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ABSTRACT Compared to a neutral model, purifying selection distorts the structure of genealogies and hence alters the patterns of
sampled genetic variation. Although these distortions may be common in nature, our understanding of how we expect purifying
selection to affect patterns of molecular variation remains incomplete. Genealogical approaches such as coalescent theory have proven
difficult to generalize to situations involving selection at many linked sites, unless selection pressures are extremely strong. Here, we
introduce an effective coalescent theory (a “fitness-class coalescent”) to describe the structure of genealogies in the presence of
purifying selection at many linked sites. We use this effective theory to calculate several simple statistics describing the expected
patterns of variation in sequence data, both at the sites under selection and at linked neutral sites. Our analysis combines a description
of the allele frequency spectrum in the presence of purifying selection with the structured coalescent approach of Kaplan et al. (1988),
to trace the ancestry of individuals through the distribution of fitnesses within the population. We also derive our results using a more
direct extension of the structured coalescent approach of Hudson and Kaplan (1994). We find that purifying selection leads to patterns
of genetic variation that are related but not identical to a neutrally evolving population in which population size has varied in a specific
way in the past.

PURIFYING selection acting simultaneously at many
linked sites (“background selection”) can substantially

alter the patterns of molecular variation at these sites and
at linked neutral sites (Hill and Robertson 1966; Kaplan
et al. 1988; Hudson and Kaplan 1994, 1995; McVean and
Charlesworth 2000; Gordo et al. 2002; O’Fallon et al. 2010;
Seger et al. 2010). In recent years, evidence from sequence
data points to the general importance of these selective
forces among many linked variants in microbial and viral
populations and on short distance scales in the genomes of
sexual organisms (Comeron et al. 2008; Hahn 2008; Seger
et al. 2010). In these situations, existing theory does not
fully explain patterns of molecular evolution (Hahn 2008).

It is difficult to incorporate negative selection at many
linked sites into genealogical frameworks such as coalescent
theory, because these frameworks typically rely on charac-
terizing the space of possible genealogical trees before con-
sidering the possibility of mutations at various locations on
these trees. When selection operates, the probabilities of
particular trees cannot be defined independently of the
mutations, and the approach breaks down (Tavare 2004;
Wakeley 2009).

Despite this difficulty, a number of productive approaches
have been developed to predict how negative selection
influences patterns of molecular variation and to infer
selection pressures from data. Charlesworth et al. (1993)
introduced the background selection model and showed
that strong purifying selection reduces the effective popula-
tion size relevant for linked neutral sites (Charlesworth
1994; Charlesworth et al. 1995). However, weaker selection
also distorts patterns of variation, in a way that cannot be
completely described by a neutral model with any effective
population size (McVean and Charlesworth 2000; Comeron
and Kreitman 2002), a phenomenon often referred to as Hill–
Robertson interference (Hill and Robertson 1966). Several
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theoretical frameworks have been developed to analyze this
situation. The ancestral selection graph of Neuhauser and
Krone (1997) and Krone and Neuhauser (1997) provides
an elegant formal solution to the problem, but unfortunately
it requires extensive numerical calculations (Przeworski et al.
1999). These limit the intuition we can draw from this
method and make it impractical as the basis for inference
from most modern sequence data. An alternative approach
is based on the structured coalescent and views the popula-
tion as subdivided into different fitness classes, tracing the
genealogies of individuals as they move between classes. This
approach was first introduced by Kaplan et al. (1988) and
further developed by Hudson and Kaplan (1994, 1995) in
the case in which fluctuations in the size of each fitness class
can be neglected. This structured coalescent approach has
been been the basis for computational methods developed
by Gordo et al. (2002), Seger et al. (2010), and Zeng and
Charlesworth (2011), and analytical approaches such as
those of Barton and Etheridge (2004), Hermisson et al.
(2002), and O’Fallon et al. (2010).

In this article, we build on the structured coalescent
framework by introducing the idea of a “fitness-class coales-
cent.” Rather than considering the coalescence process in
real time, we treat each fitness class as a “generation” and
trace how individuals have descended by mutations through
fitness classes, moving from one generation to the next by
subsequent mutations. We show that the coalescent proba-
bilities in this fitness-class coalescent can be computed using
an approach based on the Poisson random field (PRF)
method of Sawyer and Hartl (1992) or, equivalently, can
be derived as an extension of the structured coalescent ap-
proach of Hudson and Kaplan (1994).

Our fitness-class coalescent theory can be precisely
mapped to a coalescence theory in which certain quantities
(e.g., coalescence times) have different meanings than in the
traditional theory. We can then invert this mapping to de-
termine the structure of genealogies and calculate statistics
describing expected patterns of genetic variation. This ap-
proach requires certain approximations, but it also has sev-
eral advantages. Most importantly, we are able to derive
relatively simple analytic expressions for coalescent proba-
bilities and distributions of simple statistics such as hetero-
zygosity. Consistent with earlier work, we find that the
effects of purifying selection are broadly similar to an effec-
tive population size that changes as time recedes into the
past. Our analysis makes this intuition precise and quantita-
tive: we can compute the exact form of this time-varying
effective population size, as defined by the rate of pairwise
coalescence. We also show that this intuition has important
limitations: for example, different pairs of individuals have
different time-varying effective population size histories,
meaning that in principle it is possible to distinguish selec-
tion from changing population size. Our approach also
makes it possible to calculate the diversity of selected alleles
themselves, which may be important when selection is com-
mon (Williamson and Orive 2002).

We begin in the next section by describing the fitness-
class coalescent idea that underlies our approach. We then
describe the details of our model and analyze two ways to
implement the fitness-class coalescent. The first relies on the
PRF method of Sawyer and Hartl (1992) to describe the
frequency distribution of distinct lineages within each fitness
class. We show how this lineage structure can be used to
compute coalescence probabilities in each fitness class. The
second approach is based on tracing the ancestry of individ-
uals in the order that events occur as described by Hudson
and Kaplan (1994) and implemented numerically by Gordo
et al. (2002). We show how we can sum over all possible
ancestral paths to compute equivalent coalescence probabil-
ities in each fitness class. The two approaches provide dif-
ferent and complementary intuitive pictures of the process
and depend on various approximations in somewhat differ-
ent ways.

After computing coalescence probabilities with both ap-
proaches, we show how these probabilities can be used to
analyze the structures of genealogies, and we calculate var-
ious statistics describing genetic variation in these popula-
tions, which we compare to numerical simulations. We then
discuss the relationship between our results, neutral theory,
and earlier work on selection, and we explore how various
approximations limit our approach. The most important of
these approximations is that we neglect fluctuations in the
size of each fitness class, analogous to earlier work (Hudson
and Kaplan 1994), which restricts our analysis to the case of
strong selection (relative to inverse population size). This
approximation also means that we neglect Muller’s ratchet.
We describe this and related approximations and describe
their regime of validity in the Discussion. Finally, in the ap-
pendices we explore these approximations in more detail and
describe how they inform the relationship between our work
and earlier approaches.

The Fitness-Class Coalescent

In this section, we outline the main ideas underlying our
fitness-class coalescent approach. We begin our analysis by
considering the balance between mutations at many linked
sites and negative selection against the mutants, which leads
to an equilibrium distribution of fitnesses within a popula-
tion (Haigh 1978). We illustrate this in Figure 1, for the case
in which all deleterious mutations have the same fitness
cost. Each individual is characterized by the number k of
deleterious mutations it contains. Each fitness class k con-
tains many distinct lineages, each of which arose from del-
eterious mutations in more-fit individuals, as illustrated in
Figure 2. Neutral mutations also occur, but we consider
these later.

Hudson and Kaplan (1994) observed that individuals
move between fitnesses by deleterious mutations and that
when two individuals are in the same fitness class they could
be from the same lineage and hence coalesce. Our fitness-
class coalescent exploits this observation to define an
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effective genealogical process that completely bypasses the
ancestral process in real time. Instead, we treat each fitness
class as a generation, and we count time in deleterious
mutations: each deleterious mutation moves us from one
generation to the next. In this way, we can trace the ancestry
of individuals through the fitness distribution. For example,
there is some probability that two individuals chosen from
fitness class k are genetically identical (i.e., come from the
same lineage). If not, they each arose from mutations within
fitness class k 2 1. If both those mutations occurred in indi-
viduals in the same lineage in fitness class k 2 1, we say the
two individuals “coalesced” in class k 2 1. If not, they came
from different mutations from class k 2 2, and could have
coalesced there, and so on. In this way, we can construct
a fitness-class coalescent tree describing the relatedness of
two individuals, as illustrated in Figure 2.

In this article we show that the probability that two
randomly chosen individuals who are currently in fit-
ness classes k and k9 coalesce in class k 2 ℓ, Pk;k9/k2ℓ

c ; is
approximately

Pk;k9/k2ℓ
c ¼ 1

2nk2ℓsk2ℓ
Ak;k9
ℓ ; (1)

where nk is the population size of fitness class k, sk is an
effective selection pressure against these individuals, and

Ak;k9
ℓ ¼

�
k9

k2 ℓ

��
k

k2 ℓ

�
�

kþ k9
2ℓþ k92 k

� : (2)

This coalescent probability is inversely proportional to the
population size of the fitness class, nk2ℓ, and the effective
selection coefficient within that class, sk2ℓ, modified by the
combinatoric coefficient Ak; k9

ℓ : As we will see, this has a clear
intuitive interpretation. Fitness class k 2 ℓ has size nk2ℓ, so
the coalescence probability per real generation is 1=nk2ℓ. We
will see that each lineage spends of order 1/sk2ℓ generations
in that class, so the total coalescence probability in this class
has the form ð1=nk2ℓÞð1=sk2ℓÞ. This is multiplied by Ak;k9

ℓ =2;
which we will show describes the probability that the two

individuals are in class k 2 ℓ at the same time. In other
words, the probability that coalescence occurs in a class
equals the inverse population size of the class times the
number of generations lineages spend together in that class.
In the following sections of this article we derive Equation 1
in the two alternative ways mentioned in the Introduction:
by explicitly considering the lineage frequency distribution
and by following the path summation method of Hudson
and Kaplan (1994) and Gordo et al. (2002).

Our approach of treating mutation events as timesteps,
and computing coalescence probabilities at each timestep,
allows us to make a precise mapping to coalescence theory
in which certain quantities have a different meaning than in
the traditional theory. In this framework, we can calculate

Figure 1 The distribution of the fraction of the population
in each fitness class. (A) The distribution of the number of
individuals as a function of fitness, where the most bene-
ficial class is arbitrarily defined to have fitness 1, and each
deleterious mutation introduces a fitness disadvantage of
s. Mutations move individuals to less-fit classes, and selec-
tion balances this by favoring the classes more fit than
average. The shape of the depicted steady-state distribu-
tion is a result of this mutation–selection balance. The in-
set (B) shows the processes that lead to this balance within
a given fitness class.

