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1 More on Representations

(1)

1. We first recall the multiplication table for D3 given in Table 1.

|l elefg [o]os]os]
e e c3 cgl o1 02 o3
C3 C3 051 (& g3 g1 g9
Cgl Cgl € C3 g9 g3 01
01 01 g9 g3 e C3 Cgl
g9 g9 g3 01 Cgl (& C3
o3 o3 o1 o2 c3 cgl e

Table 1: Multiplication table for Ds

As carried out in the lecture, let us identify e, ¢, 051, o1,09,03 withe; = (1,0,0,0,0,0)7,
e; = (0,1,0,0,0,0)7, ---, e = (0,0,0,0,0,1)T. Then under the action of the reg-
ular representation p("¢9)(g) with g € G, v defined by

vV = e + agex + a3e3 + ageq + a5€5 + g€q

—1
= «aie+ agcz +ascy + 01 + 502 + o3

transforms as (as we have seen in the lecture, the action of p("9)(g) with g € G is
to multiply g from the left)

—1
p(reg) (e)v = ev=oaie+aoc3+ azcy + as01 + a502 + 0603

a1e1 + ages + azesz + ageq + ases + ageq

p(reg)(C;J,)V C3V = 1Cc3 + agcgl + aze + 403 + 501 + Q02

a1€9 + (pes + ze + g€ + aseq + ages
re —1
pl g)(cz’, v

-1 —1
C3 V=103 + Qe+ a3c3 + q402 + @503 + o1

a1€e3 + ge] + (i3ey + ges + seg + (gey

1
p(reg) (gl)v = 01V =101 + Q202 + 303 + qi4€ + 5C3 + Qg
= 1€4 + €5 + a3eg + g€ + ase + ages,
-1
p(reg)(O’Q)V = 02V =102 + 0203 + Q301 + a4C3 + ase + a3
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a1€es5 + (oeg + (i3eyq + ages + asel + ages
-1
p(mg)(ag)v = 03V =103 + ap01 + 302 + a4c3 + asc; - + age

= i€+ ageq4 + azes + age2 + ases + ageq .

Thus we obtain the matrix representation M (7¢9)(g) of p("¢9)(g) defined as

aq (0%} ]
o9 o o9
(rea)(g): | @3 O | _ e gy | 93
P — o M) |
o5 af o5
o6 ag o6
(or, equivalently, (e, - ,e4) = (e1,--- ,es) M9 (g)) as follows:
100000 001000
010000 100000
(reg) | 00 100 0 (reg)y_ | 010000
M e) 000100 ]| M7 0000710
0000T10 0000TCO01
00000 1 000100
010000 000100
001000 0000T10
(reg)—1y _ | 1 0 0 0 00 (reg) -y _ | 00 0001
M es ) 000001 | M7 100000
000100 010000
000010 001000
0000 T10 000001
0000TCO01 000100
(reg)- v _ | 000100 (reg)-y_ | 00 00 10
MY (a2) 001000 | M) 010000
100000 001000
010000 100000
— mMemo ——
Since v can be written as
aq
(6%
f— PR ag
vV = (e1>e27 786) ay 3
as
g
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which transforms under the action of p("9)(g) to

P79 (g)v = (e, e, ,e6) M"9(g)

one can regard this transformation as the transformation of a;’s, (aq,--- ,ag)? —
M9 (g)(ay, -, ap)T. - On definition of regular representation —

We first start with the left action of G on a element g € G, h(g) = hg (h € G).
Then from this, we have

LYy alglg=> alghg =Y a(h 'g)g.

geG gelG geG

Then we also have

by alglg = I Z Dhag =" alg)hihag = 3 alg)(hiha)g = (hh2) Y alg)g,
geG ge geG geCG e
a((hih2) " g)g.

g€

Thus, the action of h € G onto the function a(g) is given by ha(g) = a(h™1g).
In the above (as well as the lecture), we have used this definition of the regular
representation.

