifurcation occurs on the adiaba-

ticity parameter is analogous to that of the case where g2¼ 0.

The probability distributions for the gene that is active after

the bifurcation in the on- and off-states takes place are

presented in Fig. 22, A and B, for large unbinding rates from

the DNA; and Fig. 22, C and D, for small unbinding rates

from the DNA. They exhibit maxima around 2Xad for the on-

state and 2g2/(2k) for the off-state and display behavior

analogous to that of proteins produced separately, apart from

the different curvature of the slopes for n, N and n. N. For
small v-values the protein numbers reach a steady state

before the DNA states, hence we observe bimodal prob-

ability distributions. The mechanism of competition in this

FIGURE 21 Probability that gene i is on when proteins are produced in

bursts of N ¼ 10 with a basal effective production rate g2/(2k) ¼ 0.5 (A) and

N ¼ 100, with a basal effective production rate g2/(2k) ¼ 0.05 (B). Mean

number of proteins produced by each gene in the two cases (C and D).

Symmetric switch; proteins bind as dimers, Xeq ¼ 100, v ¼ 100. Compar-

ison of deterministic and stochastic solutions.

FIGURE 20 The evolution of the probability distribution of the gene that

is active after the bifurcation, to be on (A) and off (B) and the gene that is

inactive to be on (C) and off (D) as a function of Xad for a switch when

proteins are produced in bursts of N¼ 10, Xeq ¼ 1000, v¼ 100. Bifurcation

point at Xad ¼ dXsw ¼ 35.

FIGURE 22 The evolution of the probability distribution of the gene that

is on after the bifurcation, to be on for v ¼ 100 (A and B) and v ¼ 0.5 (C)

and off (D) as a function of Xad for a switch when proteins are produced

in bursts of N ¼ 10 with a basal effective production rate g2/(2k) ¼ 0.5,

Xeq ¼ 100. Bifurcation points at Xad ¼ 8 (v ¼ 100) and Xad ¼ 6 (v ¼ 0.5).
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noisy burst system is different than in the single protein

production case. If the gene is in the on-state, probability

states with higher n-values are strongly occupied and there is
hardly any probability flux into the lower n-states. In the off-
state, however, a flux pushes the system into the lower

n-states, essentially trapping it there, hence the difference in

the slopes, as can be seen in Fig. 22, C and D. This is also
true for the g2 ¼ 0 system when proteins are produced in

bursts.

Limitations of the SCPF treatment

The examples presented above cover a large class of two gene

switches, all of which are exactly solvable within the SCPF

approximation. An exact solution may be obtained within this

approximation for systems of genetic networks and switching

cascades. However, the SCPF approximation does not allow

for an exact analytical solution of all systems. Ifwe try tomodel

oneof the simplestnatural systemswhere regulation is achieved

by means of a switch, i.e., the l-switch, we encounter a prob-

lem. The genes in the l-switch, apart from having a toggle-like

regulation, also exhibit autoregulation—that is, cI proteins can
bind to OR3, repressing the cI gene, and the Cro proteins can

bind to OR1 or OR2, enabling the RNA polymerase from

transcribing the Cro gene (Ptashne, 1992; Ptashne and Gann,

2002). If we expand the master equation (Eq. 1) to account for

self-regulation we add a hin
p
i binding term to the Pj(ni)

equations. Therefore the kth moment equation will display

a dependence on the k 1 pth moment and the set of equations

will not exhibit closure. One can find the probability distribu-

tion for a single self-regulating single gene. However, if we

consider a system like the l-phage, where self-regulation is

also combined with regulation by another gene, the problem is

no longer solvable exactly and demands a cutoff of the

hierarchy or other such approximations. We can nevertheless

treat these systems using the variational method, as proposed

by Sasai and Wolynes (2003). The fact that self-regulation

renders the system incompletely solvable within the SCPF

approximation is not surprising, since it corresponds to the

exact solution for such a system. Gene i is influenced only by
the number of proteins it produces. It is independent of the state

of the other gene. Therefore, as one would expect, the full solu-

tion should depend on all moments of the distribution of gene i.
However, for systems such as the l-phage, we can treat all

intergene regulation effects exactly and truncate the self-regu-

lation equation at the highest order of the intergene interaction.