Figure 2 Each fitness class in the population is composed of many line-
ages, each of which was created by a single mutation and is (in our
infinite-sites model) genetically unique. In the scheme each lineage is
depicted in a different color. The arrows denote an example of the fit-
ness-class coalescence process for two individuals sampled from classes 8
and 9. These individuals came from different lineages, and these lineages
were created by mutations from different lineages within the next most-
fit class (as shown by the arrows). The arrows trace the ancestry of the
two individuals back through the different lineages that successively
founded each other, until they finally coalesce in the class third from
right.
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a simple analytic expression for the probability that two
lineages sampled from particular fitness classes will coalesce
in any other fitness class. These fitness-class coalescence
probabilities allow us to explicitly calculate the structure of
genealogies in this “mutation time.” We can then compute
the distribution of any statistic describing expected sequence
variation by averaging over the fitness classes our original
individuals come from. For a statistic x that depends on
genealogies between two individuals, for example, we write
expressions of the form

PðxÞ ¼
X

Hðk; k9Þ  Prob�k; k9 coalesce in k2 ℓ
�
Pðx j k; k9; ℓÞ;

(3)

where H(k, k9) describes the probability that two individuals
sampled at random from the population come from classes
k and k9, respectively.

From the form of these expressions and our simple result
for the coalescence probabilities, we can immediately see
the main effect of selection on the structure of genealogies.
The discussion following Equation 1 implies that the effect
of negative selection is similar to that of an effective
population size that changes as time recedes into the distant
past—i.e., some Ne(t). This intuition has been suggested by
earlier work (see, e.g., Seger et al. 2010). As we will see, our
analysis describes the precise form of Ne(t): it follows the
distribution nk2ℓ as ℓ increases further to the past, modified
by the coefficient Ak;k9

ℓ . We will also see that this picture of
time-varying population size has limits: different pairs of
individuals have a different Ne(t). As is clear from Equation
3, these different histories are averaged according to the
distribution H(k, k9). While it is the average Ne(t) between
pairs that determines the distribution of pairwise statistics,
this suggests that statistical power may exist in larger sam-
ples to distinguish negative selection from neutral popula-
tion expansion. We explore these general conclusions of our
analysis in detail in the Discussion.

Note that in the standard neutral coalescent, one first
calculates the distribution of coalescence times and then imag-
ines mutations occurring as a Poisson process throughout the
coalescent tree, with rates proportional to branch lengths. In
our fitness-class coalescent, by contrast, the coalescence times
are the mutations. To avoid confusion, from here on we will to
the effective generations in our model as “steps,” and refer to
the fitness-class coalescent “times” as the “steptimes.” We re-
serve the word time to refer to the actual coalescent time,
measured in actual generations.

After determining a fitness-class coalescent tree, we can
invert our mapping to determine the structure of genealogies
in real time. We will do this by calculating how the steptime in
our fitness-class coalescent model translates into an actual
time in generations. This will allow us to relate the distribu-
tion of branch lengths in steptimes to an actual coalescent tree
in generations. We can then treat neutral mutations as is
usually done in the standard coalescent: as a Poisson process
with probabilities proportional to branch lengths.

Our fitness-time coalescent requires a number of approxima-
tions that limit its applicability. Most importantly, we neglect
Muller’s ratchet, and more generally we ignore the effects of
fluctuations in the size of each fitness class. We discuss these
approximations in more detail below. We find that within
a broad and biologically relevant parameter regime they lead
to systematic but small corrections to our results. Despite these
limitations, our approach also has several advantages relative
to previous work. The fitness-time coalescent approach makes
many otherwise difficult analytic calculations tractable, allows
us to compute the diversity at the selected sites in addition to
linked neutral sites, and may offer a useful basis for practical
methods of coalescent simulation and inference.

Model

We imagine a finite haploid population of constant sizeN. Each
haploid genome has a large number of sites, which begin in
some ancestral state and mutate at a constant rate. Each mu-
tation either is neutral or confers some fitness disadvantage s
(where, by convention, s . 0). We assume an infinite-sites
framework, so there is negligible probability that two muta-
tions segregate simultaneously at the same site. We assume
that there is no epistasis for fitness and that each deleterious
mutation carries fitness cost s, so that the fitness of an indi-
vidual with k deleterious mutations is wk = (12 s)k. Since we
assume that s ,, 1, we often approximate wk by 1 2 sk.

The population dynamics are assumed to follow the
diffusion limit of the standard Wright–Fisher model. That
is, we assume that deleterious mutations occur at a ge-
nome-wide rate Ud per individual per generation (with dele-
terious mutations assumed to be decoupled from selection).
We define ud/2 [ NUd as the per-genome scaled deleterious
mutation rate. Similarly, neutral mutations occur at a rate Un

per individual per generation, and we analogously define
un/2 [ NUn. We assume that each newly arising mutation
occurs at a site at which there are no other segregating poly-
morphisms in the population (the infinite-sites assumption).

We focus exclusively on the case of perfect linkage, where
we imagine that all the sites we are considering are in an
asexual genome or within a short enough distance in a sexual
genome that recombination can be entirely neglected. Al-
though our model is defined for haploids, this assumption
means that our analysis also applies to diploid populations
provided that there is no dominance (i.e., being homozygous
for the deleterious mutation carries twice the fitness cost as
being heterozygous). In this case, our model is equivalent to
that considered by Hudson and Kaplan (1994).

We believe that this is the simplest possible model that is
based on a concrete picture of mutations at individual sites that
can describe the effects of a large number of linked negatively
selected sites on patterns of genetic variation. It is essentially
equivalent to the model described by Charlesworth et al.
(1993) and Hudson and Kaplan (1994), which has formed
the basis for much of the analysis of background selection
(Charlesworth et al. 1993; Gordo et al. 2002; Seger et al. 2010).
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Our analysis will develop a fitness-class coalescent theory
that involves tracing the ancestry of individuals as they
change in fitness by acquiring deleterious mutations. To do
this, we need to first understand the distribution of fitnesses
within the population. Since in our model all deleterious
mutations have the same fitness cost s, we can classify indi-
viduals on the basis of their Hamming class, k, relative to the
wild type (which by definition has k = 0). That is, individ-
uals in class k have k deleterious mutations more than the
most-fit individuals in the population. Note that not all indi-
viduals in class k have the same set of k deleterious muta-
tions. Furthermore, k refers only to the number of deleterious
mutations an individual has; individuals with the same k can
have different numbers of neutral mutations. We normalize
fitness such that by definition all individuals in class k =
0 have fitness 1. Individuals in class k then have fitness
1 2 ks (Figure 1).

Haigh (1978) showed that the balance between mutation
and selection leads to a steady state in which the fraction of
the population in fitness class k, which we call hk, is given by
a Poisson distribution with mean Ud/s,

hk ¼
e2Ud=s

k!

�
Ud

s

�k

: (4)

This means that the average fitness in the population is 1 2
Ud and that �k ¼ Ud=s.

Throughout our analysis, we assume that the population
exists in this steady-state mutation–selection balance. In
particular, we neglect the fact that in a finite population
there will be fluctuations around this hk. This approximation
is central to our approach, and we make it in subtly different
ways in both our lineage-structure and our sum of ancestral
paths calculations of the fitness-class coalescence probabili-
ties. It will typically be valid in the bulk of the fitness distri-
bution when selection is strong (Ns .. 1); our analysis is
limited to this strong selection case and breaks down when
Ns ≲ 1. We discuss this approximation in more detail in the
Discussion and in Appendix B. We note that this approxima-
tion also implies that we assume that Muller’s ratchet can be
neglected. We will return to the question of the importance
of Muller’s ratchet in more detail in the Discussion.

We will later need to understand the distributions of
timings, Qk21

k ðtÞ; at which an individual mutates from class
k 2 1 to class k. We can calculate this by noting that the
probability that an individual in class k arose from a muta-
tion in an individual in class k2 1 rather than a reproduction
event from an individual in class k is

NUdhk21

Nhk½12Ud 2 sðk2 �kÞ� þ NUdhk21
: (5)

Substituting in the steady state values for the hk, and noting
that these mutation events are a Poisson process, we find

Qk21
k ðtÞ ¼ ske2skt: (6)

Note that this calculation is identical to the equivalent distri-
bution of mutation timings computed by Gordo et al. (2002)
following the approach of Hudson and Kaplan (1994).

Lineage Structure and the Fitness-Class
Coalescence Probabilities

In general, the individuals in a particular fitness class k will
not be genetically identical. Rather, there will be a number
of different lineages within this class, each lineage created
by a deleterious mutation from class k2 1. We now consider
the structure of lineage diversity among individuals within
a given fitness class in the mutation–selection balance. Note
that for our purposes here, we only consider deleterious
mutations in defining lineages; we consider the diversity
at neutral sites separately below.

Consider a fitness class k, which has an overall frequency
hk (Figure 1B). The frequency hk is maintained by a stochas-
tic process in which the class is constantly receiving new
individuals from class k 2 1 due to deleterious mutations.
In our infinite-alleles model, each such mutation creates
a lineage which is an allele that is unique within the pop-
ulation. Each lineage fluctuates in frequency for a while be-
fore eventually dying out, perhaps after acquiring additional
mutations that found new lineages in fitness class k + 1. At
any given moment, there is some frequency distribution of
lineages in each class k (see Figure 2). While the identity of
these lineages changes over time, there is a probability dis-
tribution that at any moment there is a given frequency
distribution of lineages. In steady state, this probability dis-
tribution does not change with time.

New lineages are founded in class k at a rate uk/2, where

uk ¼ 2Nhk21Ud: (7)

These individuals are then removed from class k at a per
capita rate

sk[2Ud 2 s
�
k2 �k

�
: (8)

We refer to sk as the effective selection coefficient against an
allele in class k, because it is the rate at which any particular
lineage in class k loses individuals, and we define

gk ¼ Nsk: (9)

Using these definitions, we can compute the steady state
probability distribution of lineages using the PRF model of
Sawyer and Hartl (1992). The essential result is that the
number of distinct lineages in class k with a frequency be-
tween a and b (in the total population) is Poisson distributed
with mean

Ð b
a fkðxÞdx, where

fkðxÞ ¼
uk

xð12 xÞ
12 e22gkð12xÞ

12 e22gk
: (10)

Note that our Poisson Random Field result implies that on
average the sum of all the frequencies of all the alleles in
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fitness class k is simply hk ¼
Ð 1
0 x   fkðxÞdx, and that the

probability that two individuals chosen at the same time at
random from fitness class k both come from the same line-
age is

Ð 1
0 dxx

2fkðxÞ=h2k .
We note that the PRF result involves various implicit

approximations, and is valid within a specific parameter
regime. Most importantly, we neglect fluctuations in the
sizes of each fitness class. This has two main effects. First, it
means that we neglect the corresponding fluctuations in the
distribution of lineage frequencies fk(x). Second, it means
we are implicitly neglecting the fact that, given a lineage of
size x exists in class k, the actual hk is on average not at its
steady state value (e.g., if a high-frequency lineage exists, hk
will tend to be larger). We explain these approximations in
detail in Appendix B, and describe an alternative branching
process formulation for the lineage structure that corrects
for the second effect described above.