. Let us in general consider a finite group G and its representations p(® and p(ﬂ). We
assume that these representations are n,-dimensional and ng-dimensional, respec-
tively. We denote the matrix representation of the element g € GG corresponding to
these two representations by M(®)(g) and M®)(g), respectively. Then we consider
the tensor product representation for the representations p("‘) and p(ﬂ). The matrix
representation of g € G denoted by M©@®%(g) is now a (nang) x (nang) matrix

whose (ng(i — 1) + a,ng(j — 1) + b) component is given by Mi(ja) (g)Méf) (9).

Now we recall that for p of the dihedral group D3, we have

oo Heo
0 =k o=

_o o @ = ©
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Therefore, for the tensor product representation of two p’s we obtain

100 00O0O0O0O
01 00O0O0O0O0OTGO
001 0O0O0O0OO0OQO
0001 0O0O0O0OTFO
000 01O0O0O0O
000 0O0OT1TO0QO0F® O
00 0O0O0OO0O1O0O0
000 0O0OO0O0OT1FPO0
0000 O0O0O0TO0T1

)

M (P2p) (e)

000 0O0O0OO0OTGO0O1
000 0O0OO0O1O0FO0
000 0O0OO0OO0OT1F®O

)

001 00O0O0O0GO
10 00 0O0O0O0O
01 00O0O0O0OO0OOQO
000 0O0OT1O0TO0F O
0001 0O0O0O0OO
000 01O0O0O0GO

M (P©P) (c3)

000O0O1O0O0GO0OGO
00 0O0O0O1O0O0OOQ O
0001O0O0O0GO0OGO
00 0O0O0OO0OO0OT10Q0
000O0O0OO0OO0OO01

000O0O0OO0OT1O0PO
01 00O0O0O0O0O
0010O0O0O0OGO 0O

100 00O0O0O0OGO
10 00 0O0O0O00O0
0010O0O0O0GO0OFO
0100O0O0O0OTO0OOQ O
000O0O0OO0OT1TO0® O
000 O0O0O0OO0OTO0OT1
000O0O0OO0OOT1F® O
00 01O0O0O0O0OO O

M=) ()

000 0O0O1O0O0OQO
00001O0O0O0O

M (p2p) (o1)
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M (P©P) (02) =

M9 (g3) =

DO OO H OO0 HPOOoOoOoOoOo o oo
O OO H O OO ODOHFHOOOoO o oo
OO OO OO OO RO OO0+ OO o oo
D DO DD DD DO DD OO+ OO0 OHOOOO
OO H OO OO OO0 oo —Oo
_H OO OO OO OO0 OO oo oo oo

OO O OO R OO0 O OO OoO oo oo
OO DD OO OO OO OO Oo
O RO OO OO0 OO0 o +HO OO

(2)
1. For g1,92 € G, we confirm p(g1)p(g2) = p(g192):

p(g1)p(g2)

2. For ¢1,92 € G, we confirm p*(g1)p*(g2) = p*(9192):

P (g1)p"(92) = (p(91))"(p(92))" = (p(g1)p(92))" = (p(g192))" = p"(9192) -

2 Symmetry in Quantum Mechanics

1. Since
Hlp)=Ely),  H|g)=E|¢),
we have
(V|H|p) = E(y|¢) = E'(¢]9) -
Then we obtain
(E—E){¥l¢) =0,
which means (|¢) = 0 for E # E'.
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2. The existence of id is OK from the assumption (note that obviously idH = Hid).
For A, B in this set, we have

ABH = AHB = HAB.

Since A in this set is invertible, there exists A~ such that AA~' = A~'A = E. By
multiplying A~! both from the left and right of AH = HA, we have

(LHS) = A"'AHA' = HA™!, (RHS) = A'HAA™' = A7'H.

Thus we have HA™' = A='H. The associativity of the elements in this set is
obviously satisfied.

3. Since A commutes with H, we have

HAJ) = AH|) = BAJ) .

