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We give a formulation of the Wess-Zumino-Witten models on Riemann surfaces of arbitrary 
genus in which the Ward identities for the current algebras become complete. It requires twisting 
the models in a non-abelian way by Lie group elements. The Ward identities are written in terms 
of twisted Poincar6 series for Schottky groups and the zero modes of the currents are defined by a 
Lie derivation acting on the twists. Furthermore, we identify the denominator of the chiral 
partition function and we argue that both the numerator and the denominator of the partition 
function satisfy a heat equation on the moduli space. 

1. Introduction 

T w o - d i m e n s i o n a l  conformal  field theories [1] are of  great  in teres t  not  only  as 

m o d e l s  of  cr i t ica l  phenomena  in s tat is t ical  physics  bu t  also as classical  solut ions to a 

q u a n t u m  s t r ing theory.  Even though there has been great  progress  in the last  few 

years ,  we are  still far f rom a comple te  unders tanding ,  Except  for the formula t ion  of  

genera l  p r inc ip les  [2-5],  most  of  the progress  so far has centered a round  free 

c o n f o r m a l  f ield theories [6] - especial ly in connec t ion  with boson iza t ion  phe nom-  

ena.  As  a first  s tep toward  a be t te r  unders tanding ,  it is useful to deal  with solvable  

examples  of  conformal  field theories,  and  in par t i cu la r  with the W e s s - Z u m i n o  

W i t t e n  ( W Z W )  models  [7] on R iemann  surfaces of a rb i t r a ry  genus. Mos t  of  the 

so lvab le  c o n f o r m a l  field theories can be reached f rom the W Z W  models  via a coset  

cons t ruc t i on  [8]. 

In  the W Z W  models  [7, 9], in add i t i on  to the conformal  symmetry ,  there are two 

conse rved  currents ,  J~(z )  and ~a(£) ,  which generate  two commut ing  current  

a lgebras ,  f¢o) and  ~ m .  ~ 1 )  is the aff inizat ion of the semi-s imple  Lie a lgebra  f¢ of 

the  Lie  g roup  G on which the models  are defined.  There  are W a r d  ident i t ies  
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associated with both of these symmetries [9]. As pointed out in ref. [10], the 
"s tandard"  formulation of the WZW models on Riemann surfaces is not complete; 
i.e. the Ward identities do not determine the correlation functions with insertions of 
currents in terms of those without insertions. 

Let us recall how the Ward identities for the current algebras on a Riemann 
surface of genus h were formulated in ref. [4]. Consider N affine primary fields, 
I ~ J l ( ~ l  ) . . .  If~N(~N ) (affine primary fields are characterized through eq. (4.10), see 
sect. 4 below). They belong to some representations O(,) of the finite semi-simple Lie 
algebra N. The Ward identities for one insertion of the current JT(z) are [4] 

N 
{Jza(z)(~l(~:l) "-'(I-)N(~N)> = E 0 z l o g E ( z ,  ~n)t(an)((/)l(~l)... (7~N(~N)> 

n=l 

h 
+ E (1.1) 

j= 1 

Here, t(~)= &n)(t a) is the representation of the Lie algebra f¢ which acts on the 
fields q~n(~,). The matrices t a satisfy [t ~, t b] =£ybtc where f~5 'b are the structure 
constants of ~. To write eq. (1.1), we have chosen a basis of canonical cycles on the 
Riemann surface, (aj,  bj), j = 1 . . . . .  h. E(z ,  ~) is the prime form on the Riemann 
surface; it depends on the choice of the canonical cycles (a j, bj). The ~oj(z)'s are the 
holomorphic differential forms dual to the canonical cycles (a j, bj) [11]. The 
operators J0~ j are the zero modes of the currents 

J~ j = ~ J~(z). .  (1.2) 
J 

The proof of eq. (1.2) either relies on the use of appropriate (non-chiral) Green 
functions [4], or on the properties of meromorphic differential forms on Riemann 
surfaces [10]. But none of this demonstration gives a meaning to the correlation 
functions with insertions of the zero modes J0~ j. 

The lack of a precise definition of the action of the zero modes J0~ j on the 
correlation functions is very bad. First, because the zero modes contain all the 
information concerning the solitonic sector of the theory. For example, the partition 
function is completely determined from the expectation values of these zero modes 
[10]. Second, because with Ward identities written as in eq. (1.1), the study of the 
WZW models stop at this point; we cannot deduce linear differential equations 
sat isfed by the correlation functions, and thus we cannot solve the models. 

In this article, we present a complete formulation of the WZW models on 
Riemann surfaces. In this version of the WZW models, the affine currents J~U(z) are 
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twisted by elements of the Lie group G. These twists define new moduli which are 
valued in the Lie group. The zero modes are defined by Lie derivation with respect 
to these new moduli. Therefore, the Ward identities and the linear differential 
equations satisfied by the correlation functions involve derivatives with respect to all 
the moduli parameters - the moduli of the Riemann surface and the new moduli 
parameters. 

This article is organized as follows. In sect. 2 we briefly recall how the WZW 
models on the torus were described in ref. [10]. It gives us enough clues to extend 
this construction to higher genus. In sect. 3, we introduce the mathematical 
ingredients needed in the formulation of the Ward identities as they are presented in 
sect. 4. Sect. 5 deals with the Sugawara construction and the associated Virasoro × 
K a c - M o o d y  Ward identities. In particular, we argue that both the denominator and 
the numerator  of the chiral partition functions satisfy a kind of heat equation on the 
moduli space. An appendix is devoted to the Virasoro Ward identities. 

2. Back to the torus 

Before going deeply into the WZW models on Riemann surfaces of arbitrary 
genus, let us recall how we describe these models on the torus. As always, once the 
case of the torus is correctly interpreted, the generalization to arbitrary genus is 
more or less straightforward. We first present the results obtained in ref. [10], and 
then give the correct interpretation. 

To give a precise meaning to the zero modes J0 ~ - o n  the torus each current 
component  has only one zero mode - we introduced the so-called "character valued 
expectation values" which are denoted by ~ -- .  )g. In the operator formalism, they 
correspond to inserting an element g of the Lie group G 

1 
(~b1(~1)"" ~bN(~U))~ -- Z(T;  g) T r ( g ~ l ( ~ l ) " "  ~N(~N)qL°)" (2.1) 

The trace is taken in the physical Hilbert space and L 0 is the zero component of the 
Sugawara stress-tensor. Inside the trace, the element g of G is represented by an 
exponentiation of an element of the Lie algebra f¢ generated by the zero modes Jg. 
Z(~-; g) is the partition function (twisted by g) 

Z(T;  g ) =  Tr(gqL°) ,  (2.2) 

with q = exp(i2~r~'), where ~', with Im ~" > 0, is the moduli parameter of the torus. 



148 D. Bernard / WZW models 

All the correlation functions depend on g. The action of the zero modes J0 a on the 
correlation functions is defined by 

=  Olog z ( , ;  g ) ,  (2.3) 

(Joa(/)l(~l) .-. ~N(+N))g -- (Joa)g((/),(~l) --- (~N(+N))g 

= '~a (~a~ l ) " " "  (~N( ~N ) )g" (2.4) 

where the £~0~ are the left invariant Lie derivatives on G. 
Since the correlation functions now depend on g, the contraction function - i.e. 

the analogue of the derivative of the logarithm of the prime form in eq. (1.1) - also 
depends on g. It is no longer a scalar but a matrix; i.e., it is 1-form valued in 
End(q) ,  the endomorphisms of the Lie algebra ~¢. The Ward identities for one and 
two insertions of affine currents take the following forms 

( Jza(Z)~l (~ l )  " ' ' ~ N ( ~ N ) ) g -  (Ja(z))g(l~)l(~l)" ' f~N(~n))g 

N 
ab b 

= E +o(z, '~,]g) t(,)(q~t(+t)... ~N(~N))g 
n=l 

"4-Z-I*~a(~I(~I) ' ' '~J)N(~N))g, (2.5) 

( Jza( Z )Jwb( W )~)l( +l) "'" ~N( ~n) )g-- ( Jza( Z ) )g( j b ( w  )(I~l( ~l) "'' ~2)N( +N ) )g 

= --gO~w~(Z, wig ) a b ( ~ l ( ~ l ) . . . ~ N ( ~ N ) ) g  

add c + ~( z ,  wlg)'+'dffb+'~,~ 9 Y'+ ~(z ,  Glg)  t(,> (J~Cw)OtC,~t)...Cl'uC,G)),+ 
n~l 

-Jcz 1,.~a(JbCw)+l(+l).. .  +NC+N))g" (2.6) 

In ref. [10], these Ward identities were proved by using the Kubo-Martin-Schwinger 
(KMS) condition [12] 

<JyCz)J2(w)... . . .  