The fitness-class coalescent probabilities

We can now calculate the degree of relatedness between
two individuals sampled from the population. Our goal is to
understand the probability distribution of the fitness-class
coalescence steptimes for two individuals chosen at random
from the population. We begin by calculating the coales-
cence probability in each step.

First, imagine that by chance we pick two individuals
from the same fitness class k. If the two individuals are from
the same lineage, they coalesce within this class. In this case,
they are genetically identical and the coalescence steptime is
0. If not, we want to calculate the probability they coalesce
in class k2 1, Pk;k/k21

c : If the lineage of individual A in class
k was founded by a mutation from class k 2 1 a time t1 ago,
and the lineage of individual B in class k was founded by
a mutation a time t2 ago, the probability the two individuals
came from a common lineage in class k 2 1 is

Pk;k/k21
c ¼

ð
dt1dt2Qk21

k;k ðt1; t2Þ xfk21ðxÞ
hk21

y
hk21

Gk21ðy/x; jt2 2 t1jÞ:
(11)

Here Qk21
k;k ðt1; t2Þ is the joint distribution of t1 and t2, x/hk is

the probability one of the individuals came from a lineage of
size x given that the lineage exists, fk(x) is the probability
that the lineage exists, and Gk21ðy/x; jt22t1jÞ is the
probability a lineage in class k 2 1 changes in frequency
from x to y in time |t2 2 t1| (where y could be 0, corre-
sponding to a lineage that has already mutated back to class
k 2 2 by the time the second individual mutates to class
k 2 1). The forms of Q and G are described in Appendix A.

If the two individuals coalesced in this first step, the
coalescent steptime is 1. If not (which occurs with proba-
bility 12Pk;k/k21

c ), we have to consider the probability they
coalesce at the next step (i.e., in the mutations that took
them from class k 2 2 to k 2 1), Pk;k/k22

c , and so on.
So far we have imagined that both individuals that we

originally selected from the population came from the same
class k. This will not generally be true. Rather, when we pick

two individuals at random, they will come from classes k
and k9 with probability

Hðk; k9Þ ¼
�
2hkhk9 if k 6¼ k9
h2k    if k ¼ k9 (12)

For convenience we choose k # k9. We define Pk;k9/k2ℓ
c to be

the probability that two individuals from classes k and k9
coalesce in class k 2 ℓ. Note that Pk;k9/k2ℓ

c ¼ 0 for ℓ , 0. For
ℓ $ 0 we have

Pk;k9/k2ℓ
c ¼

ð
dxdydt1dt2Qk2ℓ

k;k9ðt1; t2Þ
xfk2ℓðxÞ
hk2ℓ

yGk2ℓðy/x; jt2 2 t1jÞ
hk2ℓ

:

(13)

From the set of coalescence probabilities Equation 13, we
can calculate the probability distribution of coalescence
steptimes between two individuals. We describe these
steptimes by the distribution of classes in which coalescence
occurs; given that we pick two individuals from classes k and
k9 (with k # k9 by convention) the probability that they
coalesce in class k 2 ℓ is simply

fk9
k ðℓÞ ¼ Pk; k9/k2ℓ

c

Yℓ21
j¼0

h
12 Pk; k9/k2j

c

i
: (14)

We note that this expression contains an implicit approxi-
mation, as described in Appendix A.

Computing the coalescence probabilities

We now have a formal structure describing the structure of
coalescent genealogies in the presence of negative selection.
It remains, however, to evaluate the coalescent probabilities
in each step by evaluating the integrals in Equation 13. We
explain the details of this calculation in Appendix A. We find

Pk; k9/k2ℓ
c ¼ 1

1þ 2Nhk2ℓsðk2 ℓÞ A
k; k9
ℓ ; (15)

where Ak; k9
ℓ is a numerical coefficient which depends on k,

k9, and ℓ but not on the population parameters,

Ak;k9
ℓ ¼

�
k9

k2 ℓ

��
k

k2 ℓ

�
�

kþ k9
2ℓþ k92 k

� : (16)

In Figure 3 we show examples of these coalescence proba-
bilities for different population parameters. We see that the
probability of coalescence decreases with increasing selec-
tion coefficients and population size.

Equation 15 is the complete solution for coalescent
probabilities in the nonconditional approximation. This
general form for the coalescence probabilities makes in-
tuitive sense. Nhk2ℓ is the population size of class k 2 ℓ, and
1=sðk2ℓÞ is the average number of generations that an
individual spends in class k 2 ℓ before mutating away. Since
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the per-generation coalescent probability in a population of
size n is proportional to 1=n; it makes sense that the
coalescent probability in class k 2 ℓ is approximately propor-
tional to one over the population size of this class times the
number of generations individuals spend in this class. The
additional 1 in the denominator captures the fact that the
individuals might mutate away from the class before coalesc-
ing there (which reduces the average time they spend in the
class together). The numerical factor multiplying this basic
scaling, Ak;k9

ℓ , comes from the integrals over the probability
distribution of mutant timings (i.e., the dt1 and dt2 integrals).
It reflects the probability that the ancestors of the two indi-
viduals we are considering were both in class k 2 ℓ at the
same time, since they could not otherwise coalesce there.

From this result, we can also form an intuitive picture of
the shape of genealogies in the presence of negative
selection. We have just seen that the coalescence probability
per actual generation depends on the parameters as
1=Nhk2ℓ, where the relevant value of ℓ increases as we go
back in time. Thus the structure of genealogies in the pres-
ence of negative selection is similar to having a variable
population size as we go back in time. The precise nature
of this variable population size is encoded in the fitness
distribution hk2ℓ. For example, if we imagine sampling two
individuals from the same below-average fitness class, the
probability distribution of their genealogies is like having
a population size that initially increases and then decreases
as we look backward in time. Of course, this analogy only
goes so far. Most importantly, the coalescent steptimes are
related to the statistics describing genetic diversity in a dif-
ferent way from how normal coalescent times are usually
related to these statistics. We return to this point in the
section on the structure of genealogies below.

A Sum of Ancestral Paths Approach

We have just computed the fitness-class coalescence proba-
bilities by considering the lineage structure within each fitness
class. Kaplan et al. (1988) proposed a somewhat different
way to look at the same problem: they considered a sample
of individuals and, without explicitly describing lineage struc-
ture, computed the relative probabilities that the next event to
occur backward in time would involve a mutation or coales-
cent event. For example, if two individuals are in the same
fitness class, the next event could be either coalescence within
that class or a mutation event. The rates at which these events
occur determines their relative probabilities.

In its original form, this approach used diffusion equations
to account for fluctuations in the frequencies of each fitness
class hk. Barton and Etheridge (2004) used this framework to
provide a complete solution for the effect of selection at a sin-
gle site on the structure of genealogies. However, it has not
yet proven possible to solve these equations in the more gen-
eral case of selection at many linked sites. Instead, Hudson
and Kaplan (1994) made progress by neglecting fluctuations
in the frequencies hk, the same approximation that is central
to our approach. Using this approximation, they derived a re-
cursion relation for the mean time to a common ancestor,
their Equation 12. Gordo et al. (2002) used this equation as
the basis for a coalescent simulation.

Recursion relations of the Hudson and Kaplan (1994)
form can be solved numerically, and have been used to gen-
erate data describing coalescent statistics, but have not yet
led to an analytic description of the structure of genealogies.
We now demonstrate that these numerical methods are
equivalent to our lineage-based formalism above, by show-
ing that the Hudson and Kaplan (1994) approach can be

Figure 3 Examples of the coalescence
probabilities Pk;k9/k2ℓ

c for two individuals
sampled from fitness classes k and k9 to
coalesce in class k 2 ℓ, shown as a func-
tion of ℓ. Here Ud/s ¼ 8, s ¼ 1023, and
results are shown for Ns ¼ 10 (dotted
lines), Ns ¼ 50 (dashed lines), and Ns ¼
100 (solid lines).
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used to derive identical analytical formulas for the fitness-
class coalescent probabilities. We refer to this as a “sum of
ancestral paths” approach, because it relies on summing over
all possible paths of individual ancestry through the fitness
distribution. The equivalence of this approach to our lineage-
structure calculations means that our analytical results in this
article match earlier numerical and simulation results based
on the Hudson and Kaplan (1994) formulation.

In order to calculate the coalescence probabilities for
a sample of two individuals, we consider the set of all possible
ancestral paths these individuals may have followed. Each
path is represented by an ordered set of events, backward in
time. These events may either be deleterious mutation events,
which move one of the ancestral lineages to the previous
fitness class, or coalescence events, which merge the two
ancestral lineages. In order for two individuals to coalesce in
class k 2 ℓ, each ancestral lineage must undergo a series of
deleterious mutation events, bringing them from their initial
classes to class k 2 ℓ. The lineages must then coalesce before
any additional deleterious mutations occur. For example, in
order for two individuals sampled from class k to coalesce in
class k 2 1, the first event, backward in time, must be a del-
eterious mutation. This mutation can occur in either individ-
ual. After this event, one of the ancestral lineages is still in
class k, while the other is in class k 2 1. The second event,
backward in time, must be a deleterious mutation event in the
ancestral lineage that remains in class k. Both ancestral line-
ages are now in class k 2 1. Finally, the third event must be
a coalescent event. Note that there are a total of two paths,
since either individual may have been the first to mutate.