CONCLUSIONS

The self-consistent proteomic field approximation for sto-

chastic switches reproduces many intuitive notions about their

behavior. It proves to be a very powerful tool that allows for

the consideration of all but one of the basic building blocks of

more general switches and networks. A switch with a self-

repressing/activating gene cannot be solved exactly within the

SCPF approximation, since, in this case, the approximation is

equivalent to the full solution. Therefore the probability

distribution is determined by an infinite number of moments.

The probability distributions obtained for the systems

considered in this article are not symmetric and exhibit long

tails. This anticipates problems for using the variational

principle for finding probability distributions when one

accounts for correlations between the two states. The

possibility to expand this method to consider networks and

cascades will allow for a more realistic treatment of complex

systems with emergent behavior at low computational costs.

One can account for the mRNA step in the system by

adding a deterministic step which, using a deterministic

kinetic rate equation, translates the number of mRNA

molecules into proteins produced in bursts. This is a valid

procedure, as separately shown by Thattai and van Oude-

naarden (2001) and Swain et al. (2002); transcription noise is

just amplified in the translation process. Therefore treating the

mRNA step deterministically simply introduces another

constant into the discussed case of proteins produced in

bursts. Therefore the presented treatment of proteins produced

in bursts with a modified effective production rate is a simple

model of including mRNA in the system. Of course, the effect

of mRNA is much more complicated, as it also introduces, for

example, time delay between binding and production. This

model in the present state neglects these effects.

Our analysis of a large class of switches shows how

particular elements contribute to the emergent behavior of

functioning switches. Comparison of the stochastic and

deterministic treatments of a single gene switch shows

convergence in the region of fast rates of unbinding from the

DNA compared to protein number fluctuations and large

effective production rates. For symmetric switches when

proteins are produced separately, the two solutions converge

after the bifurcation, but often differ when defining the

region of parameter space where the bifurcation occurs. The

agreement between the deterministic and stochastic solutions

is especially good for symmetric switches, with N ¼ 1 and

a nonzero basal production rate. However, even though the

mean repressor protein levels in the cell are similar in both

approximations, the probability distributions are broad and

far from Poissonian (i.e., they are not completely character-

ized by these means). If the adiabaticity parameter is small

(v , 1), the protein-number state will reach a steady state

before the DNA binding state, and we observe a bimodal

probability distribution. For the symmetric switch, noise has

a destructive effect on the region of bistability. Increasing the

adiabaticity parameter facilitates the formation of a buffering

proteomic cloud around a gene, which leads to repression at

lower effective production rates than for small v.

As was already mentioned, the symmetric switch is hard to

design and build experimentally. The asymmetric switch,

which is the experimental model system, is much more

susceptible to noise than the symmetric switch and stochas-

ticity has not only the destructive effect on the region of
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stability one might expect, but also introduces new phenom-

ena and can be utilized to increase the bistable region. This is

of fundamental importance, since experimentally one deals

with asymmetric switches and these offer greater possibilities

in artificially engineering new systems. As can also be learned

from the asymmetric switch as well as from the analysis of

binding of different oligomers, the region of bistability of

a switch growswith increasing the interaction function.When

creating artificial switches, one may argue a large region of

bistability may be desired, so the switch reacts by the forward

or backward transition to very specific concentrations or

production levels of a protein. If the experimental setup

constrains the protein production rates, this can also be

achieved by modifying the adiabaticity parameters of the

system, which ensures the transition remains rapid and

effective. Asymmetric switches exhibit first-order phase

transitions. This size of the region of phase space, in which

the forward and backward transitions occur, grows with the

tendency that proteins are unbound from the DNA of both

genes. Large adiabaticity parameters stabilize the buffering

proteomic cloud around the repressed gene and lead to the

formation of an effectively repressing cloud for smaller

numbers of repressors in the forward transition than for small

v, for the active gene.

Experimental data available at this point (Darling et al.,

2000) suggest biological switches function in regions of high

adiabaticity parameters from the deterministic point of view.