= q ( j b ( w ) . . ,  dPl(~l)... ~U(~N)J f ( zq ) )gAd(g)  a~ (2.7) 
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where Ad(g)  is the adjoint representation of G. Eq. (2.7) is equivalent to the cyclic 
property of the trace. Its proof uses the fact that the currents J~(z) are Virasoro 
primary fields with conformal weight one and that they belong to the adjoint 
representation of G. Thus we have 

qL°j~(z)q-L°=qJy(zq)  and g J Y ( z ) g - a = J f ( z ) A d ( g )  d~. (2.8) 

Together with the commutation relations between the primary fields and the 
modes of the currents Jfl(z), the KMS condition (2.7) allowed us to determine the 
function lo( z, wig) 

¢o(z, wlg) ~ q" = - - a d ( g  ") + £ w___/z ad(g"). (2.9) 
n=l q nz - w n=0 q -nz -- W 

The function zoo(z, wig ) is the meromorphic continuation of the function given in 
eq. (3.8) of ref. [10]. 

The interpretation goes as follows. First, to write the KMS condition as in eq. 
(2.7) corresponds to defining the torus by identifying the points z and ~,0(z) = zq in 
the complex plane. The torus is obtained by gluing together the two sides of the 
annulus A = { z E C, I q] < [zl < 1}. In other words, if F 0 denotes the cyclic group 
generated by the Mobius transformation 70, /'o = {Y#, n ~ Z}, then the torus is 
identified as C / F  o. The fundamental domain of C / F  0 is the annulus A. The 
canonical cycles of the torus, (a, b), can be choosen as the circle Cq, Cq = { z c C, I zl 
= I ql}, for the cycle a, and as a path from Cq to the other side of the annulus A for 
the cycle b. 

Second, we have implicitly supposed that the currents Jfl(z) possess only integral 
modes. It means that we have choosen to describe the affine algebra N(1) in one of 
its homogeneous gradations. Therefore, the currents Jfl(z) are single valued around 
the cycle a. But, to insert the element g in the correlation functions, eq. (2.1), 
implies that in the path-integral formalism the currents Jfl(z) are twisted along the 
cycle b by the group element g. To be precise, for ,g0(z) = zq, the twist is 

V0*Ja(z) =- yd(z) Jy(y0(z))  = Ad(g)  ~b,/b(z). (2.10) 

This twisted boundary condition is implicit in the KMS condition (2.7). The zero 
modes J~ are defined by Lie derivation acting on this twist. 

Third, the contraction function ~o(z, wig ) possesses a geometrical interpretation. 
The "double pole contraction" reads 

qn 
Ow~°(z' wig) = ,,~z y'~ (q"z - w) 2 A d ( g - ' ) "  (2.11) 
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It is a Poincar6 series for the cyclic group F 0 twisted by the elements g - "  of the Lie 
group G [13]. 

The strategy for studying the WZW models at arbitrary genus is now obvious. It 
decomposes into three steps. 

(i) We first describe the Riemann surface Z as the quotient of a covering 5:  of 
by a kleinian group F, Z =5:/F. For concreteness, we will choose the Schottky 
parametrizat ion in which 5:  is the complex plane (with a point at infinity) and iv a 
Schottky group [13-15]. This choice will allow us to develop a chiral analysis. 
Schottky groups have already been widely used in string theory [16,17]. 

(ii) The affine currents Jy(z)  must be twisted along the non-trivial cycles by 
elements of the Lie group G. They will therefore belong to a flat vector bundle 
defined over 5:  whose rank is dim G. The expectation values will depend on these 
twists. As in eqs. (2.3) and (2.4), the zero modes will be defined by the Lie 
derivatives acting on these twists. 

(iii) The contraction func t i ons -  as well as the zero m o d e s -  will be explicitly 
defined in terms of twisted Poincar6 series. They are twisted automorphic forms for 
the kleinian group iv [13]. 

3. Mathematical tools 

In this section, we describe the mathematical framework used in sect. 4. By the 
uniformization theorem [14,15], all Riemann surfaces Z can be described as the 

quotient of a covering 5 '~ by a discontinuous kleinian group F: Z = 5:/F. There are 
many  possible choices of kleinian groups F. Among them, the most popular choices 

are either those where F is a fuchsian group or those where F is a Schottky group. 
The first case - F a fuchsian group and 5: the upper-half complex plane - corre- 
sponds to describing the Riemann surface ~ via its "cut surface" drawn in fig. 1. 
This choice facilitates the description of the twisted boundary conditions i.e., the 

b-)' 

b 2 ,bl 

,/~°l 
b21 

Fig. 1. The "cut surface" of a Riemann surface of genus 2. The fundamental region is the interior of the 
polygon. 
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spin structures. But the complex structure of the Teichmi~ller space is somewhat 
obscure in this fuchsian parametrization. On the contrary, the second choice gives 
rise to a complex parametrization of the moduli space, the so-called Schottky 
parametrization. In the Schottky description of the Riemann surfaces the covering 
space is the complex plane C and F is a discontinuous subgroup of PSL(2, C). 

The elements y of PSL(2, C) are the Mobius - or homographic - transformations, 

z - - - , , l ( Z )  

az  + b - d z  + b 
7 ( z ) - - - ,  7 l ( z )  - - ,  (3.1) 

cz + d cz - a 

with a, b, c, d ~ (3 and a d  - bc = 1. Instead of parametrizing 7 with the coefficients 
a, b, c, d, it is useful to characterize it via its two fixed points, denoted by u~ and v v, 
and via its multiplier qy, Iqvt < 1. They are defined by the following equations: 

qy + 1 / q  v = (tr 7) 2 - 2. 
(3.2) 

In terms of these parameters, the Mobius transformation 7 can be written as follows 
(if u~ ~ %) 

7 ( z ) - u  v z - u v  
- q r -  (3.3) 

v ( z )  - z - 0 r 

The isometric circle ay of "f is the circle [cz + d I = 1. On this circle, 7 preserves 
the distances, 17'(z)[ = 1. The isometric circle a~ of 7 -1 is the circle ]cz - a] = 1. 

Notice that a~ = y(ay),  and that 7 maps the interior of av in the exterior of a~, and 
the exterior of a v into the interior of a~. 

The Schottky groups are constructed as follows [13-15]. Consider h Mobius 
transformations Y1 . . . . .  7h whose pairs of isometric circles, al, a [ ; . . .  ; a  h, a~, are 
external to one another. The Schottky group F is the group generated by the 
transformations "y], j = 1 . . . . .  h: F =  ~71;-.. ;Yn)- That is to say, it is the infinite 
group of Mobius transformations obtained by taking any combination of products 
of positive or negative powers of the 7]'s. 

