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1 More on Representations

(1)

1. We first recall the multiplication table for D3 given in Table 1.

e c3 c−13 σ1 σ2 σ3

e e c3 c−13 σ1 σ2 σ3
c3 c3 c−13 e σ3 σ1 σ2
c−13 c−13 e c3 σ2 σ3 σ1
σ1 σ1 σ2 σ3 e c3 c−13

σ2 σ2 σ3 σ1 c−13 e c3
σ3 σ3 σ1 σ2 c3 c−13 e

Table 1: Multiplication table for D3

As carried out in the lecture, let us identify e, c3, c
−1
3 , σ1, σ2, σ3 with e1 = (1, 0, 0, 0, 0, 0)T ,

e2 = (0, 1, 0, 0, 0, 0)T , · · · , e6 = (0, 0, 0, 0, 0, 1)T . Then under the action of the reg-
ular representation ρ(reg)(g) with g ∈ G, v defined by

v = α1e1 + α2e2 + α3e3 + α4e4 + α5e5 + α6e6

= α1e+ α2c3 + α3c
−1
3 + α4σ1 + α5σ2 + α6σ3

transforms as (as we have seen in the lecture, the action of ρ(reg)(g) with g ∈ G is
to multiply g from the left)

ρ(reg)(e)v = ev = α1e+ α2c3 + α3c
−1
3 + α4σ1 + α5σ2 + α6σ3

= α1e1 + α2e2 + α3e3 + α4e4 + α5e5 + α6e6 ,

ρ(reg)(c3)v = c3v = α1c3 + α2c
−1
3 + α3e+ α4σ3 + α5σ1 + α6σ2

= α1e2 + α2e3 + α3e1 + α4e6 + α5e4 + α6e5 ,

ρ(reg)(c−13 )v = c−13 v = α1c
−1
3 + α2e+ α3c3 + α4σ2 + α5σ3 + α6σ1

= α1e3 + α2e1 + α3e2 + α4e5 + α5e6 + α6e4 ,

ρ(reg)(σ1)v = σ1v = α1σ1 + α2σ2 + α3σ3 + α4e+ α5c3 + α6c
−1
3

= α1e4 + α2e5 + α3e6 + α4e1 + α5e2 + α6e3 ,

ρ(reg)(σ2)v = σ2v = α1σ2 + α2σ3 + α3σ1 + α4c
−1
3 + α5e+ α6c3
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= α1e5 + α2e6 + α3e4 + α4e3 + α5e1 + α6e2 ,

ρ(reg)(σ3)v = σ3v = α1σ3 + α2σ1 + α3σ2 + α4c3 + α5c
−1
3 + α6e

= α1e6 + α2e4 + α3e5 + α4e2 + α5e3 + α6e1 .

Thus we obtain the matrix representation M (reg)(g) of ρ(reg)(g) defined as

ρ(reg)(g) :



α1

α2

α3

α4

α5

α6

 7→



α′1
α′2
α′3
α′4
α′5
α′6

 = M (reg)(g)



α1

α2

α3

α4

α5

α6


(or, equivalently, (e′1, · · · , e′6) = (e1, · · · , e6)M (reg)(g)) as follows:

M (reg)(e) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , M (reg)(c3) =



0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 ,

M (reg)(c−13 ) =



0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

 , M (reg)(σ1) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 ,

M (reg)(σ2) =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 , M (reg)(σ3) =



0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0

 .

—– memo —–
Since v can be written as

v = (e1, e2, · · · , e6)



α1

α2

α3

α4

α5

α6

 ,
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which transforms under the action of ρ(reg)(g) to

ρ(reg)(g)v = (e1, e2, · · · , e6)M (reg)(g)



α1

α2

α3

α4

α5

α6

 ,

one can regard this transformation as the transformation of αi’s, (α1, · · · , α6)
T →

M (reg)(g)(α1, · · · , α6)
T . ——- On definition of regular representation —–

We first start with the left action of G on a element g ∈ G, ĥ(g) = hg (h ∈ G).
Then from this, we have

ĥ
∑
g∈G

α(g)g =
∑
g∈G

α(g)hg =
∑
g∈G

α(h−1g)g .

Then we also have

ĥ1ĥ2
∑
g∈G

α(g)g = ĥ1
∑
g∈G

α(g)h2g =
∑
g∈G

α(g)h1h2g =
∑
g∈G

α(g)(h1h2)g = (̂h1h2)
∑
g∈G

α(g)g ,

=
∑
g∈G

α((h1h2)
−1g)g .

Thus, the action of h ∈ G onto the function α(g) is given by ĥα(g) = α(h−1g).
In the above (as well as the lecture), we have used this definition of the regular
representation.

2. Let us in general consider a finite group G and its representations ρ(α) and ρ(β). We
assume that these representations are nα-dimensional and nβ-dimensional, respec-
tively. We denote the matrix representation of the element g ∈ G corresponding to
these two representations by M (α)(g) and M (β)(g), respectively. Then we consider
the tensor product representation for the representations ρ(α) and ρ(β). The matrix
representation of g ∈ G denoted by M (α⊗β)(g) is now a (nαnβ) × (nαnβ) matrix

whose (nβ(i− 1) + a, nβ(j − 1) + b) component is given by M
(α)
ij (g)M

(β)
ab (g).