4. We first define a matrix M as (for representations of G labeled by o and 8 and an
element A € G)

P=> MAHMP(A).
Aed

Here @ is an arbitrary n, X ng matrix which we will take to a specific matrix later.
Then we have (for B € G)

M@(B)P = ZM(a)(B)M(a)(Afl)QM(ﬁ)(A)
AeG
= > M(BATHQMP)(A)
AeG
— Z M@ (A ~HQMP)(A'B)
AleG
— Z M@ A ~HQMP)(AYMB)(B)
AleG
= PMY(B).
In the middle, we have defined A'~* = BA™! and replaced >_ 4. by Y 4rc¢ since
{A'=AB YA€ G} =G.

Thus from the Schur’s lemma, if o # 8 we have P = 0. By taking N to be Qqu =1
and otherwise 0 (that is, (a,b)-component is 1 while the others are all zero), we can
write P =0 as

0= MO@AHYMDA) = MO A M (4).
Aed AeG

Here we have used the fact that M(®) is unitary:

MDA = (MO(A) N ea = (MO (A))eq = (MW (A))ae = M (A)".
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For ao = f3, from the Schur’s lemma, we have P = C'1,,, where C' is a constant and
1n,, 18 Mo X ng unit matrix. Then, by taking @) as above, we obtain

Coa =Y M (A M (A).
AeG

By taking the trace with respect to (¢, d), we obtain

Cne = > MO(A )M (A)
AedG
= Y M
AeqG
= > M (a)
AeG
= |Gldup -

Here we have used the fact that Mb(g) (id) = 04p. From this, we have C' = |G|04p/N,-
Therefore we have obtained

B s = 32 MG ATV (4) = 3 (M (A) M ().

AeG AeG

—— memo———
Schur’s lemma

Let us consider two complex irreducible representations p{®) : G — GL(ng,,C) and
p® G — GL(ng,C) of a finite group G. We denote their matrix representation
by M(® and M® | respectively. We denote a matrix expression of an equivariant
from C" to C™ by N which satisfies NM(®)(g) = M®)(g)N for g € G. Then

(a) if N is not isorporphic, then N = 0.
(b) if nq = ng, then N = Al,,, where X € C.

Thus for « # 3, we have N = 0, while for « = 5 we have N = A1,

5. (i) Proof by using the orthogonality relation of the representation

W0 = g S w4 A0l
AeG
= Z DA oA
WM
_ ZZZQMW>WWW%
AEG v
:mzzz )M (A 0L M (4)
AeG v cde
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- yZZZ%mM” YOO M) (4)

AeG v cd,e

= G MDA w0 M) (4)

AeG ce

= ,ZZ @A) (@0 MY (4)

AeG ce

- ,ZiZM ) (A M (A) @01y

AeGce=1ld=1

= n(sa/jiz(sabécd a)|0’wa(lﬁ)>

c=1d=1

= 76&5601)2 |O|71Z)

This is what we want to prove with C(®) = (1/n,) Y, (@ZJC |O\1/J(a)> Here we have
used the orthogonality relation of the irreducible representationa

G
S () 5 (4) = D i
AeG @

(ii) Proof by directly using the Schur’s lemma
We notice that

ng
WA = @S @) M (4)

c=1

"B
= Y GacasMy) (A)
c=1

= GasMyy (4).

Since [0, A] = 0 for A € G, we have by inserting the identity operator id =

S S ) ()

0 <w<a>|[o Al
(W}
(%

DNOAY — () A0y
04D — (A0

= 3 (W0 wP1A?) - @A) w0
¥ c

= 2 (@low) MG (A4) - ME () w0l

C
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Because of the Schur’s lemma, we first notice that <¢((1a) |0W1£ﬁ )> is zero unless o = 3.

Moreover, from this lemma, for & = 3 we also have <¢£‘“)y()w£“)> is proportional
t0 dqe. Thus we finally have

@101y = C @546, ,

where C(@ is a constant independent of a. One can determine C®) by setting o = f3
and taking the trace with respect to (a,b). Then we reproduce C(® obtained by
using the method (i).