The Riemann surface ~ = C / F  is defined by identifying points on the complex 
plane which are conjugated by an element of F. Identifying the circles aj and aj 
produces h handles on the sphere. Since the transformation y] maps the exterior of 
aj  in the interior of a j, the fundamental domain of C / F  is the region F outside the 
2h circles (a],  a j),  j = 1 . . . . .  h. The complex plane C is covered by the F-images 
of F. 
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a~=-y  I (a I) 

Cl h 
/ 

ah=-- yh (a h ) 

Fig. 2. For F a Schottky group of genus h the fundamental domain is the region exterior to the circles 
aj and a~. The canonical cycles of the Riemann surface ~; = C / F  are the cycles aj and b I. 

As a canonical homology basis of the Riemann surface E, we can choose the 

circles a 1 . . . . .  a h and the paths b 1 . . . . .  b h from the circles aj to the circles a j  (see 
fig. 2). 

Each homographic transformation 7j is parametrized by the three complex 

parameters  (qj; %; vj). But two Schottky groups, F and M I " M  -1,  conjugated by a 
Mobius transformation M, define two conformally equivalent Riemann surfaces. 
Therefore, the 3h moduli parameters (qj; u j; vj), j = 1 . . . . .  h, modulo this equiv- 

alence relation, give rise to ( 3 h -  3) complex moduli parameters of the Riemann 
surface ,Y. Note  that the parameters qj remain unchanged during the conjugation 
F ~ M F M  1 whereas the parameters (u j; vj) are transformed into (M(uj) ;  M ( v j ) ) .  

Besides producing an explicit complex parametrization of the moduli space, this 
parametrizat ion has the advantage of giving a concrete framework for applying 
Friedan and Shenker's program [2]. For example, it is enlightening in fig. 2 that the 

limit in which the radii of the circles a h and a;  vanish corresponds to inserting 
fields located at the centers of these circles. In other words, by applying this limit 
one relates correlation functions between N fields in genus h to correlation 

functions between ( N +  2) fields in genus ( h -  1)*. Taking this limit consists of 
decomposing the coset of the Schottky group F =  (71;---;  7~) by its subgroup 
/~ = (71; . . .  ; 7h 1) generated by the remaining (h - 1) Mobius transformations. 

Let us now define the twisted flat vector bundle that we will be interested in. The 
fiber of this vector bundle is the Lie algebra f¢ on which the Lie group G acts by its 
adjoint representation. To define a flat vector bundle over 2; whose twists are 
elements of the Lie group G, we have to specify a homomorphism from ~rx(N ) to G 
[14]. Once the canonical homology basis (%, bj) is given, this homomorphism is 

* I thank J.-B. Zuber for a discussion concerning this remark. 
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completely specified by the data of the group elements (g(aj), g(bj)) provided that 
they satisfy the following non-linear constraint 

h 

1-[g-~(bj)g l (a2)g(b j )g(a j )=e  , (3.4) 
j=l 

where e is the identity in G. 
As explained in sect. 3 in the case of the torus, to describe the affine algebra ~o) 

in its homogeneous gradation corresponds to currents single-valued around the cycle 
a of the torus. Therefore, we define the homogeneous gradation on higher genus by 
requiring that 

g ( a j ) = e  for j = l  . . . .  , h .  (3.5) 

In this way, eq. (3.4) is fulfilled whatever the group elements g(bj) are. On the 
other hand, since the cycles bj are in one-to-one correspondence with the generators 
,/j of the Schottky group F, the data of the g(bi)'s define a homomorphism from F 
to G 

, /~  F ~  g(~,) ~ G,  (3.6) 

such that g(Yj) = g(bj) = gi, and that g(7 o/x) = g('f)g(l~) for -{ and/~ in F. 
Notice that to a homomorphism, e ~ g(c) from %(27) to G and an element go of 

G, there is associated another homomorphism gog(c)go 1 from %(Z) to G. If g(c) 
satisfies eqs. (3.4) and (3.5), the conjugated homomorphism gog(c)go 1 also does. 
Therefore, they define conjugated homomorphisms g(3') and gog(y)go I from 
F to G. Furthermore, two conjugated homomorphisms g(c) and gog(C)go I define 
the same flat vector bundle. 

Let us now mix the two previous definitions - the Schottky parametrization and 
the appropriate homomorphism g(~,) - and discuss the twisted Poincar6 series. The 
Poincar6 series of the Schottky group F are automorphic forms for this group [13]. 
They will play a crucial role in the construction of the complete Ward identities 
presented in sect. 4. We define a Poincar6 series Oz(z, wig) twisted by the homo- 
morphism g(7) by 

y'(z) 
Oz(z, wig) = E 3,(~)) 7 Ad g - l ( y ) .  (3.7) 

y ~ i ,  W 

For F a Schottky group, the series (3.7) converges, except when z is conjugated to 
w [13]. Observe that for the cyclic group F 0 defining the torus in sect. 2, the 
isometric circle are not external each another; therefore the series (3.7) is not 
convergent in this case. The function o~(z, wig ) in eq. (2.9) is a "normal ordered" 
version of the Poincar6 series (3.7). Another advantage of the Schottky description 
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of the surface ,~ is that the series (3.7) is not always convergent if F is a fuchsian 
group. 

The series (3.7) is valued in End(g) .  It possesses a simple pole at z = w with 
residue one. The other poles of 6)z(Z, wig ) are simple poles located at the images 
7-1(w)  of w and at the images 7 - ~ ( ~ )  of the point at infinity. 

The series O~(z, wig ) is a twisted automorphic 1-form in z 

7*e~(z, wig) =- 7'(z)O~(7(z), wig) = A d  g(7)6)z(Z , wig), ( 3 . 8 )  

for any element 7 of F. 
The a-periods of 6)z(Z, wig ) vanish if w is inside the fundamental domain 

F - i.e. outside the circles aj and aj 

~ d z O ~ ( z ,  wig ) = 0. (3.9) 

To prove eq. (3.9), we only have to enumerate the simple poles of Oz(Z, wig ) 
which are inside the circle aj. These are the images 7 l(w) of w and the images 
7 - 1 ( ~ ) .  The reside at 7 l(w) is [Ad g-1(7)], whereas the residue at 7 1(oo) is 
[ - A d g  1(7 ]. But since the image under 7 1 of the fundamental domain F is a 
connected domain inside one of the circles a or a', either 7 l(w) and 7 l(m) are 
both inside the circle aj or both outside aj. Therefore, the sum over the residues 
vanishes. 

The Poincar4 series Oz(Z, wig ) fails to be an automorphic zero-form in w, but 
transforms as follows 

O~(z, 7(w)lg  ) = [Oz(z, wig) - Oz(z, 7 l ( ~ ) l g ) ] A d  g - a ( 7 ) ,  (3.10) 

for any 7 in F. Note that the shift in eq. (3.10) is independent of w. In particular, 
this implies that the symmetric 1-form OwOz(z, wig) 

7'(z) 
aw~)z(Z, wig)= ~ w)2Ad g-l(Y), (3.11) 

is a twisted automorphic 1-form both in z and w. 
The proof of eq. (3.10) only relies on the following relation 

7'(z) 7'(z) ~,(z) 
7 ( z ) -  7o(W) ~ ( z ) -  w . ~ ( z )  - 7 o - 1 ( 0 0 )  ' 

(3.12) 

with "p = 7o 17. 
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The readers familiar with the theory of holomorphic differential forms would 
have recognized in eqs. (3.8)-(3.11) the twisted version of the properties of the 
derivative of the logarithm of the prime form, 0flog E(z, w). Hence, it should not 
be a surprise that Oz(Z, wig ) will later play the role of the twisted Green function in 
the Ward identities of the current algebras. 