The probability of any particular ancestral path is the
product of the probability of each event in the path. We saw
above that deleterious mutations occur in an individual in
class k at rate sk. If the two individuals are in different
classes, they are not able to coalesce as the next event. Thus
the probability of each possible event is simply:

Pð1st event is del: mut: in kjk; k9Þ ¼ sk
skþ sk9

(17)

Pð1st event is del: mut: in k9jk; k9Þ ¼ sk9
skþ sk9

: (18)

If the two individuals are in the same class, the next event
may either be a coalescent event or a deleterious mutation.
Within each class, coalescence is a neutral process that
occurs with rate 1/Nhk. Therefore, we have

Pð1st event is coal:jk; kÞ ¼ 1=ðNhkÞ
skþ skþ 1=ðNhkÞ

  ¼ 1
1þ 2Nhksk

(19)

Pð1st event is del: mut:jk; kÞ ¼ 2sk
skþ skþ 1=ðNhkÞ

¼ 2Nhksk
1þ 2Nhksk

:

(20)

These probabilities are analogous to those used by Gordo
et al. (2002), derived from the framework of Hudson and
Kaplan (1994).

Using these probabilities, we can easily calculate the
probability of any particular path. In general, in order for
two individuals sampled from classes k9 and k to coalesce in
class k 2 ℓ, the ancestral paths must consist of some order of
k9 2 k + 2ℓ events which include k9 2 k + ℓ deleterious
mutation events in the ancestral lineage that began in k9,
and ℓ deleterious mutation events in the ancestral lineage
that began in k. The path must then conclude with a final
coalescent event. Note that there are a total of�

k92 kþ 2ℓ
l

�

possible paths, reflecting the number of ways to order the
mutation events in one lineage with those in the other. To
calculate the coalescence probability, we sum the probabil-
ities of each path that results in this particular coalescence
event.

We can carry out this sum in the general case by dividing
up the ð k92kþ 2ℓ

l Þ possible paths according to whether or not
the ancestral lineages ever coexisted in each class before
class k 2 ℓ. Each case leads to a different path probability,
and these probabilities can be exactly summed. We carry out
this calculation in detail in Appendix A. We find that to
leading order in 1

1þ 2 Nhk2ℓsðk2ℓÞ, we have

Pk;k9/k2ℓ
c ¼ 1

1þ 2 Nhk2ℓsðk2 ℓÞ A
k;k9
ℓ ; (21)

which exactly matches our expression for the coalescence
probabilities in our PRF approach, Equation 15.

We note that in deriving this result, we have made the
same approximations we used in our lineage structure based
approach. Thus the results from the PRF method and the
sum of ancestral paths are exactly equivalent in the regime
where they are valid. However, there are subtle differences
in the results to higher orders of the approximations, which
provide useful intuition about the process. For example, in
the sum of ancestral paths approach it is more natural to
calculate fk9

k ðℓÞ directly, without first calculating Pk;k9/k2ℓ
c ;

and doing so allows us to compute certain higher-order
corrections to the coalescence probabilities. We discuss
these details of the correspondence between the approx-
imations used in the two methods in Supporting Informa-
tion, File S4.

The Structure of Genealogies and Statistics of Genetic
Diversity

We can now use the coalescence probabilities described
above to calculate the structure of genealogies in the presence
of negative selection. We can then use these genealogies to
calculate various statistics describing the genetic diversity
within the population. We know the coalescent probabilities
in each step of our fitness-class coalescent process, so in
principle we can calculate the probability of any genealogy
relating an arbitrary number of individuals using methods
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analogous to those used in standard neutral coalescent the-
ory. This would then allow us to calculate the distribution of
any statistic describing the genetic diversity among these
individuals, again using methods analogous to neutral co-
alescent theory.

Here we will focus on the simplest genealogical relation-
ship: the distribution of the time to the most recent common
ancestor of two individuals, which demonstrates the main
ideas in the simplest context. This allows us to calculate the
distribution of the per-site heterozygosity p. This is the only
statistic relevant to a sample of two individuals. In larger
samples, the coalescent probabilities between any pair of
sampled individuals are independent of those between any
other pair that does not share the same most recent common
ancestor, so the distribution of per-site heterozygosity we
expect within such a sample is closely related to the ensem-
ble distribution of p we calculate here.

In our fitness-class coalescent framework, it is natural to
consider diversity at the negatively selected sites separately
from diversity at linked neutral sites. We focus first on the
distribution of coalescent steptimes and pd, the per-site het-
erozygosity at negatively selected sites alone, ignoring neu-
tral mutations. We will then turn to the connection between
steptimes and actual times in generations, which will enable
us to calculate the distribution of neutral diversity, including
the per-site heterozygosity at neutral sites pn. In analyzing
data, we will of course typically not know a priori which
sites are neutral and which are negatively selected. In such
a situation, we merely add up the expected diversity at neu-
tral sites and negatively selected sites, so that the total
expected per-site heterozygosity is p = pd + pn.

Distribution of steptimes and pd

We begin by imagining that we sample two individuals at
random from the same fitness class k. If they coalesce in class
k 2 ℓ, they each acquired ℓ different deleterious mutations to
reach class k. Thus the number of negatively selected sites at
which they will be polymorphic is twice their coalescent
steptime, pd = 2ℓ. We therefore have

rðpd ¼ 2ℓÞ ¼ fk
kðℓÞ; (22)

where r(pd = 2ℓ) is the probability pd = 2ℓ.
More generally, if two individuals sampled from classes k

and k9 coalesce in class k2 ℓ, we have pd = 2ℓ+ k9 2 k. This
means we have

rðpd ¼ 2ℓþ k92 kjk; k9Þ ¼ fk9
k ðℓÞ: (23)

We can average this over the distributions of k and k9 to find
the distribution of pd among individuals sampled at random
from the population. We find

rðpdÞ ¼
X
ℓ

XN
k¼0

Hðk; k9¼ kþ pd 2 2ℓÞfk9¼kþpd22ℓ
k ðℓÞ;

(24)

where the first sum runs from ℓ= 0 to the largest integer less
than or equal to the smaller of k or pd/2. Note that in
practice we only have to evaluate the sum over k from
0 to a multiple of Ud/s, since H(k, k9) will be negligible for
larger k.

These results for the distributions of genealogy lengths
and of pd involve several sums. However, all the terms in
these sums are straightforward and the numerical evalua-
tions of their values are simple and fast. In Figure 4 we show
a representative example of the predicted distribution of the
per-site heterozygosity at negatively selected sites, r(pd),
compared to simulation results. We explore the significance
of the shape of the distribution r(pd), how this distribution
depends on the parameter values, and the source of the
small but systematic deviations between the theoretical pre-
dictions and the simulation results in the Discussion.

The relationship between steptimes and time
in generations

So far we have focused on the genealogies measured in
steptimes, which allowed us to calculate the distribution of
heterozygosity among negatively selected sites. We would
now like to relate the steptimes to actual times in gen-
erations. To do this, we consider the probability that
a coalescence event occurred at time t, given two individuals
sampled from classes k and k9 that coalesced in class k 2 ℓ,
c(t|k, k9, ℓ). We compute this distribution in File S5, and
find

cðt   j  k9; k; ℓÞ ¼
Xpd 21

i¼0

spdð21Þpd2i21
�
pd 2 1

i

��
k9þ k
pd

�
B

A2B
�
e2sBt 2 e2sAt�;

(25)

where we have defined A[ k9+k2i and B[ 2ðk2ℓÞþ
1=ðNshk2ℓÞ.

Note that when Nhk2ts(k 2 ℓ) .. 1 (the same condition
required to neglect fluctuations in hk, see Appendix B), this
expression can be simplified; we find

cðt  j  k9; k; ℓÞ ¼ sðpd þ 1Þe2sðk9þkÞt�est21
�pd

�
k9þ k
pd þ 1

�
:

(26)

However, it is important to note that while this approxima-
tion may be valid in the bulk of the distribution, it will
always fail when coalescence occurs in the zero-class, where
s(k 2 ℓ) = 0. In this case, we must use the more complex
expression Equation (25) (or in the case when the coales-
cence time within the 0-class can be neglected compared to
the time taken to descend from the 0-class, the simpler ex-
pression described in Equation (39) below).

Averaging over the possible values of k, k9, and ℓ, we find
the overall distribution of actual coalescent time between
two randomly chosen individuals,

cðtÞ ¼
X
k9$k

XN
k¼0

Xk
ℓ¼0

cðtjk; k9; ℓÞfk9
k ðℓÞHðk; k9Þ; (27)
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where the distributions H(k, k9), fk9
k ðℓÞ; and c(t|k, k9, ℓ) are

as given above. However, as we will see below, in calculating
neutral diversity we will typically find it easier to work di-
rectly with c(t|k, k9, ℓ) rather than this unconditional dis-
tribution for c(t).

The neutral heterozygosity pn

From the distributions of real times to a common ancestor
described above, we can calculate the distribution of pn, the
neutral heterozygosity. Since the neutral mutations occur as
a Poisson process with rate Un, and there are a total of 2t
generations in which these mutations can occur, pn follows
a Poisson distribution with mean 2 Unt, where t is drawn
from the distribution of coalescence times, Equation 27. We
have

rðpdÞ ¼
ðN
0

½2Unt�pd

pn!
e22UntcðtÞdt: (28)

In Figure 5, we compare this distribution of neutral hetero-
zygosity to simulations. We find good general agreement to
the shape of the distribution, though there are slight system-
atic errors (consistent with the effects of Muller’s ratchet,
which we explore further in the Discussion). Note that, like
our results for the diversity at negatively selected sites, these
results differ dramatically from the exponential distribution
a neutral model or effective population size approximation
would predict; we describe these comparisons further in the
Discussion.

We note that an alternative way to compute neutral het-
erozygosity is to further extend the sum of ancestral paths
approach which we used above to provide an alternative
derivation of the coalescence probabilities. In this formula-
tion, we do not make any connection to real times. However,
this approach provides an alternative way to compute the
distribution of neutral heterozygosity, r(pn). We carry out
this computation in File S6, and show that it leads to results
identical to our analysis above.

The total heterozygosity p

To calculate the distribution of total heterozygosity p =
pn + pd, we must account for the fact that pd and pn are
not independent: large pd means a large coalescent steptime
and hence makes a large pn more likely. The distribution of
pd is given by r(pd) above. Above we found c(t|k, k9, ℓ),
which implies that

rðpnjk; k9; ℓÞ ¼
ðN
0

½2Unt�pn

pn!
e22Untcðt   j  k; k9; ℓÞdt: (29)

We can compute this integral; we find

rðpn   j  k9; k; ℓÞ

¼
Xpd 2 1

i¼0

pdð21Þpd2i21
�
pd 21

i

� �
k9þ k
pd

�
B

A2B

0
B@

�
2Un

s

�pn

�
2Un

s
þ B

�pnþ1 2

�
2Un

s

�pn

�
2Un

s
þ A

�pnþ1

1
CA:

(30)

Since pd = 2ℓ + k 2 k9, this implies

rðpnjpdÞ ¼
X

pd¼k92 kþ2ℓ

rðpnjk; k9; ℓÞ: (31)

This describes the joint distribution of selected and neutral
variation, which is of interest in situations where we know
in advance which sites are likely to be neutral and which are
selected (e.g., when analyzing the joint distribution of syn-
onymous and nonsynonymous variation). It implies a partic-
ular relationship between the observed diversity at selected
sites and the reduction in linked neutral variation.