Nevertheless, even for large values of adiabaticity parameters,

one must account for the DNA binding site fluctuations

explicitly when proteins are produced in bursts. The de-

terministic solutions give qualitatively wrong results in bio-

logically relevant areas of parameter space. The stochastic

solutions for large burst sizes suggest that the bifurcation of

the solution is a result of destabilizing of the repressor cloud

buffering the DNA, not formation of the cloud as for smaller-

burst systems. The probability distribution therefore exhibit

tails toward large n-values, not as in the small N case toward

small n-values. The deterministic kinetics remains unchanged

for large burst sizes, unlike the stochastic kinetics, hence

presenting results derived from a wrong mechanism. The

definition of the adiabatic limit, when proteins are produced in

bursts, is not clear as in the N ¼ 1 case, when it corresponds

simply to v , 1. This ambiguity does not allow one to

integrate-out the degrees of freedom corresponding to the

change in DNA binding site occupation. Such an approxima-

tion leads one to erroneously identify the regions of bistability.

The switch with a nonzero basal production rate when

proteins are produced in bursts results in probabilities to be on,
and for mean numbers of proteins in the cell that are very

different, from those of the deterministic solution even for

small effective basal production rates. If proteins are produced

in bursts, assuming that a small effective basal production rate

may be approximated by a zero rate, may be misleading.

Binding of proteins produced in bursts results in a bifurcation

transition for smaller values of the effective production rate. It

is also a mechanism for making two genes in an asymmetric

switch more competitive.

Binding of higher order oligomers leads to results closer to

those of deterministic treatments, with narrower probability

distributions. This can be experimentally used to stabilize

DNA binding states. In this simple model, tetramers seem to

be the most optimum binders. The close to deterministic all-

or-nothing switching that they offer may be worth the

effective cost of the energy of multimerization and diffusion

of particles. Binding of higher order oligomers may be

viewed as a simple model of cooperativity, which increases

the competitiveness of genes in an asymmetric switch.

Within the SCPF approximation monomers do not make

good switches due to lack of nonlinearity in protein

concentration. They do not exhibit a region of bistability.

This model neglects any structural DNA-protein interactions

and spatial dependence. Hence this conclusion is simply

a result of the lack of cooperativity in the system. For small

adiabaticity parameters, they do, however, exhibit bimodal

probability distributions, unlike in the large v-limit.

The thorough investigation of different components of gene

regulatory networks using the self-consistent proteomic field

approximation provides a tool kit for engineering new

switches and networks. Based on our analysis, if one would

want to build a strong component of a switch out of a genewith

relatively small chemical parameters, one could use compo-

nents that utilize binding of tetramers and that produce pro-

teins in bursts. This is what theCro gene in the l-switch uses.

APPENDIX A

In this appendix we derive the explicit form of the moment equations for the

switch discussed in The Toggle Switch, above. In the operator formalism

developed for classical diffusion by Doi (1976) and Zeldovich and

Ovchinikov (1978), the number operator may be written in terms of number

state creation ay and annihilation a operators, as n¼ aya. It is then particularly

easy to write down the equations for the amoments instead of the nmoments.

Setting the left-hand side to zero, one obtains the steady-state equations

0¼�vi

Fð3� iÞ
X

eq

i

C1ðiÞ�C2ðiÞ
� �

;

0¼ k½ðXad

i 1ð�1ÞjdXsw

i ÞÆak�1

ji æ� Æak

jiæ�CjðiÞ

1ð�1Þjvi

Fð3� iÞ
X

eq

i

Æak

1iæC1ðiÞ� Æak

2iæC2ðiÞ
� �

: (A1)

Using the probability conservation relation C1(i) 1 C2(i) ¼ 1, the 0th order

equations become

C1ðiÞ ¼
Xeq

i

Xeq

i 1Fð3� iÞ

C2ðiÞ ¼
Fð3� iÞ

X
eq

i 1Fð3� iÞ: (A2)

Dividing the higher order aj(i) moment equations by Cj(i) and using the

relation C1ðiÞ=C2ðiÞ ¼ Fð3� iÞ=Xeq
i from the 0th order equations, one can

calculate
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Æak

1i�a
k

2iæ¼
ðXad

i 1dX
sw

i ÞÆak�1

1i æ�ðXad

i �dX
sw

i ÞÆak�1

2i æ
vi1kCjðiÞ

kCjðiÞ;

(A3)

which depends only on a moments of lower order than the kth moment. This

allows one to obtain the following form for the higher order a moments,

Æak

1iæ¼ ðXad

i 1dX
sw

i Þ 1� viC2ðiÞ
vi1kC1ðiÞ

� �
Æak�1

1 æ

1ðXad

i � dXsw

i Þ viC2ðiÞ
vi1kC1ðiÞ

Æak�1

2 æ

Æak

2iæ¼ ðXad

i �dX
sw

i Þ 1� viC1ðiÞ
vi1kC1ðiÞ

� �
Æak�1

2 æ

1ðXad

i 1dX
sw

i Þ viC1ðiÞ
vi1kC1ðiÞ

Æak�1

1 æ: (A4)

Going back and forth between the two types of moments is straightforward.