Let us now study the Poincar6 series Oz(Z, y- l(oo)lg ). They are evidently twisted 
automorphic 1-forms. They are holomorphic on the fundamental domain F of C / F .  
By twice applying the relation (3.10), one proves the following composition law for 
3' and /~ in F 

~)z(Z,(')tl.t)-l((x))[g) = O ~ ( z , y - l ( ~ ) l g ) A d  g(/z) + Oz(Z, lz- l (~) lg) ,  (3.13) 

O~(z,~,(~)lg)  = - O ~ ( z , y  l (oo) lg)Adg- l (V ). (3.14) 

Eqs. (3.13) and (3.14) imply that not all the series Oz(Z, Y l ( ~ ) l g )  are indepen- 
dent but that only h among them are. The independent series can be canonically 
associated to the generators Tj of F; they are 

1 
 /(zLg) = (3.15) 

The holomorphic 1-forms ~}(zlg ) are the twisted version of the holomorphic 
differentials o~j(z). They satisfy 

y*~0/(zlg ) - T'(z)~oJ(y(z)lg ) = Ad g(y)o#(z lg) ,  (3.16) 

for any 7 in F. They are dual to the cycles a k 

~a, dZ coJ( zlg ) = 8[. (3.17) 

Indeed, in addition to the simple pole at z = 7 f  1(oo), o~J(zlg ) has simple poles at 
z = 7 - 1 7 f 1 ( ~ )  and z = 7-1(oc), with residue [Ad g-1(7)] and [ - A d  g-1(7)], re- 
spectively. But both domains 7 - I ( F )  and 3' 1yj I(F ) are always in the same circle 
a i or a~, therefore the sum over the residues coming from the poles at 7 -1 (~ )  and 
at y -17 f l ( ce )  cancels. On the other hand, the pole at z = 7 f l ( ~ )  is inside aj; it 
therefore gives a non-vanishing contribution only if j = k. 

To be more precise, for the 1-forms %(zig  ) to be holomorphic on the Riemann 
surface, they also have to be regular at infinity. This means that they must behave 
like %(z ig  ) - 1/z 2 at infinity. The differentials ~](zlg ) do not satisfy this condi- 
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tion. The holomorphic differentials (regular at infinity) are the set of 1-forms 

h 
a x a b  b ,~;(zlg) = E ,V(zlg) ,,j, (3.18) 

j = l  

where vj, j = 1 . . . . .  h, are h vectors of the Lie algebra f¢ satisfying 

h 

Y'~ (vj- (Ad gj)vj) =O. (3.19) 
j = l  

It is easy to show that for generic values of the twists gj there are (h - 1)dimG 
independent solutions of eq. (3.19). This means that there is (h - 1)dimG indepen- 
dent twisted holomorphic 1-forms. Hence, from the Riemann-Roch theorem, in 
general there is no holomorphic function in the dual flat bundle. The physical 
implication of this fact is that for generic values of the twists there is no extra 
global-gauge conservation law besides those described in eqs. (4.4) and (4.5) below. 

4. Ward identities for the current algebras 

As already explained, to have complete Ward identities for the WZW models, we 
must consider a twisted formulation of these models. The fundamental group-valued 
fields of the WZW models [7-9], denoted by G(z, ~), can be twisted by acting either 
on the right or on the left. In the homogeneous gradation defined in sect. 3, the twists 
are specified by two homomorphisms g(7) and h(7) from F to G. On the covering 
space, these homomorphisms act on G(z, 5) as follows 

G(7(z),7(z)) =g(7)G(z,5)h l( .y).  (4.1) 

In the case of the torus, the chiral invariance of the WZW allows us to map any 
twisted versions of the WZW models to a particular version which is untwisted 
along the a-cycle. We have not been able to generalize this statement on higher 
genus. But if this property remains true on arbitrary genus, it is then enough to 
study the WZW in their homogeneous gradations defined by eq. (4.1). 

Due to the ehiral nature of the WZW models, the left and the right twists act 
separately on the left and right conserved currents. On the left conserved current 

Jz~(Z) 
- -  o j~(z)ta=_½K(OzG)G 1, O~Jj(z)=O, (4.2) 

the twists g(7)  act according to 

y*J~(z)  -= 7'(z)dy(7(z)) = Ad g(7)aaY~a(z). (4.3) 
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The  cur ren t s  Ja(z) are unaffected by  the r ight  twist h (7 ) .  Similar  re la t ions  hold  

for  the  r ight  conserved currents  ,~a(£). Eq. (4.3) means  that  the currents  Jy(z) 
be long  to the  f lat  vector  bund le  specif ied by  the h o m o m o r p h i s m  g(Y) as descr ibed  

in sect. 3. 

Because the c u r r e n t s -  or the fundamen ta l  field G(z, ~ ) -  are twisted by  the 

g roup  e lements  g ( y ) ,  the par t i t ion  funct ion Z(F; g) and all the corre la t ion  func- 

t ions,  d e n o t e d  by  ~ - . .  )g as in the case of the torus, depend  on the group e lements  

g(Y).  But the  group formed by  the g ( ' / ) ' s  is genera ted  by  the h i ndependen t  group 

e lements  g] - g(y]) ,  j = 1 . . . . .  h. Therefore,  the expec ta t ion  values ~ . .  • )g and  the 

p a r t i t i o n  func t ion  Z(F; g) can be under s tood  as funct ions  f rom G h to some-f ini te  

d i m e n s i o n a l  vector  spaces. The arguments  of these funct ions are the h independen t  

g roup  e lements  g]. 

Cova r i ance  of  the corre la t ion  funct ions  ( . . . ) g  under  g lobal  gauge t rans forma-  

t ions  arises f rom the fact that  a conjugat ion  of  the h o m o m o r p h i s m  g ( y )  by  a 

cons t an t  e l emen t  go of  G, g ( y )  --+ g 0 g ( y ) g o  1, does not  change the vector  bundle .  

Thus,  the pa r t i t i on  funct ion is invar iant  under  a conjuga t ion  of g ( 7 )  

z(r; g)= z(r; goggol), (4.4) 

a n d  the cor re la t ion  funct ions of the affine p r imary  fields t rans form covar ian t ly  

( ( ~ 1 ( ~ 1 ) ' ' "  fTPN(~N))goggo' = P(1) (g0) ' ' "  P(N)(g0)( I :~I (~I )  "'" ~N(~N)>g, (4 .5)  

if ~n(~n) be longs  to the represen ta t ion  p(,) of G. 

Being func t ions  of the h group elements  g j ,  we can derive the corre la t ion  

func t ions  ~ • • • )g with respect  to any one of the g f s .  Thus,  we define the ac t ion  of 

the zero m o d e s  J0~ ], eq. (1.2), on the corre la t ion  funct ions b y *  

( J~; j)g -~ 2i~£afqog Z( F; g ), (4.6) 

(Joa; j(/)1(~:1) ' ' -  (/)N (~N) )g  -- (Joa; j>g( ( / ) l (~ l ) - - - f I )N(~N))g  

= 2 i ~ r ~ ] a < ~ t ( ~ l ) . . .  ebN(~U))g , (4.7) 

* One may wonder if the definitions (4.6) and (4.7) are consistent with the other properties of the 
WZW models. But as shall be explained later, the Ward identities for the current algebras on 
Riemann surfaces completely determine the definition of the zero modes J~ i. To be precise, eq. 
(4.23) below, which follows from the consistency of the Ward identities, implies that the definition 
(4.6) and (4.7) are the unique consistent ones. 