In many situations, however, we will not know which
alleles are selected and which are neutral. In this case, we
want to understand the distribution of total heterozygosity
p, which is given by

rðpÞ ¼
X

pnþpd¼p

rðpdÞrðpn  j  pdÞ: (32)

Figure 4 Characteristic examples of the distribution of pd. Here N ¼ 5 ·
104, s ¼ 1023: (A) Ud/s ¼ 2; (B) Ud/s ¼ 4. Theoretical predictions are
shown as a solid line, simulation results as a dashed line. Simulation
results are averaged across at least 300 independent simulations for each
parameter set; shaded regions show one standard error in the simulation
results. The fit to simulations is good, but we tend to slightly underesti-
mate pd, and this tendency is worse for larger Ud/s. This is consistent with
the effects of Muller’s ratchet, which becomes more problematic as we
increase Ud/s. This systematic underestimate becomes less severe (for all
values of Ud/s) as N increases, as expected, but comprehensive simula-
tions for much larger N are computationally prohibitive.
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This is no more difficult to calculate than r(pn), since it
involves analogous sums. In Figure 6, we compare this pre-
dicted distribution of total heterozygosity to simulations. As
with the other aspects of heterozygosity, we find good gen-
eral agreement to the simulations, with the slight systematic
errors that are consistent with the effects of Muller’s ratchet.

The mean pairwise heterozygosity

Above we have calculated the distribution of heterozygosity
for both neutral and deleterious mutations, as well as total
heterozygosity. It is straightforward to average these results
to calculate the mean pairwise heterozygosity for both
neutral and deleterious mutations; the mean total pairwise
heterozygosity is simply the sum of these. In Figure 7 and
Figure 8 we show how this mean heterozygosity depends on
population size, mutation rate, and selection strength, for
neutral and deleterious mutations respectively. We see that
the dependence of hpdi on the population size is fairly weak.
While it increases roughly linearly with N in the weak selec-
tion regime, this quickly saturates and for Ns substantially

greater than 1 the mean heterozygosity becomes almost in-
dependent of population size. The dependence on Ud/s, by
contrast, is much stronger. The dependence of hpni on the
parameters is also interesting: this depends weakly on the
parameters for small N or Ud/s, but for larger N becomes
roughly linear. These results make intuitive sense, particu-
larly in light of the “mutation-time” approximation that we
introduce in the Discussion, where we discuss these figures
in more detail.

Statistics in larger samples

The distributions of pn and pd described above are very
different from the distributions of heterozygosity expected
in the absence of selection. We could certainly measure the
distribution of pairwise heterozygosity from a sample of
many individuals from a population, and use this to infer
the action of selection. However, it may also be useful to
understand the expected distribution of other statistics de-
scribing the variation in larger samples. One statistic often
used to describe variation in larger samples is the total

Figure 5 Characteristic examples of the distributions of pn and the real coalescent times. (A) Theoretical predictions for the distribution of pn for Ud/s ¼
2, compared to simulation results. (B) Theoretical predictions for the distribution of pn for Ud/s ¼ 4, compared to simulation results. Simulation results
are averaged across at least 300 independent simulations for each parameter set; shaded regions show one standard error in the simulation results. (C)
Theoretical predictions for the distribution of real coalescence times for Ud/s ¼ 2; note that these simply mirror the distribution of pn, as expected. (D)
Theoretical predictions for the distribution of real coalescence times for Ud/s ¼ 4. In A–D, N ¼ 5 · 104 and s ¼ 1023. Our theory agrees well with the
simulations, but note that, as with pd, we tend to systematically underestimate pn, and this tendency is worse for larger Ud/s. This is consistent with
Muller’s ratchet and as expected becomes more problematic for larger Ud/s. This systematic underestimate becomes less severe (for all values of Ud/s) as
we increase N, as expected, but comprehensive simulations for much larger N are computationally prohibitive.
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number of segregating sites among a sample of n individu-
als, Sn. Here we describe how our framework allows us to
calculate the distribution of S3; similar methods can be used
to calculate the distribution of Sn for larger n. As we will see,
it is unwieldy to calculate closed form expressions for these
quantities in our framework, so here we merely lay out a pre-
scription for calculating S3.

We first consider the distribution of Sd3; the number of
segregating negatively selected sites among three randomly
sampled individuals. In order to calculate the probability
a sample has a particular Sd3; we imagine picking three
individuals at random from the population and calculate the
probability of the coalescence events that lead to that Sd3:We
illustrate such a situation where three individuals are
sampled from classes k, k9, and k$ in Figure 9. Two of these
three lineages coalesced in class k1. We call the steptime at
which two of the three lineages coalesced t3 (see Figure 9).
We next need to calculate the distribution of t2, the total
steptime to common ancestry of the three individuals.
This time of course cannot be smaller than t3. Given val-

ues of t3 and t2, it is clear from Figure 9 that the total
number of segregating negatively selected sites is
Sd3 ¼ 2t2 þ t32ðk$2kÞ2ðk$2k9Þ:

Calculating the joint distribution of t2 and t3 is tedious,
because we must sum over all possible orderings of the co-
alescence events, but it can be computed using either our
lineage structure method or the sum of ancestral paths ap-
proach. The basic result is analogous to our results for the
coalescence steptime between a pair of individuals: coales-
cence probabilities within a given class are proportional to
the inverse size of that class times the number of real gen-
erations the ancestors of given individuals typically spend in
that class, times a factor that reflects the time that the

Figure 6 Characteristic examples of the distribution of total heterozygos-
ity p. Here N ¼ 5 · 104, s ¼ 1023: (A) Ud/s ¼ 2; (B) Ud/s ¼ 4. Theoretical
predictions are shown as a solid line, simulation results as a dashed line.
Simulation results are averaged across at least 300 independent simula-
tions for each parameter set; shaded regions show one standard error in
the simulation results. The fit to simulations is good, but we tend to
slightly underestimate p, and this tendency is worse for larger Ud/s. This
is for the same reasons as in the distributions of pn and pd.

Figure 7 Theoretical predictions for the mean pairwise heterozygosity at
negatively selected sites, hpdi, as a function of the parameters. (A) hpdi as
a function of Ud/s for several values of Ns. In the mutation–time approx-
imation we expect this to be linear with a slope of 2, since on average
individuals are sampled from the mean class at k ¼ Ud/s and coalesce in
the 0-class, and hence we have pd ¼ 2Ud/s. We see that as expected this
approximation becomes more and more accurate as Ns increases. For
smaller N, there is substantial probability of coalescence in the bulk of
the fitness distribution, which is greater for larger Ud/s. Thus the slope of
hpdi as a function of Ud/s decreases as Ns decreases and has a downward
curvature. (B) hpdi as a function of Ns for several values of Ud/s. We see
that as Ns becomes large, hpdi approaches 2Ud/s, again consistent with
the mutation–time approximation. As Ns decreases, coalescence within
the bulk of the fitness distribution becomes more likely, and hence
hpdi decreases.
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ancestors of sampled individuals are present in each class at
the same time.

Given a particular value of Sd3; there is a relationship
between the steptimes and actual times (analogous to
Equation 25), which we could use to find the distribution
of the total number of segregating neutral sites Sn3: More
complex statistics involving even larger samples can be
computed using similar methods.

However, while this analysis provides a prescription for
calculating the distribution of Sd3 and Sn3; it is clear that the
full distributions are opaque. In the Discussion we provide
a simple approximation for Sn in a specific parameter regime
we refer to as the “mutation-time” regime, but the complex-
ities of the general calculation are tangential to the ideas
behind our framework, so we do not pursue them further

here. However, these issues will be important to explore in
future work aiming to use this framework for data analysis,
and our approach here can be used as the basis for geneal-
ogical simulations. Further, since our methods allow us to
quickly compute the probability of a given genealogical his-
tory and to draw a particular genealogy from the appropriate
distribution, they may provide a useful basis for importance
sampling or MCMC methods to infer selection pressures from
data.

Numerical Simulations of the Genetic Diversity

We compare the predictions of our fitness-class coalescence
analysis to Monte Carlo simulations of the Wright-Fisher
model. In our simulations, we consider a population of
constant size N and we keep track of the frequencies of all
genotypes over successive, discrete generations. In each gen-
eration, N individuals are sampled with replacement from
the preceding generation, according to the standard Wright-
Fisher multinomial sampling procedure (Ewens 2004) in
which the chance of sampling an individual is determined
by its fitness relative to the population mean fitness.

In our simulations, each genotype is characterized by
the set of sites at which it harbors deleterious mutations
and the set of sites at which it harbors neutral mutations.
In each generation, a Poisson number of deleterious muta-
tions are introduced, with mean NUd, and a Poisson number
of neutral mutations are introduced, with mean NUn; each
new mutation is ascribed to a novel site, indexed by a ran-
dom number. The mutations are distributed randomly and
independently among the individuals in the population
(so that a single individual might receive multiple muta-
tions in a given generation). The simulations record the time
(in generations) at which each distinct genotype was first
introduced.

Starting from a monomorphic population, all simulations
were run for at least ð1=sÞlnðUd=sÞ or N generations (which-
ever was larger), to ensure relaxation both to the steady-

Figure 8 Theoretical predictions for the mean real coalescence time hti.
In this figure we fix s ¼ 1023 and show the dependence of the mean
pairwise coalescence time on N and on Ud/s. The mean pairwise hetero-
zygosity at neutral sites, hpni, is simply hpni ¼ 2Unhti. (A) Mean coales-
cence time as a function of N for various values of Ud/s. We see that hti
increases slowly with N until for large enough N the EPS approximation
applies and hti becomes linear in N. (B) Mean coalescence time as a func-
tion of Ud/s for several values of N. For large N, the dependence is roughly
linear, consistent with the EPS approximation. For smaller N, coalescence
can occur in the bulk of the fitness distribution, reducing the mean co-
alescence time.

Figure 9 The fitness-class coalescence process for three individuals, A, B,
and C, where A and B coalesced t3 steptimes ago and C coalesced with
the other two t2 steptimes ago.
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state mutation–selection equilibrium and to the PRF equilib-
rium of allelic frequencies within each fitness class. The final
state of the population—i.e., the frequencies of all surviving
genotypes—was recorded at the last generation. To produce
the empirical distributions of pd and pn shown in Figure 4
and Figure 5, we averaged across at least 300 independent
populations for each parameter set.