The n-moment equations have, however, more complicated forms, as for

example

APPENDIX B

In the case when proteins are produced in bursts of N and repressors bind as

dimers, the master equation has the form

@P1ðniÞ
@t

¼ g1ðiÞ½P1ðni�NÞ�P1ðniÞ�1ki½ðni11ÞP1ðni11Þ

�niP1ðniÞ��hin
2

3�iP1ðniÞ1 fiP2ðniÞ

@P2ðniÞ
@t

¼ g2ðiÞ½P2ðni�NÞ�P2ðniÞ�1ki½ðni11ÞP2ðni11Þ

�niP2ðniÞ�1hin
2

3�iP1ðniÞ� fiP2ðniÞ (B1)

for n $ N. For n , N, the equations have the form

@P1ðniÞ
@t

¼�g1ðiÞP1ðniÞ1ki½ðni11ÞP1ðni11Þ

�niP1ðniÞ��hin
2

3�iP1ðniÞ1 fiP2ðniÞ

@P2ðniÞ
@t

¼�g2ðiÞP2ðniÞ1ki½ðni11ÞP2ðni11Þ�niP2ðniÞ�

1hin
2

3�iP1ðniÞ� fiP2ðniÞ: (B2)

Following the same procedure as for the single protein production case, we

get the equations of motion for the first three moments, as

where FðiÞ ¼ C1ðiÞÆn21ðiÞæ1C2ðiÞÆn22ðiÞæ as before. Writing out N2 ¼
N(N�1) 1 N and subtracting the Ænj(i)æ equations from Æn2j ðiÞæ we get the

equations of motion for the previously defined annihilation operators a. Due

to the form of F(i) for the dimer binding case only the first three moments are

relevant. However, this procedure can generally be carried out for higher

moments, yielding an expression for themth annihilation operator moment in

the steady state of the form

To consider the binding of higher order oligomers when proteins are

produced in bursts one simply accounts for the changed form of F(i) as

Ænk

1iæ ¼
1

k
+
k�1

s¼0

k!

s!ðk � sÞ!ðX
ad

i 1 dX
sw

i Þ 1� viC2ðiÞ
vi 1C1ðiÞk

� �
Æns

1iæ1 ðXad

i � dX
sw

i Þ viC2ðiÞ
vi 1C1ðiÞk

Æns

2iæ
� ��

1 +
k�2

s¼0

k!

s!ðk � sÞ!ð�1Þk�s
1� viC2ðiÞ

vi 1C1ðiÞk

� �
Æns11

1i æ1
viC2ðiÞ

vi 1C1ðiÞk
Æns11

2i æ
� ��

: (A5)

@C1ðiÞ
@t

¼ �hiFð3� iÞC1ðiÞ1 fiC2ðiÞ

@C2ðiÞ
@t

¼ hiFð3� iÞC1ðiÞ � fiC1ðiÞ

@C1ðiÞÆn1ðiÞæ
@t

¼ ½Ng1ðiÞ � kiÆn1ðiÞæ�C1ðiÞ � hiFð3� iÞÆn1ðiÞæC1ðiÞ1 fiÆn2ðiÞæC2ðiÞ

@C1ðiÞÆn2

1ðiÞæ
@t

¼ g1ðiÞ½2NÆn1ðiÞæ1N
2�C1ðiÞ1 ki½�2Æn2

1ðiÞæ1 Æn1ðiÞæ�C1ðiÞ � hiFð3� iÞÆn2

1ðiÞæC1ðiÞ

1 fiÆn2

2ðiÞæC2ðiÞ
(B3)
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discussed in The Case when Proteins Bind as Higher Order Oligomers,

above.
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