On the other hand, twisted WZW models as defined by eq. (4.1) can be studied via a path-integral 
formalism. The Ward identities described below can then be rederived from the properties of the 
WZW action of the twisted models. From this demonstration, left to the reader, it becomes apparent 
that the zero modes are associated to the variation of the twists as emphasized in the definitions (4.6) 
and (4.7). 
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where the £~ja are the left invariant Lie derivatives acting on the group elements gj. 
To be precise, if F ( g  1 . . . .  , gh) is a function depending on gl . . . . .  gh, then, for any 
vector v of the Lie algebra if, the Lie derivatives £#f act as follows 

d 
(~ j~F)  (gl . . . .  , gh) = -d7 F (  & . . . . .  g j e  '~, . . . .  gh ) (4.8) 

t=0"  

We are now in a position to derive the Ward identities for the twisted correlation 
functions ( • • - )g. In contrast with the case of the torus, at higher genus there is no 
KMS condition because the expectation values are not traces. We cannot use the 
commutation relations of the currents to derive the Ward identities. Therefore, we 
will prove them by using the method of the operator-valued differential forms 
described by Witten [3]. Hence, instead of assuming the commutation relations of 
the currents, we suppose that inside the correlation functions the affine currents 
J f l ( z )  satisfy the following operator product expansion (OPE) 

- K S  ~b [~b.U_ w ( w ) 
J ~ " ( z ) J ~ ( w )  ( z  - w )  ----------~ + ( z  - w )  " (4.9) 

Here, K is the central charge of the current algebra ,~(1). The primary fields ~(~)  
for the affine algebra fro) are defined by the OPE 

' ( 4 . 1 0 )  

if the field ~(~)  belongs to the representation p of ft. Regular terms are omitted in 
eqs. (4.9) and (4.10). 

To prove the Ward identities via the method of the operator valued differential 
forms, one has to judiciously define a 1-form ~?x(x) and has to apply to it the 
residue theorem 

1 h 

Y" Resp(~2x(x))=  2i----~ y'~ ~ la Iba d x  ~2x(X ) .  (4.11) 
P~.~  j = l  7 J J J 

The 1.h.s. in eq. (4.11) is the contour integral on the "cut surface" drawn in fig. 1. 
Eq. (4.11) is slight modification of the identities presented in ref. [3] which allows us 
to take into account the existence of zero modes. 

It is worthwhile to do the demonstration in details. To derive the Ward identities 
for one insertion of a current Jy ( z ) ,  the appropriate 1-form is 

sa (x) Oz(Z, ob = x l g )  (4.12) 
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By assumption, the expectation values (J~(x)q~l(~l) . . .  ~N(~N))g possess only 
simple poles at x = ~,, n = 1 , . . . ,  N, whose residues are given by the OPE (4.10). 
Besides these poles, Oa(x) also has a simple pole at z = x through the Poincar6 
series O~(z, xlg ). Oa(x) is single valued along the a-cycles; i.e. 9a(x)  is well- 
defined on the fundamental domain F. Therefore, since ~,i(aj)= - @ ,  eq. (4.11) 
becomes 

N 
ab b ~_, Oz(z, Gig)  t(,)(qbt(~l)---qbU(~U))g-- ( J a ( z ) ~ l ( ~ l ) " "  (PN(~N))g 

n = l  

+ dx Ox~(X) 
2i~r j ~ l  aj 

1 h 
j ~ l ~  a dx [yj*~2x~(X) - ~2x~(X)] . (4.13) 

2i7r = j 

Note  the difference of the orientations of the a-cycles in fig. 1 and fig. 2. 
From eqs. (3.10) and (4.3), it follows that O~(x) fails to be single valued along the 

cycle bj by 

• j a b  b "rj*fga(x)-- O ; ( X ) =  --2t~r~oz(zlg) ( J ; ( x ) ~ I ( ~ I ) . . . f ~ N ( ~ N ) ) g .  (4.14) 

Therefore, the 1.h.s. of eq. (4.13) reduces to the insertion of the zero modes in the 
correlation functions 

1 
2i~r ~ dx(yj*I2~(x)  - Ox~(X)) = -¢oj(z[g)°b(J~jq~l(~)... ~n(~U))g" (4.15) 

y 

Using the definition (4.6) and (4.7) of the zero modes, we finally obtain the 
complete form of the Ward identities 

N 

n = l  

+£~¢z'(z Ig)(~1(~1) --- ~s(~s))g, (4.16) 
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where we have introduced the following notation 

h 

~°za(z[g ) = 2i~r ~ Wj(z[g)"b& °b (4.17) j - 

j = l  

With this notation, the expectation values of the currents Jy(z) become 

(JT(z))x =~°~"(zlg)log Z(F; g). (4.18) 

One can check that the global conservation law (4.4) implies that vf = 
~j" log Z(F; g) satisfy eq. (3.19), and hence that ( Jy(z) )g  are effectively twisted 
holomorphic I-forms on the Riemann surface. 

In the same way Ward identities for an arbitrary number of insertions of currents 
can be derived by the same techniques if one chooses the 1-form ~~ ~x(X) 

~2(x) = Oz(z, x[g)~J(J~(x)J2(w).. .  ~1(~1)... q)u((u))g" (4.19) 

For example, for two insertions the OPE's (4.9) and (4.10) imply that 

( gza( z ) J 2 (  W ) ~ l (  ~l) "" " ~NC +N ) )g -- ( JzaC z ) )g( Jwb( W )ff~l( ~l)  -. . ~NC +N ) )g 

= - K O w e z ( z ,  

+ Oz(Z ,wlg)ad-db ~d d l,' +,V Z ez(z, 
n=l 

X ( jC(w) ' l~ l (~,) . . .  eN (~N))g 

+5Yz"(Zlg)(Jt(w)@,(~,)... eU(~U))g.  (4.20) 

Note the similarity between the Ward identities (2.5) and (4.6). The consistency of 
the Ward identities described above implies stringent constraints on the twists of the 
primary fields, but above all it determines the allowed definitions of the zero modes 

Jo~j- 
If the primary fields are twisted linearly, (i.e., if they are twisted automorphic 

forms for the Schottky group) 

( , /*~)(~)  =37-(gly) ~ (~ )  (4.21) 

then, an examination of the pull-back of the Ward identities (4.16) shows that the 
dependence of the twist Y ( g l 7 )  on the homomorphism g(y)  is fixed through the 
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relation 

J (g lv)  =,7(v)o(g(Y)), (4.22) 

if the primary fields ~(~) belongs to the representation O of G. ~(~,) may evidently 
depend on ~; it is a character for the Schottky group F. 

Moreover, the same analysis shows that we must have 

o(g-l(~))[&P~(zlg)o(g(y))] =O~(z,7-1(oo)lg)'bO(tb). (4.23) 

This latter constraint is strong enough to prove that the defnit ion of the zero modes 
given in eqs. (4.6) and (4.7) is unique. The proof assumes that the zero modes act on 
the correlation functions through a first-order differential operator acting on the 
group element g('/). Actually, eq. (4.23) completely specifies the operator ~z"(z ]g). 
In particular, it is this equation which fixes the factors (2i~-) in eqs. (4.6) and (4.7). 

Finally, let us recall that the algebraic structure is locally preserved [4, 9], i.e. the 
local modes J~(w) of the currents J~(z) 

JT(z) = E J~(w)(z - w)-"- ' ,  (4.24) 
nEZ 

satisfy the commutation relations of the affine Kac-Moody algebra f¢(1). Therefore, 
as extensively discussed in ref. [1] for the case of the sphere, and in refs. [4,19] on 
higher genus, correlation functions obey linear differential equations. These dif- 
ferential equations arise from the null-vectors which occur in the affine Verma 
modules [18]. Schematically, if ff)(~) is a primary field for an affine representation 
whose Dynkin indices are De, s = 0 , . . . ,  rank G, then the differential equations are 

[ J ( -  a0(w)] = 0, (4.25) 

where J(Ss) are the current components associated with the simple roots &~ of the 
affine algebra ~o). 

To write down explicitly these differential equations is not very enlightening. We 
will therefore discuss the Virasoro × Kac-Moody Ward identities which have turned 
out to be more powerful. 