Our simulations allow for random fluctuations in the
frequencies of each fitness class, and for Muller’s ratchet. In
most of the parameter regimes we explored, the ratchet
proceeded during the simulation, so that the least-loaded
class at the end of each simulation typically contained any-
where from no deleterious mutations (typical for Ud/s = 2)
to �10 (typical for Ud/s = 4). We see that despite these
effects, our theory agrees well with the simulations, al-
though there are small systematic errors that are consistent
with effects of the ratchet. Generally speaking these errors
increase as we increase Ud/s, but become less severe for
larger N or s. We consider these effects of Muller’s ratchet
in more detail in the Discussion.

Discussion

In recent years, both experimental studies and sequence
data have pointed to the general importance of selective
forces among many linked variants in microbial and viral
populations and on short distance scales in the genomes of
sexual organisms (Hahn 2008). Our analysis provides
a framework for understanding how one particular type
of selection—pervasive purifying (i.e., negative) selection
against deleterious mutations—affects the structure of ge-
netic variation at the negatively selected sites themselves
and at linked neutral loci. This type of selection is presum-
ably widespread in many populations, in which there is
a selective pressure to maintain existing genotypes, and
mutations away from these genotypes at a variety of loci
are deleterious.

A variety of earlier work has addressed aspects of this
problem, as described in the Introduction. The key insight of
our approach is that instead of following the true ancestral
process, we develop a fitness-class genealogical approach
that focuses on how individuals “move” through the fitness
distribution. Here each mutation plays the role of a repro-
ductive event that moves individuals through the fitness
distribution, and each fitness class is a generation in which
coalescence can occur with some probability. We calculate
this probability using a simple approximation based on the
PRF model of Sawyer and Hartl (1992), rather than by con-
sidering the actual reproductive process within that class. By
extending formulas originally computed by Hudson and
Kaplan (1994), we showed that these coalescent probabili-
ties can also be computed using a summation of ancestral
paths based on the structured coalescent described by
Kaplan et al. (1988). Hence the conclusions from our anal-
ysis also describe the simulations of Gordo et al. (2002) and
are consistent with all other results based on this structured

coalescent approach. Our work is also closely related to re-
cent work in a continuous-fitness model by O’Fallon et al.
(2010), which uses a similar framework to analyze the
weak-selection regime but not the Ns .. 1 situation we
study here. We explore the relationship between our analy-
sis and earlier work in more detail in Appendix C.

Our approach leads to simple expressions for the co-
alescent probability at each step in our fitness-class genea-
logical process. This makes it a complete effective coalescent
theory: using these probabilities, we can calculate the
probability that a sample of individuals has any particular
ancestral relationship. Our coalescent probabilities are
different from those in the standard Kingman coalescent
(Kingman 1982), so the structure of genealogies has a dif-
ferent form.

Of course, since our process is an effective rather than an
actual coalescent, the relationship between a fitness-class
genealogy and the expected statistics of genetic variation
given that genealogy is different than in the standard
neutral coalescent. Given a particular genealogy measured
in steptimes, the numbers of deleterious mutations are the
coalescent times, and to calculate the statistics of neutral
variation we have to make use of the relationship between
steptimes and actual coalescence times. This contrasts with
the Kingman coalescent, where numbers of neutral muta-
tions are typically Poisson-distributed variables with means
proportional to coalescence times (Wakeley 2009). How-
ever, we can account for these differences by starting with
the distribution of fitness-class genealogies and then con-
verting these genealogies into actual coalescence times.

In this article, we have used this fitness-class approach to
calculate simple statistics describing genetic variation, in
particular the distribution of pairwise heterozygosity. This
leads to analytic expressions for the quantities of interest,
although these expressions involve sums that are most easily
calculated numerically. These are easy to compute, do not
become harder to evaluate in larger populations, and hence
are more efficient to evaluate than either simulations or
calculations within the ancestral selection graph.

An intuitive picture of the structure of genealogies

The most important aspect of our analysis is not the specific
results for heterozygosity, which match the conclusions of
earlier simulations. Rather, the fitness-class coalescent
approach allows us to draw several important general
conclusions about how negative selection distorts the
structure of genealogies. For two individuals drawn from
particular fitness classes, the effect of negative selection is
similar to that of an effective population size that changes
as time recedes into the past. This is consistent with sug-
gestions from earlier work (e.g., the simulation study of
Williamson and Orive 2002 and the work of Seger et al.
2010). However, this is not a population size that decreases
in a simple way into the past. Our analysis shows the exact
form of this time-dependent population size. Further, it is
clear from our analysis that this is not the only effect of
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negative selection on genealogies. There are two key compli-
cations. First, the statistics of genetic variation (particularly at
the deleterious sites themselves) depend on the structure of
genealogies differently in our fitness-class coalescent than in
the standard neutral coalescent. Second, the time-varying
rate of coalescence between a pair of individuals depends
on the fitness classes they were sampled from. In other words,
different pairs of individuals have a different time-varying
effective population size. This suggests that genetic diversity
cannot be represented by a single time-varying effective Ne(t)
for the whole population, which means that it may be possi-
ble to develop statistical tests to distinguish negative selection
from population size. All of these general intuitive conclu-
sions about the structure of genealogies in our fitness-class
coalescent are illustrated in Figure 10.

We now pause to make this intuitive picture of the shape
of typical genealogies more precise. In general the proba-
bility that two individuals will coalesce within class k has the
form Pc � ðA=2Þ1=ðnkskÞ; where nk is the population size of
that class, sk is the effective selection pressure against indi-
viduals within that class, and A is a constant that depends on
which classes the lineages began in, but not on any of the
population parameters. We have seen that each lineage
spends on average 1/(sk) generations in class k. Thus we
can think of each individual as seeing a historical effective
population size as shown in Figure 10C: it starts in some
class k with size nk and spends 1/sk generations in that class
before moving to class k 2 1, and so on.

If we sample two individuals, however, they will not
always be in the same class at the same time. This effect
reduces the coalescence probabilities in each class, as
captured by the factor A/2. This factor is the average frac-
tion of the 1/(sk) generations each lineage spends in class k
that the two lineages spend there together. Alternatively, we
can think of this factor as consisting of two parts: A is the
probability that the two lineages are ever in the same class
at the same time, and 1/(2sk) is the average amount of time
that they coexist in the class if they coexist at all (they each
spend on average 1/(sk) generations there, but on average
overlap for only half this time if they overlap at all). While
the two lineages are in the class at the same time, the per-
generation coalescent probability is 1/nk.

This logic implies that genealogies in the presence of
purifying selection look like neutral genealogies with
a specific type of historical population-size dependence.
Imagine, for example, that we picked two individuals from
the same fitness class k. They each spend on average 1/(sk)
generations in class k, and during that time they have a prob-
ability ðA=2Þð1=nkÞ per (real) generation of coalescing (this
probability includes the fact that on average they are both in
the class simultaneously for only a fraction of the mean time
each spends there). So roughly speaking, they have an
effective population size of Ne � 2nk=A

k;k
ℓ¼0 for the first 1/(sk)

generations. If they fail to coalesce, they then move to class
k 2 1, where they spend 1=sðk21Þ generations and have
a probability ðA=2Þð1=nk21Þ per generation of coalescing,

Figure 10 Relationship between
our results and an effective pop-
ulation-size approximation. (A) A
typical coalescent tree in a neutral
population of constant size. The
coalescent probability per gener-
ation between a random pair of
individuals is the inverse popula-
tion size. Time runs from the past
at the top to the present at the
bottom. (B) An example of a neu-
tral coalescent tree in a popula-
tion that was smaller in the past
than the present. The population
size is shown as the width in
green. Coalescence events are
more likely to occur when the
population size is smaller. (C)
The effective population-size his-
tory for an individual experienc-
ing purifying selection according
to our model. The individual
spends on average 1=sk genera-
tions in class k, which has a total
size Nhk. Note that pairs of indi-
viduals are sampled from differ-
ent classes k (i.e., they are not all
sampled from the bottom of this
picture). Further, the coalescence

probabilities also include a factor of A/2, which reflects the probability that two lineages are in the same class at the same time. (D) The historically
varying effective population size Ne(t) for a pair of individuals sampled from classes k and k9, as defined in the text, for several values of k and k9. The
Ne(t) for two individuals sampled at random from the whole population is also shown. Here N ¼ 5 · 104, Ud/s ¼ 6, and s ¼ 1023.
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and hence an effective population size Ne � 2nk21=A
k;k
ℓ¼1 for

this time. If they again fail to coalesce, they move to class
k 2 2, and so on.

So far, this picture of a time-dependent population size is
rather crude, but we can make it more precise. Specifically,
we can write the coalescence probability between two
individuals sampled from class k and k9 as a function of time
in generations as

cðtjk; k9Þ ¼
Xk
ℓ¼0

fk9
k ðℓÞcðt   j  k; k9; ℓÞ: (33)

We can then define the time-dependent effective population
size between these individuals, Ne(t), as the inverse proba-
bility of coalescence at time t given that coalescence has not
yet occurred,

1
NeðtÞ ¼

cðt j k; k9Þ
12

Ð  t
 0 cðt9j k; k9Þdt9

: (34)

In other words, the Ne(t) is defined as usual as the inverse of
the probability that the two individuals will coalesce at time
t given that they have not yet done so.

We illustrate this precise time-dependent population size
Ne(t) in Figure 10D. We see that for two individuals sampled
from the same fitness class, Ne(t) typically increases into the
recent past and then decreases into the more distant past.
This reflects the fact that the two individuals are becoming
less likely to be in the same fitness class in the recent past,
but that as time recedes into the distant past they are likely
to be in the highly fit classes that have smaller nk. For two
individuals sampled from classes near but not identical to
each other, Ne(t) starts high and then drops before exhibit-
ing a pattern similar to that among individuals sampled
from the same class. This reflects the fact that it takes at
least a short time before the two individuals have any
chance of being in the same class. Finally, for two individuals
sampled from more distant classes, Ne(t) simply declines
into the past, both because longer ago they were more likely
to be in the same class and more likely to be in the small
classes near the high-fitness tail.

Averaging over the whole population, Figure 10D shows
the precise time-dependent population size Ne(t) for two ran-
domly sampled individuals. This average Ne(t) initially stays
roughly constant as time recedes into the past before decreas-
ing thereafter. For these two randomly sampled individuals,
selection is indistinguishable from this particular historically
varying population size. The distribution of coalescence times
between this pair of individuals looks the same as neutral
coalescent histories with this specific population-size history.
The deleterious mutation rates and selection pressures matter
only in that they determine the form of this population size
history. We note that the average Ne(t) shown in Figure 10D
implies that recent branches of genealogies will typically be
longer relative to ancient branches than we would expect
under neutrality. Thus background selection will lead to an

excess of low-frequency variants, and hence lead to negative
values of Tajima’s D, consistent with expectations from pre-
vious work (Charlesworth et al. 1995; Fu 1997; Gordo et al.
2002).