Now we recall that for ρ of the dihedral group D3, we have

M(e) =

 1 0 0
0 1 0
0 0 1

 , M(c3) =

 0 0 1
1 0 0
0 1 0

 , M(c−13 ) =

 0 1 0
0 0 1
1 0 0

 ,

M(σ1) =

 1 0 0
0 0 1
0 1 0

 , M(σ2) =

 0 0 1
0 1 0
1 0 0

 , M(σ3) =

 0 1 0
1 0 0
0 0 1

 .

3



Mathematical Aspects of Symmetries in Physics : Solution Set No.3

Therefore, for the tensor product representation of two ρ’s we obtain

M (ρ⊗ρ)(e) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


,

M (ρ⊗ρ)(c3) =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0


,

M (ρ⊗ρ)(c−13 ) =



0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


,

M (ρ⊗ρ)(σ1) =



1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0


,
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M (ρ⊗ρ)(σ2) =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


,

M (ρ⊗ρ)(σ3) =



0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


.

(2)

1. For g1, g2 ∈ G, we confirm ρ̄(g1)ρ̄(g2) = ρ̄(g1g2):

ρ̄(g1)ρ̄(g2) = (ρ(g−11 ))T (ρ(g−12 ))T

= (ρ(g−12 )ρ(g−11 ))T

= (ρ(g−12 g−11 ))T

= (ρ((g1g2)
−1))T

= ρ̄(g1g2) .

2. For g1, g2 ∈ G, we confirm ρ∗(g1)ρ
∗(g2) = ρ∗(g1g2):

ρ∗(g1)ρ
∗(g2) = (ρ(g1))

∗(ρ(g2))
∗ = (ρ(g1)ρ(g2))

∗ = (ρ(g1g2))
∗ = ρ∗(g1g2) .

2 Symmetry in Quantum Mechanics

1. Since

H|ψ〉 = E|ψ〉 , H|φ〉 = E′|φ〉 ,

we have

〈ψ|H|φ〉 = E〈ψ|φ〉 = E′〈ψ|φ〉 .

Then we obtain

(E − E′)〈ψ|φ〉 = 0 ,

which means 〈ψ|φ〉 = 0 for E 6= E′.

5
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2. The existence of id is OK from the assumption (note that obviously idH = Hid).
For A,B in this set, we have

ABH = AHB = HAB .

Since A in this set is invertible, there exists A−1 such that AA−1 = A−1A = E. By
multiplying A−1 both from the left and right of AH = HA, we have

(LHS) = A−1AHA−1 = HA−1 , (RHS) = A−1HAA−1 = A−1H .

Thus we have HA−1 = A−1H. The associativity of the elements in this set is
obviously satisfied.

3. Since A commutes with H, we have

HA|ψ〉 = AH|ψ〉 = EA|ψ〉 .

4. We first define a matrix M as (for representations of G labeled by α and β and an
element A ∈ G)

P =
∑
A∈G

M (α)(A−1)QM (β)(A) .

Here Q is an arbitrary nα×nβ matrix which we will take to a specific matrix later.
Then we have (for B ∈ G)

M (α)(B)P =
∑
A∈G

M (α)(B)M (α)(A−1)QM (β)(A)

=
∑
A∈G

M (α)(BA−1)QM (β)(A)

=
∑
A′∈G

M (α)(A′−1)QM (β)(A′B)

=
∑
A′∈G

M (α)(A′−1)QM (β)(A′)M (β)(B)

= PM (β)(B) .

In the middle, we have defined A′−1 = BA−1 and replaced
∑

A∈G by
∑

A′∈G since
{A′ = AB−1|A ∈ G} = G.

Thus from the Schur’s lemma, if α 6= β we have P = 0. By taking N to be Qab = 1
and otherwise 0 (that is, (a, b)-component is 1 while the others are all zero), we can
write P = 0 as

0 =
∑
A∈G

M (α)
ca (A−1)M

(β)
bd (A) =

∑
A∈G

M (α)
ac (A)∗M

(β)
bd (A) .

Here we have used the fact that M (α) is unitary:

M (α)
ca (A−1) = (M (α)(A)−1)ca = (M (α)(A)†)ca = (M (α)(A)∗)ac = M (α)

ac (A)∗ .

6
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For α = β, from the Schur’s lemma, we have P = C1nα where C is a constant and
1nα is nα × nα unit matrix. Then, by taking Q as above, we obtain

Cδcd =
∑
A∈G

M (α)
ca (A−1)M

(α)
bd (A) .

By taking the trace with respect to (c, d), we obtain

Cnα =
∑
A∈G

M (α)
ca (A−1)M

(α)
bc (A)

=
∑
A∈G

M
(α)
ba (AA−1)

=
∑
A∈G

M
(α)
ba (id)

= |G|δab .

Here we have used the fact that M
(α)
ba (id) = δab. From this, we have C = |G|δab/nα.