5. The mixed Virasoro × Kac-Moody Ward identities 

For completeness, before describing the Virasoro × Kac-Moody Ward identities, 
we recall the Virasoro Ward identities on Riemann surfaces. They can be proved as 
in ref. [4] by using an appropriate Green function together with the method of 
operator valued differential forms [3]. The demonstration is similar to the one for 
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the current algebras. Thus we omit it and just report some details in the appendix. 
But because we will need it, we will discuss the dependence on the moduli 
parameters of the Riemann surfaces. As above, we describe the Riemann surfaces in 
the Schottky parametrization. 

The defining relations of the Virasoro algebra and of its highest weight represen- 
tations are encoded in the OPE of the stress tensor T(z) 

r(z)V(w) 
c/2 2 - - +  

(Z - -W)  4 (Z - -W)  2 

1] 
+ (z_w OW V(w), (5.1) 

where c is the Virasoro central charge. For the current algebras (4.9), the Virasoro 
central charge is c=KdimG/(K+h*). The OPE characterizing the Virasoro 
primary fields are 

1 ] 
(5.2) 

where A is the conformal weight of the primary field ~(~). 
Let us denote by G~z(Z, w) the following Green function 

[~,(Z)]  2 3h-3 

Gzz(Z, w) = E y-(-~ - w  E h:~(z)p,~(w). 
yEF a=l  

(5.5) 

Here h~z(z), a = 1 . . . . .  (3h - 3), form a basis of holomorphic quadratic differentials, 
and the p~(w)'s are polynomials defined in the appendix. For w in F, Gzz(Z, w) has 
only a simple pole in the fundamental domain located at z = w with residue one. It 
is an automorphic 2-form in z: yz*Gzz(Z, w) = G~:(z, w) for any 7 in F. It fails to 
be a vector field in w by a shift which is a holomorphic quadratic differential in z. 
(See the appendix for further details.) 

The Ward identity for one insertion of the stress tensor reads [4] 

< T ( z ) ~ I ( ~ I ) " "  ~N( ~N)>g-- <T( z )>g<l~)l( ~l) "" ~N( ~N)>g 

N 
E [An O~nGzz(Z' ~n) Ar Gzz( Z, ~n)0~,,] <d/~1(~1)"'" ~N(~N)>g 

n=l 

3h-3 3 
+ y" h~z(Z)ff-~m~<~1(~ll...~N(~Nl}g. (5-4t 

ot=l 
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Here m ~, a = 1 . . . . .  h are the moduli parameters dual to the holomorphic quadratic 

differentials h~zz( Z ). 
As for the affine algebras, the expectation values involving the zero modes are 

defined by a derivation with respect to the moduli parameters. Namely, the 
variation of the partition function is [2-4] 

0 
h~z(z)-~m l o g Z ( F ;  g)  = ( T ( z ) ) g .  (5.5) 

Similar expressions hold for the correlation functions of the primary fields (see the 
appendix). Notice that the last equation is only valid in an atlas of local coordinates 
such that the coordinate transformations between neighbouring patches belong to 
PSL(2, C). That  is to say, eq. (5.5) is only valid once we have chosen a projective 
structure ~ on the Riemann surface. From one projective structure, with local 
coordinate z, to another one, with local coordinate w, the stress tensor transforms 
inhomogeneously [1] 

( T ( w ) ) g d Z w  = ( T ( z ) ) g d 2 z  + l c{ z; w } d2w, (5.6) 

where { z; w } is the schwarzian derivative. Accordingly, the partition function will 
transform inhomogeneously. This transformation reflects the projective nature of 
the line bundle defined by Friedan and Shenker [2]. The partition function is a 
function not only of the moduli parameters of N but also of the projective structure 

defined over N. For example, the torus can be described as the complex plane 
with the points z and z + ~- identified, or as the complex plane with the identifica- 
tion of the points z and zq, (q=exp(2irr~')). From the first to the second 
description the partition function loses a factor exp(-2i~r 'rc/24).  

Eq. (5.5) is one of the key equations of conformal field theories because it allows 
us to evaluate the partition functions. As noticed by Martinec [17], it is effectively 
possible to carry out the integration of eq. (5.5) because the r.h.s, reduces to a 
contour integral on the covering space. Indeed, a deformation of the complex 
structure is specified by the change of complex coordinate, z ~ S(z ,  5) [15] 

(5.7) 

where e(z, Z) is not globally defined on the covering space. The transformation (5.7) 
is called a quasi-conformal mapping. It modifies the kleinian group F defining the 
Riemann surfaces according to F ~ F s 

F s = s o I ~ o S - ~ .  (5.8) 
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The generators ys of the group F s are ~s = SyjS-1. For F s a group of Mobius 
transformations, the Beltrami coefficient ~s(Z, ~) of the transformation 

~ ( z , ~ ) =  y /  Z ' (5.9) 

must transform covariantly [15] 

( y % ) ( z ,  z) = v'(z) v'(z) , s ( v ( z ) , v ( z )  ) = ~ ( z ,  ~). (5.10) 

As infinitesimal transformation/z(z, £) = ~e(z,  ~) induces a change of the parti- 
tion function 

2tr3~ log z ( r ;  g) = f z# (x ,  Y)(T(x))g .  (5.11) 

By integrating eq. (5.11) by parts, one finds the contour integral [17] 

1 h 
8~log Z(F;  g ) =  ~ / ~ 1  ~, dxxs[e] (x ) (T (x ) )g '  (5.12) 

where Xs[e](x)= ~(~,j(z),vj(x))[Vf(x)] - ~ -  e(x, Y). Note that the Beltrami equa- 
tion (5.10) implies that Xj[e](x) is holomorphic. 

The crucial point resides in the fact that to evaluate the variation of the partition 
function there is no need to explicitly know the non-analytic function e(z, ~). To be 
precise, the shift function Xj(X) associated with a change of the moduli parameters 
(q  j; u j; vj) is completely determined by eqs. (5.9) and (3.3). For example, the shift 
functions corresponding to the variation of the moduli parameters q j, (qj ~ q j  + 
8q j), are defined by 

s v j s - l ( z )  - u s z - u j  

Syjs-a(z)  - vj = (qj + 8qj) z = ~"  
(5.13) 

Similar equations hold for the variation of the moduli parameters u s and vj. 
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By solving these relations, one expresses the variation of the partition function as 
follows 

O Z(F;g)= 1 ~ ( x - u j ) ( x - v j )  
q; Oq~ l°g 2i----~ ~, dx (uj-vj) <T(x))g, (5.14) 

0 l o g Z ( y ; g ) =  1 ~ dx ( y j ( x ) - x ) ( x - u j )  
Ovj 2i-----~ a; ( ~  - ~ - _ - ~ j )  <T(x))g, (5.15) 

with similar equations with uj and vj exchanged. 
Let us now apply this formalism to the WZW models in order to derive the 

differential equations satisfied by the partition function and the correlation func- 
tions. In the WZW models, the stress tensor is defined inside the correlation 
functions by the Sugawara construction 

1 
TSUg(z) = w~lim 2 (K+  h*) Kdim~G 1} (5.16) 

J / ( z ) J ~ ( w )  + (z  - w) 2 

Here, h* in the dual Coxeter number of the Lie algebra ~. 
From the Ward identities (4.20), the expectation value of the Sugawara operator 

is 

<TSUg'(Z))g = + 
K 

2(K+h,) trS(zlg) 

1 
2(K+  h*) tr(S(zlg)A dt~)'~z~(zlg)z(r; g) (5.17) 

1 1 
2(K+h*)  Z(F; g) ~za(z[g)~a(z]g)Z(F;" " g) .  