However, a key difference from a neutral population of
time-varying size is that, as is clear in Figure 10D, pairs of
individuals do not typically come from the same fitness
class. Rather, they come at random from different parts of
the fitness distribution, and those that come from different
places have ancestries characterized by different historically
varying population sizes. The total distribution of ancestry is
the sum of all of these. In other words, the genetic variation
within the population is like that in a population in which
some individuals had one type of historical population size
history, while others had another. If we restrict ourselves to
pairwise statistics such as p, the average Ne(t) across pairs of
individuals will accurately describe the genetic diversity.
However, when we consider appropriately defined statistics
in larger samples, the fact that there is no single Ne(t) for the
whole population could be important. It remains an inter-
esting question for future work to explore how to exploit this
fact to develop statistical tests to distinguish the effects of
purifying selection from that of a historically varying effec-
tive population size.

Approximations underlying our approach

Our analysis relies on several key approximations. First, both
our lineage structure and our sum of ancestral paths
methods assume that we can neglect fluctuations in the
total frequency hk of each class. Related to this approxima-
tion, we have also implicitly assumed that the probability
a lineage in class k reaches a frequency close to hk can be
neglected. In Appendix B, we analyze these approximations
in detail and show that they will hold in class k whenever
Nhksk .. 1. In practice, this condition will often break down
in the high- and low-fitness tails of the fitness distribution.
Fortunately, provided it holds in the bulk of the distribution
in which most individuals will be sampled (which will typ-
ically be true provided Ns .. 1), our approach is still a good
approximation. We have also made several other more tech-
nical approximations in computing the fitness-class coales-
cent probabilities. We discuss these in detail in File S1 and
File S4.

Our final and most important approximation is that we
assume that Muller’s ratchet can be neglected. The ratchet
occurs when h0 fluctuates to 0, so we can think of this ap-
proximation as an extreme aspect of neglecting fluctuations
in the sizes of each fitness class. This approximation can
sometimes be problematic; we discuss it in detail below.

Although we have focused primarily on situations in
which selection is weak compared to total deleterious
mutation rates, our approach is also valid regardless of
whether s is strong or weak compared to Ud. However, when
selection is sufficiently strong (Ns .. 1 and Ud/s , 1), then
an effective population size approximation accurately
describes the patterns of genetic variation, as we describe
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below. Thus our methods are primarily useful for situations
in which selection is weak compared to mutation rates.

Relationship with an effective population
size approximation

Charlesworth et al. (1993) considered how selection against
many linked deleterious mutations affects linked neutral di-
versity in a model identical to ours. These authors found
that when selection is sufficiently strong, the shape of gene-
alogies and hence the statistics of variation at linked neutral
sites are identical to the neutral case, with a reduced effec-
tive population size. We refer to this as the effective popu-
lation size (EPS) approximation.

The idea behind the EPS approximation is that when
selection is strong, deleterious mutations are quickly elim-
inated from the population by selection. Thus if we sample
individuals from the population, they must have very
recently descended from individuals within the class of
individuals that had no deleterious mutations (the 0-class).
The EPS approximation assumes that the time for this to
happen can be neglected and that individuals never coalesce
before it does. These individuals then coalesce within the 0-
class as a neutral process with effective population size
equal to the size of that 0-class, which is Ne2Ud=s. Thus the
genetic diversity within the population is identical to that in
a neutral population of reduced size Ne ¼ Ne2Ud=s.

The EPS approximation is valid provided that the neutral
coalescence time within the 0-class, tneut, is large compared
to the time it takes for a typical individual to have descended
from the 0-class, tdesc. We know tneut � Ne2Ud=s, and since
a typical individual comes from fitness class k � Ud/s, we
have that

tdesc �
XUd=s

j¼1

1
js

� 1
s
ln
�
Ud

s

�
:

This means that the EPS approximation is valid provided

Nse2Ud=s..ln
�
Ud

s

�
: (35)

Because of the exponential term on the left-hand side of this
expression, it is clear that the EPS approximation is a strong-
selection, weak-mutation limit. It will tend to be valid
provided that Ns . 1 and Ud , s. However, whenever Ud

becomes much larger than s, it will typically break down
even in enormous populations, as has been suggested by
Nordborg et al. (1996) and Kaiser and Charlesworth (2009).

Our analysis describes the effects of background selection
beyond the EPS approximation. We do not assume that the
coalescence time through the fitness distribution is small
compared to the coalescence times within the 0-class or that
coalescence cannot occur among individuals carrying dele-
terious mutations. It is precisely these two effects that lead
to distortions away from the neutral expectations, making it
impossible to describe genealogies using neutral theory with
a revised effective population size. Although our analysis is

a generalization of the EPS approximation, it is not in-
consistent with it. However, we have focused primarily on
situations in which the EPS approximation breaks down,
and coalescence times through the fitness distribution are
large compared to those in the 0-class, because this is the
situation in which our approach is most useful.

Note also that in many situations it may be the case that
there are many linked weakly selected mutations and many
linked strongly selected mutations. In such circumstances,
the process we consider and the EPS approximation can act
simultaneously, each for different classes of mutations.
Imagine we had one class of mutations with fitness cost s1,
which occur with mutation rate U1, where U1 , s1 and
Ns1 .. 1 so that the EPS approximation applies. At the same
time, imagine another class of mutations with fitness cost s2,
which occur with mutation rate U2, where U2 .. s2 so that
the EPS approximation breaks down for these mutations.
In this case, the genetic diversity we expect to see will be
characteristic of our fitness-class coalescent theory (with Ud

= U2 and s = s2), but with a reduced effective population
size Ne ¼ Ne2U1=s1 . In other words, the strongly selected
mutations reduce the effective population size because all
individuals are very recently descended from an individual
that had no large-effect mutations, but the coalescence time
through the distribution of weakly selected mutations can-
not be neglected.

A “mutation–time” approximation

We have seen that our analysis accounts for two effects
missing from the EPS approximation: coalescence events
outside the 0-class and the time it takes for individuals to
have descended from the 0-class. Whenever Ud/s and N are
both sufficiently large, the former effect can be neglected
while the latter is still important, because the number of
lineages in each fitness class becomes large and hence co-
alescence events are very unlikely to occur outside of the 0-
class. This leads to an approximation that we can think of as
a generalization of the EPS approximation. Rather than con-
sidering primarily the diversity generated within the most-fit
background, we focus instead on the diversity that accumu-
lates while lineages move between different less-fit back-
grounds. Hence we term this approach a mutation–time
approximation (MTA) for short. In this approximation, we
assume that all individuals coalesce within the 0-class, as
with the EPS approximation. However, unlike the EPS ap-
proximation, we consider the time it took for individuals to
descend from the 0-class in addition to the coalescence time
within the 0-class. This approximation is valid for large N
(when even Nh1 is enormous compared to 1/s) so that co-
alescence always occurs in the 0-class.

In this mutation–time approximation our results become
much simpler and provide a useful intuitive picture of the
structure of genealogies and genetic variation. Consider the
deleterious heterozygosity pd of two individuals sampled
from fitness classes k and k9. In this approximation, these
two individuals always coalesce in the 0-class so we always
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have pd = k + k9. Since two individuals are sampled from
classes k and k9 with probability H(k, k9), the distribution of
pd in the population as a whole is extremely simple: we have

rðpdÞ ¼
X

k¼pd2k9

Hðk; k9Þ ¼ e22Ud=s 1
pd!

�
2Ud

s

�pd

: (36)

This simple approximation makes it clear why the dis-
tribution of pd looks the way it does, and explains how it
varies with Ud/s and with N, both in this mutation–time
approximation and more generally. For large N, when co-
alescence outside the 0-class can be neglected, two individ-
uals from class k and k9 have pd = k + k9. Thus the
distribution of pd has roughly the same shape as the distri-
bution of fitness within the population. The mean pd is 2Ud/s,
since the average individual comes from class k = Ud/s.
Smaller and larger pd are less likely; the distribution of
fitness in the population has variance equal to the mean,
so the variance of the distribution of pd is also roughly equal
to its mean. As N gets smaller, there is sometimes coales-
cence outside of the 0-class. This reduces pd given k and k9.
Hence as we reduce N, the distribution of pd shifts some-
what leftward, with a peak somewhat below 2Ud/s, and
has slightly more variance relative to the mean since there
is a less definite correspondence between k, k9, and pd.
Since pn is determined by pd, this also explains why the
distribution of pn has the peaked form we observe and
how it depends on Ud/s and N (note that for pn the co-
alescence time within the 0-class, which increases linearly
with N, must also be included). All of these intuitive
expectations are reflected in our results, as shown in Figure
4, Figure 5, Figure 7, and Figure 8. Note for example that
in Figure 4, the peak of pd is slightly below 2Ud/s (reflect-
ing the finite population size) and has variance about
equal to its mean; we have verified that as N increases,
the shape of the distribution remains roughly the same,
but the mean increases toward 2Ud/s and the variance
decreases slightly.

More complex statistics of sequence variation are simi-
larly straightforward to calculate in the mutation–time ap-
proximation. When considering larger samples, the genetic
diversity is determined by the fitness classes these individu-
als come from, which is always simple since the probability
a given individual is sampled from fitness class k is just the
Poisson-distributed hk. This approximation may therefore
prove useful in developing simple and intuitive expressions
for various statistics. For example, we can use this approx-
imation to calculate a simple expression for the distribution
of the total number of segregating negatively selected sites
in a sample of size n, Sdn; which as we have seen above is
otherwise rather involved. We have

r
	
Sdn ¼ x



¼

X
k1;k2;...kn

hk1hk2 . . . hkn ; (37)

where the sum is over sets of the ki that sum to x. We find

r
	
Sdn ¼ x



¼ e2nUd=s 1

x!

�
nUd

s

�x

: (38)

This is a distribution that is peaked around a mean value of
nUd=s, for the same reasons the distribution of pd looks as it
does. We note, however, that as we increase the sample size n,
the population size Nmust be even larger for this MTA to hold.