Therefore we have obtained

|G|
nα

δabδcd =
∑
A∈G

M (α)
ca (A−1)M

(α)
bc (A) =

∑
A∈G

(M (α)
ac (A))∗M

(α)
bd (A) .

—— memo———
Schur’s lemma
Let us consider two complex irreducible representations ρ(α) : G→ GL(nα,C) and
ρ(β) : G → GL(nβ,C) of a finite group G. We denote their matrix representation
by M (α) and M (β), respectively. We denote a matrix expression of an equivariant
from Cnα to Cnβ by N which satisfies NM (α)(g) = M (β)(g)N for g ∈ G. Then

(a) if N is not isorporphic, then N = 0.

(b) if nα = nβ, then N = λ1nα where λ ∈ C.

Thus for α 6= β, we have N = 0, while for α = β we have N = λ1nα .

5. (i) Proof by using the orthogonality relation of the representation

〈ψ(α)
a |O|ψ

(β)
b 〉 =

1

|G|
∑
A∈G
〈ψ(α)

a |A−1AO|ψ
(β)
b 〉

=
1

|G|
∑
A∈G
〈ψ(α)

a |A−1OA|ψ
(β)
b 〉

=
1

|G|
∑
A∈G

∑
γ

∑
c

〈ψ(α)
a |A−1|ψ(γ)

c 〉〈ψ(γ)
c |OA|ψ

(β)
b 〉

=
1

|G|
∑
A∈G

∑
γ

∑
c,d,e

〈ψ(α)
a |ψ

(γ)
d 〉M

(γ)
dc (A−1)〈ψ(γ)

c |O|ψ(β)
e 〉M

(β)
eb (A)
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=
1

|G|
∑
A∈G

∑
γ

∑
c,d,e

δadδαγM
(γ)
dc (A−1)〈ψ(γ)

c |O|ψ(β)
e 〉M

(β)
eb (A)

=
1

|G|
∑
A∈G

∑
c,e

M (α)
ac (A−1)〈ψ(α)

c |O|ψ(β)
e 〉M

(β)
eb (A)

=
1

|G|
∑
A∈G

∑
c,e

M (α)
ca (A)∗〈ψ(α)

c |O|ψ(β)
e 〉M

(β)
eb (A)

=
1

|G|
∑
A∈G

nα∑
c=1

nβ∑
d=1

M (α)
ca (A)∗M

(β)
db (A)〈ψ(α)

c |O|ψ
(β)
d 〉

=
1

nα
δαβ

nα∑
c=1

nβ∑
d=1

δabδcd〈ψ(α)
c |O|ψ

(β)
d 〉

=
1

nα
δαβδab

nα∑
c=1

〈ψ(α)
c |O|ψ(α)

c 〉 .

This is what we want to prove with C(α) = (1/nα)
∑

c〈ψ
(α)
c |O|ψ(α)

c 〉. Here we have
used the orthogonality relation of the irreducible representationa∑

A∈G
(M (α)

ac (A))∗M
(β)
bd (A) =

|G|
nα

δαβδabδcd .

(ii) Proof by directly using the Schur’s lemma
We notice that

〈ψ(α)
a |A|ψ

(β)
b 〉 = 〈ψ(α)

a |
nβ∑
c=1

|ψ(β)
c 〉M

(β)
cb (A)

=

nβ∑
c=1

δacδαβM
(β)
cb (A)

= δαβM
(β)
ab (A) .

Since [O,A] = 0 for A ∈ G , we have by inserting the identity operator id =∑
α

∑
a |ψ

(α)
a 〉〈ψ(α)

a |

0 = 〈ψ(α)
a |[O,A]|ψ(β)

b 〉

= 〈ψ(α)
a |OA|ψ

(β)
b 〉 − 〈ψ

(α)
a |AO|ψ

(β)
b 〉

= 〈ψ(α)
a |OA|ψ

(β)
b 〉 − 〈ψ

(α)
a |AO|ψ

(β)
b 〉

=
∑
γ

∑
c

(
〈ψ(α)

a |O|ψ(γ)
c 〉〈ψ(γ)

c |A|ψ
(β)
b 〉 − 〈ψ

(α)
a |A|ψ(γ)

c 〉〈ψ(γ)
c |O|ψ

(β)
b 〉
)

=
∑
c

(
〈ψ(α)

a |O|ψ(β)
c 〉M

(β)
cb (A)−M (α)

ac (A)〈ψ(α)
c |O|ψ

(β)
b 〉
)

8
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Because of the Schur’s lemma, we first notice that 〈ψ(α)
a |O|ψ(β)

c 〉 is zero unless α = β.

Moreover, from this lemma, for α = β we also have 〈ψ(α)
a |O|ψ(α)

c 〉 is proportional
to δac. Thus we finally have

〈ψ(α)
a |O|ψ

(β)
b 〉 = C(α)δabδαβ ,

where C(α) is a constant independent of a. One can determine C(α) by setting α = β
and taking the trace with respect to (a, b). Then we reproduce C(α) obtained by
using the method (i).
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