The traces are taken in the adjoint representation of G. S(zhg ) is the twisted 
projective connection 

~'(z) 
S ( z ] g ) =  ~ Adg-l(y), 

y4=e ('y(Z)-- Z) 2 
(5.18) 

and Z(zlg) is defined by 

Z(zlg)= Y' Y ' ( z I )  Adg-l(y). 
y . e  ")'( Z ) - -  Z 

(5.19) 
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Neither the quadratic operatorZ#za(z[g)£#z"(zlg) nor the operator tr(Z(zlg ) A dt ~). 
£Yz~(Z[g) are single valued under the pull-back by an element y of F, but the sum is. 
Thus, TSug(z) is an automorphic 2-form 

= = ( 5 . 2 0 )  

We now want to integrate the differential equations (5.14) and (5.15). The 
analysis decomposes into two steps. First, by an integration on the moduli space, we 
identify the quantum part of eq. (5.6) as coming from the denominator of the 
partition function. We then argue that both the denominator and the numerator of 
the partition function satisfy a kind of heat equation on the moduli space. The 
projective connection arises in eq. (5.17) from the quantum fluctuations of the affine 
currents. It is the stress tensor of dim G free bosons twisted by the homomorphism 
g(7)- The stress tensor TqU(z) of such bosons is 

( T q U ( z ) ) g  = ½trS(zlg). ( 5 . 2 1 1  

To find the partition function of these twisted bosons, whose inverse is denoted by 
H(F; g), we have to integrate the differential equation (5.5) 

3 h - 3  69 

E hTz(z) -~-~-gm~ l°g H(F; g) = - ( r  qu (Z))g. 
~ x = l  

(5.22) 

Following Martinec [17], since the contour integral (5.14) picks out the poles of 
S(zlg ) which are the fixed points of F, we find that 

n qj Oqv (5.23) O H(F;g)= 2 ~ ( l _ ~ ; ) 2 t r ( a d g ( Y ) ) q v  Oqj 
qs 0 q~ log v prim. n = 1 

The sum is over the primitive elements of F, i.e. those which are not power of other 
elements, with each conjugacy class counted only once. Therefore, we have 

rl(F;g)= 1--[ ~I det[1-q;Adg(y)]. (5.24) 
3, p r i m .  n = l  

The determinant is taken in the adjoint representation. This infinite product is the 
denominator of the chiral partition function. It is the simple twisted version of the 
determinant which appears in the loop measure of the dual string models [16]. 
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After having inserted the relation (5.22) in eq. (5.17), the differential equations 
satisfied by the partition function become 

3h-3 ] 
~1 hTz(Z) a 1 am ----~ + 2(K+ h*) (VZ- 2v71ogH(1"; g))v] z ( r ;  g ) n ( r ;  g) 

h • 

K + h *  
[ , ] z ( r ;  g) _ o - -  h~z(z ) ~ + ~ (X T; -- 2X7; log H(1"; g)) ~7; 
L a=l am 

xn(1"; g). (5.25) 

Here we have introduced a new differential operator called V~. It is defined by 

W =~z°(Zlg)  - Z ( z l g ) ° ' o ( t ' ) ,  (5.26) 

when it acts on automormorphic forms '/'(z) satisfying (7*g ')(z)= p(g(7 ) )9 ( z ) ,  
with p a representation of the Lie group G. Under the pull-back by an element y of 
F, the differential operator V~ acts (almost) covariantly 

td 
y*(V'yx/'(z)) = p (g (y ) )Ad  g(y)~d ~Tff + z - y-X(oo) • (z) .  (5.27) 

Eq. (5.27) is the analogue of the transformation of the derivative of '/'(z), Oz,(z) ,  
by the pull-back by the Mobius transformation 7. 

To argue that both the denominator H(F;  g) and the numerator Z(F; g)11(F; g) 
satisfy a heat equation on the moduli space, observe that, up to now, we never have 
supposed that the theory was unitary. For the non-unitary representation whose 
highest weight is a scalar for the global gauge group, but whose central charge is not 
integral, there is no null-vector in the Verma module (except those associated with 
the global-gauge group) [18]. Therefore, the partition function of this theory is the 
inverse of the infinite product (5.24), Zqu(F; g ) =  1/1I(I ';  g). In this case, eq. 
(5.25) implies 

h~zz(Z)~-Z~.~ + ~ - ( X 7  z -2V '71ogH(F ;  g))Vy I I (F;  g) = 0 .  (5.28) 
L ~=1 Om 

In the case of the torus, this remark proves Fegan's result [20]; namely, the 
infinite product (5.24) is solution of the heat equation on the group manifold. It 
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thus completes the proof of the Weyl-Kac character formula presented in ref. [10]. 
Hence, it gives a new proof of MacDonald's identities [21]. We understand that, in 
genus h > 2, our argument does not constitute a mathematical proof of eq. (5.28). 
For mathematicians, eq. (5.28) has to be understood as a conjecture. A mathemati- 
cal proof of eq. (5.28) could arise from a perturbative study (K--+ m) of the WZW 
models. 

From eqs. (5.25) and (5.28), it follows that the numerator of the partition function 
is also a solution of this kind of heat equation 

3 h - 3  0 1 ] 
E h~z(z)-- + (Vr;-2vflogH(F; g))V/ z(F; g)//(F; g) =0. 

Om" 2 ( K +  h*) 
L a = l  

(5.29) 

Unfortunately, we are not able (at present) to integrate this differential equation. 
We end this section by writing the mixed Ward identities for the correlation 

functions. The mixed Ward identities for the expectation values ( . . . ) ~  are ob- 
tained by mixing the Ward identities of the current algebras with the Sugawara 
construction [9]. The property (5.28) satisfied by the infinite product II(F; g) allows 
us to factorize these identities 

N F 3 h - 3  0 ] 

E [An O~Gzz(Z,~n)"~ Gzz(Z, ~n)O~.-}- E hTz(Z) q_-77.7~.~[((~l(~1)'''fi~N(~N))) 
n = l  " a = l  orn ] 

1[ 1 add 
2 ( K + h * )  V~-2~Tal°gH(F;g)+ £ Oz(Z'~'lg) t(,) 

n=l 

(5.30) 

× [~ + ab b Oz( z, ~,lg) t(,) I~1(~1).-. ~N(~N))), 
n = l  

where the double bracket means 

((~1(~1)... ~U(~,))) = Z(F; g)//(F; g)(~l(~l)---~N(~X))g, (5.31) 

It would be interesting to have a geometrical interpretation (i.e. via a path- 
integral analysis?) of this factorization. 

As on the sphere, the double pole in eq. (5.30) at z = ~m determines the conformal 
weight of the affine primary field ~m(~,,): Am= Casimir(&m~)/2(K+h*). The 
simple pole gives rise to the fundamental Knizhnik-Zamolodchikov [9] differential 
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equations 

1 1 ] 
~,[g) t~,,)t(,)+ 2(K+h*)  (t(m)'Vff}+ K + h *  y" O~'(~m' ~d ~ d 

t l ~ m  

>(Z(/'; g)(~l(~l) '--q)N (~N))g = 0. (5.32) 

As a check, one may verify that, thanks to the property (5.27), eq. (5.32) is covariant 
under the pull-back by an element ? of F. Notice that eq. (5.32) remains valid even 
if eq. (5.17) is not true. Eq. (5.32) together with the unitary constraint (4.25) are 
supposed to fully determine the correlation functions. 

6. Conclusion 

We have succeeded in formulating the Wess-Zumino-Witten models at higher 
genus such that the Ward identities of the current algebra become complete. Thus, 
besides reducing the theory to the analysis of the correlation functions between the 
affine primary fields only, the Ward identities provide linear differential equations 
which should fully characterize the correlation functions. 

This formulation requires the definition of a twisted version of the models. The 
twists belong to the Lie groups on which the models are defined. They give rise to 
new Lie-group-valued moduli. The action of the zero modes of the affine currents 
on the correlation functions are defined by Lie derivatives acting in these moduli. It 
is the very analogue of the definition of the zero modes of the stress tensor as 
derivatives on the moduli space of the Riemann surfaces. The differential equations 
satisfied by the partition function and by the correlation functions involve deriva- 
tions with respect to all of these moduli parameters. 

To illustrate the method, we have identified the denominator of the chiral 
partition function. We also have argued that both the denominator and the 
numerator of the chiral partition function satisfy a kind of heat equation on the 
moduli space. 

It evidently remains to integrate these linear differential equations. 

I acknowledge I. Frenkel, G. Moore, D. Olive, E. Witten and J.-B. Zuber for 
helpful discussions. I gratefully acknowledge P. Mende for a careful reading of the 
manuscript. 

APPENDIX 

In this appendix we point out few details concerning the Virasoro Ward identi- 
ties. 
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Let us define an automorphic 2-form in z by 

* z O ~ ( z , w )  = E y - - ( - ~ w '  Yz Q~z( , w ) = Q z z ( Z , W ) .  
y~F 

(A.1) 

If w is in the fundamental domain F, Qzz(z, w) has only a simple pole in F 
located at z = w .  But if w = y - l ( ~ )  for some ¥ in F, Q~z(Z,y-l(oo)) is a 
holomorphic quadratic differential defined over E = C/F .  As it has been proved in 
ref. [22], a basis of holomorphic quadratic differentials can be made up of automor- 
phic 2-forms Qz~(Z, y-l(oc));  i.e., if one chooses judiciously (3h - 3) elements y, in 
F, then the automorphic 2-forms h~z(Z)= Qzz(z)= Q~z(z, ~/a - l (oo) )  span the space 
of holomorphic quadratic differentials. 

The Poincar6 series Qz~(z, w) fails to be a vector field in w. But for any y in /', 
the difference between Qz~(z, 7(w))[y'(w)] 1 and Qz:(z, w) is a quadratic differen- 
tial in z which has no pole in the fundamental domain F. As such it decomposes on 
the holomorphic quadratic differentials h~z(Z ) 

Qzz(Z ,y (w))[7 ' (w)]  1 - Q z z ( z , w ) = -  
3 h - 3  

Y'. h~z(Z)Tjw]y  ) . (1 .2)  
6( 

The function T,~(wl'y ) are elements of /7(2); the set of polynomials of degree less 
than or equal to two. 

For  deriving Ward identities for one insertion of the stress tensor by the method 
of the operator valued differentials, we have to introduce the following 1-form 

~2x( X ) = Qzz( z, x ) (T(  X )~ l (  ~l) . . . ~N(~N)>g- (A.3) 

From the OPE of the Virasoro algebra and the residue theorem we deduce that 

N 

= + ~, [A,O¢oQzz(Z,~,) + Qzz(Z,~n)O(,](~l(~l)...~N(~N)>g 
n = l  (A.4) 

+ E h z a z ( Z )  d x T a ( x l y j ) ( T ( x ) e l ( ~ l ) . . . e N ( ~ N ) > g  
a = l  J ' = l  j 

We would like to interpret the last term in eq. (A4) as a derivation of the 
correlation functions with respect to the moduli parameters. But to do that we have 
first to study the polynomials Tjw],{). 
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First, we show that they are cocycles for the Eichler cohomology [23]. In concrete 
terms, it means that the maps T, from F to H~2 ) defined by T~: 7 ~ T~(w[-/) satisfy 
the following relation 

T (wlv ) = + ro(wl ), (A.5) 

for any y and ~t in F. Eq. (A.5) is proved by applying the relation (A.2) twice. It 
also means that the maps T~ are completely specified by the data of the h functions 

Kra introduces Eichler coboundaries [23]: a map T from /" to H~2 ) is called a 
coboundary if there exists a polynomial p(w) in H~2 ) such that 

T(wly)=p(~,(w))['~'(w)] ~-p(w). (A.6) 

Obviously, Eichler coboundaries are Eichler cocycles. 
Second, we show that they are dual to the holomorphic quadratic differentials 

h~(z). To give a meaning to this duality, we define a scalar product between the 
holomorphic quadratic differentials hz~(Z ) and the Eichler cocycles T by 

h 

(T;hzz)= E dxr(xLvj)h x(X). (A.V) 
j = l  j 

Here we have supposed that the Eichler cocycle T was specified by the data of the 
functions T(xlTj). This scalar product is actually defined for the Eichler cocycles 
modulo the Eichler coboundaries; i.e.: it is defined on the equivalence classes of 
Eichler cocycles. 

The duality between the holomorphic quadratic differentials h'~z(z) and the maps 
7'. is 

(:to; = (A.S) 

To prove this duality it is sufficient to apply the residue theorem to the following 
1-form: 12x(x ) = Qzz(z, x)h~,:(x). The dimension of the space of Eichler cocycles 
modulo the Eichler coboundaries is (3h - 3) [23]. Therefore, an equivalence class of 
Eichler cocycles is specified by its scalar products with the holomorphic quadratic 
differentials. 

Third, we remark that there is an one-to-one map between the equivalence classes 
of Eichler cocycles and the equivalence classes of Beltrami differentials. Beltrami 
differentials are (1-1)-forms; the equivalence relation is defined by identifying two 
Beltrami differentials which differ by the 0 of a vector field. The space of 
equivalence classes of Beltrami differentials is dual to the space of holomorphic 
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quadratic differentials. The scalar product is defined by 

= X)h z(X). (A.9) 

An equivalence class of Beltrami differentials is completely specified by its scalar 
product with the holomorphic quadratic differentials. Therefore, the duality relation 
(A.8) induces a one-to-one map, T ~/~,  between the equivalence classes of Beltrami 
differentials and of Eichler cocycles such that (T; hzz ) = [~; hzz ]. 

We now are able to identify the last term in eq. (A.3) as a derivation on the 
moduli space. The expectation value of the stress tensor is a holomorphic quadratic 
differential. Therefore, from the one-to-one correspondence between the Eichler 
cocycles and the Beltrami differentials, and from the duality property (A.8), we have 

h 

2i~7~m~logZ(-r; g)=( L; (r(z))~)= F_, ~ d x T ~ ( x l Y ] ) < T ( x ) ) g  . (A.IO) 
]=i 

This equation is equivalent to eq. (5.5). (Note the analogy with eq. (4.6).) 
A similiar relation cannot be used for the correlation functions. Indeed, in 

contrast to eq. (A.10) in which the scalar product is independent of the representa- 
tive T~ of the Eichler cohomology class, the contour integral in eq. (A.3) depends on 
the representative T~. Therefore, this contour integral cannot be directly identified 
with the derivative of the correlation functions. But as explained in sect. 5, to each 
deformation of the kleinian group there is associated canonically a unique Eichler 
cocycle (or a unique Bettrami coefficient). These Eichler cocycles are defined by 
equations similar to eq. (5.13). In other words, to each modular parameter m ~ there 
is associated canonically a Eichler cocycle that we denote by X~- Therefore, we have 
the following identification 

0 

h 

There are no ambiguities in this last equation. On the contrary, eq. (11) of ref. [4] 
may suffer from some ambiguities due to the presence of poles in the correlation 
functions but also due to the ambiguities inherent to the definition of the Beltrami 
differentials. 
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Finally, X~ and T~ being in the same Eichler cohomology class, there exists an 
element p~ of H~2 ) such that 

L(WI] t  ) = Xa(Wl][) ..}._pa(.~(w))[.~t(w)]-1 _ p a ( w )  ' (A.12) 

for all elements 7 of F. 
Therefore, if we define the Green function Gz~(Z, w) by 

Gzz(z,w)=Q~z(z,w)- 
3h-3 
~_, h:z(z)p~(w ), (1.13) 

the identities (A.3) become the Ward identities (5.4) discussed in sect. 5. 
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