We can also calculate the distributions of actual co-
alescence times and hence the distributions of statistics
describing neutral diversity in the mutation–time approxi-
mation. Consider the distribution of the real coalescence
time between two individuals chosen from classes k and
k9. In the mutation–time approximation where the coales-
cence time within the 0-class can be neglected, the actual
coalescence time is

cðt   j  k; k9Þ ¼ sðkþ k9Þe2sðkþ k9Þt�est21
�kþ k92 1

: (39)

Averaging over the values of k and k9, we have

cðtÞ ¼ 2Ude
2st22ðUd=sÞe2st

: (40)

The distribution of coalescence times once within the 0-class
is c0ðtÞ ¼ ð1=Nh0Þe2t=ðNh0Þ. From this distribution of real
coalescence times, we can find the distribution of neutral
heterozygosity pn in the usual way,

rðpnÞ ¼
ðN
0

½2Unt�pn

pn!
e22UntcðtÞdt: (41)

We can immediately see that the average coalescence
time in this MTA is

t �
X2Ud=s

i¼0

1
si
þ Nh0 � 1

s
lnð2Ud=sÞ þ Nh0:

We therefore expect that the neutral heterozygosity will on
average be

hpni � 2Un

s
ln
�
2Ud

s

�
þ 2Nh0Un: (42)

The first term in this expression comes from the time to
descend through the fitness distribution, while the second
term comes from the time to coalesce within the 0-class. If
this latter term is large compared to the former, the EPS
approximation applies. In the opposite case in which the
time to descend through the distribution dominates, we
can see from the MTA that, as with pd, the shape of this
distribution of pn is primarily determined by the shape of
H(k, k9). In this case, the peak in hk at k = Ud/s leads to
a peak in the distribution of real times and hence a peak in
the distribution of pn. The width of the distribution of pn is
somewhat wider, however, since even given individuals com-
ing from fitness classes near the mean, there is a broad
distribution of possible real times, and a broad distribution
of pn even given a particular real time.
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This average heterozygosity would correspond to an
effective population size of

Ne � 1
s
ln
�
2Ud

s

�
þ Nh0; (43)

but as we have seen this effective population size cannot
correctly describe the full distribution of pn nor its relation-
ship to other statistics describing the genetic diversity. For
smaller values of N where the mutation–time approximation
breaks down, the average pn would be somewhat lower than
the MTA predicts and its distribution somewhat broader.

Muller’s ratchet

We have neglected Muller’s ratchet throughout our analysis
and assumed that the fitness distribution hk is fixed. Yet
Muller’s ratchet will certainly occur and in some circumstan-
ces could have a significant impact on genetic diversity
(Charlesworth and Charlesworth 1997; Gordo et al. 2002;
Seger et al. 2010). Thus this is a potentially important omis-
sion from our theory. In this section we discuss some of the
complications associated with Muller’s ratchet that are im-
portant to keep in mind when considering our approach. We
discuss the parameter regimes where neglecting Muller’s
ratchet should be reasonable and those where it is likely
to cause more serious problems. We provide rough estimates
of how large we expect these problems to be and suggest
a few possible ways in which future work might incorporate
Muller’s ratchet into our general framework.

Muller’s ratchet causes several related problems within
our theoretical framework. First, it causes the values of hk
to change with time and means they may not always follow
a Poisson distribution. This changes the distribution of line-
age frequencies within each class, and hence changes the
coalescence probabilities. After a “click” of the ratchet, the
whole distribution hk shifts in a complicated way, eventually
reaching a new state where it is shifted left (so the class that
was originally at frequency hk is now at frequency hk21, and
so on). In a similarly complex way, the PRF distribution of
lineage frequencies in class k shifts from fk to fk21, and so on.
This naturally changes the coalescence probabilities in each
class. Fortunately, since the coalescence probabilities in class
k are generally very similar to those in classes k+ 1 or k2 1,
this effect is unlikely to lead to major inaccuracies pro-
vided the ratchet does not click many times within a coales-
cent time. This is true except when we start considering
coalescence in classes close to the 0-class, where the k-
dependence becomes significant. This can be thought of as
an additional problem associated with Muller’s ratchet and
is associated with the fact that the ratchet shifts the whole
fitness distribution. This effect is easiest to see with an ex-
ample: imagine we sample two individuals within the k-class
and that these individuals did not coalesce before their
ancestors were both in the 0-class. At the time (in the past)
when these individuals’ ancestors were in the 0-class, this
current 0-class might have been the 1-class or 2-class (or

higher). Thus these two individuals within the 0-class might
not coalesce until, for example, their ancestors were in what
is currently the “22-class.” This clearly means that we might
in fact have pd . 2k, which our analysis assumes is impos-
sible. In fact, we observe precisely this effect in simulations,
and it is the reason why we commonly observe systematic
deviations where the simulated values of pd are larger than
our theory predicts.

From this discussion it is clear that the key factor in
determining whether Muller’s ratchet can reasonably be
neglected is how many times the ratchet clicks in a coales-
cence time. We have seen above that an average individual
coalesces through the fitness distribution in a time at most of
order ð1=sÞlnðUd=sÞ generations. Once within the 0-class,
coalescence times are of order Ne2Ud=s. We must compare
these times to the time it takes for the ratchet to click.
The rate of the ratchet is a complex issue that has been
analyzed by Gordo and Charlesworth (2000a,b) and Kim
and Stephan (2002) in the regime where Ne2Ud=s . 1 and
by Gessler (1995) in the regime where Ne2Ud=s , 1. No gen-
eral analytic expressions that are valid across all parameter
regimes exist. However, provided the ratchet does not
typically move a substantial fraction of the width of the
fitness distribution in the coalescence time of two random
individuals, it will be a small correction to pd, and neglecting
it is a reasonable first approximation. In practice we find in
our simulations that for the parameter regimes we consider,
pd is at most of order 2 larger than our theoretical predic-
tions, which would correspond roughly to the effect of a single
click of the ratchet during a typical coalescence time.

The discussion above suggests a way to incorporate Muller’s
ratchet within our theoretical framework, albeit in an ad hoc
way. The ratchet shifts the distribution hk underneath the fit-
ness-class coalescent process. The details of this shift are com-
plicated, but on average every click of the ratchet shifts the
distribution one step to the left. We can define kmin to be the
number of deleterious mutations (relative to the optimal ge-
notype) in the most-fit individual at any given time. For the
case where Ne2Ud=s . 1, the rest of the distribution will be
approximately a Poisson distribution, but with hk replaced by
hk2kmin

. Muller’s ratchet can then be thought of as a process by
which kmin increases over time. This increase is a random pro-
cess, but has some average rate, leading to an average kmin(t).
As we look backward in time during the fitness-class coalescent
process, the value of kmin is decreasing due to Muller’s ratchet.
This suggests a simple approximation: we replace the actual
value of k with an “effective” value of k that accounts for the
fact that kmin decreases as we look backward in time. For each
step through the fitness distribution, we imagine that kmin has
decreased by the appropriate amount, and hence the effective
value of k in the new fitness class is decreased by ,1 com-
pared to the old fitness class. When Ne2Ud=s , 1 the ratchet is
an almost deterministic process, so a similar approximation
may prove useful, but in this case the distribution hk is on
average shifted from the Poisson form (Gessler 1995). To
incorporate the ratchet into our analysis in this situation,
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we first must recalculate the relevant coalescence probabili-
ties given the expected average form of hk, and then carry out
the above program. These and other methods to account for
Muller’s ratchet remain an interesting topic for future work.

Despite the potential relevance of Muller’s ratchet in
practical situations, we note that it does not affect our
results in the standard coalescent limit. As is apparent from
our general expressions for the coalescence probabilities, the
structure of our fitness-class coalescent theory does not de-
pend on all three parameters N, Ud, and s independently.
Rather, it depends only on the combinations NUd and Ns.
Thus our theory makes sense in the standard limit where
NUd and Ns are held constant while we take N / N. In this
limit, Muller’s ratchet does not occur. Whether this means
that we can neglect the ratchet for large but finite N depends
on the convergence properties of the coalescent limit. This is
a difficult limit to explore with simulations, because it
requires large population sizes. However, we have used sim-
ulations to verify in a few cases in which, as expected, in-
creasing N while keeping NUd and Ns constant does not
change the predicted structure of genealogies but decreases
some of the systematic differences between theoretical pre-
dictions and the simulations that are suggestive of the effect
of the ratchet. Note that while this ratchet-free limit does
not change the structure of genealogies in our fitness-class
coalescent, the distribution of real coalescent times does
change, since all real time scales are proportional to s. Thus,
as might be expected, we must also take NUn constant as
N / N if we wish neutral diversity to also remain unaf-
fected in this limit.

Note that this ratchet-free limit, while fairly standard in
coalescent theory, is somewhat different from the mutation–
time approximation we discussed above. Of course, we can
easily imagine a population that is large enough that the
mutation–time approximation applies and then take the
standard coalescent limit.

Conclusion

Our fitness-class coalescent approach provides a framework in
which we can compute distributions of genealogical structures
in situations in which many linked negatively selected sites
distort patterns of genetic variation. We have used this frame-
work to calculate the distributions of a few simple statistics
describing sequence variation. It remains for future work to
use this fitness-class coalescent approach to compute a wide
array of statistics to better understand the details of how
purifying selection on many linked sites distorts patterns of
genetic variation. The eventual goal will be to use our results
to help interpret the increasing amounts of sequence data that
seem to point to the importance of negative selection on many
linked sites.

Acknowledgments

We thank Daniel Fisher and JohnWakeley for many useful dis-
cussions, which inspired our fitness-class coalescent approach.

M.M.D. acknowledges support from the James S. McDonnell
Foundation and the Harvard Milton Fund. A.M.W. thanks the
Princeton Center for Theoretical Science at Princeton Univer-
sity, where she was a fellow during some of her work on this
article. Many of the computations in this article were run on
the Odyssey cluster supported by the FAS Sciences Division
Research Computing Group at Harvard University. L.E.N. is
supported by the Department of Defense through the National
Defense Science and Engineering Graduate Fellowship Pro-
gram, and also acknowledges support from an National
Science Foundation graduate research fellowship. J.B.P.
acknowledges support from the James S. McDonnell Founda-
tion, the Alfred P. Sloan Foundation, the David and Lucille
Packard Foundation, the Burroughs Wellcome Fund, Defense
Advanced Research Projects Agency (HR0011-05-1-0057),
and the U.S National Institute of Allergy and Infectious
Diseases (2U54AI057168).

Literature Cited

Barton, N. H., and A. M. Etheridge, 2004 The effect of selection
on genealogies. Genetics 166: 1115–1131.

Charlesworth, B., 1994 The effect of background selection against
deleterious mutations on weakly selected, linked variants.
Genet. Res. 63: 213–227.

Charlesworth, B., and D. Charlesworth, 1997 Rapid fixation of
deleterious alleles can be caused by muller’s ratchet. Genet.
Res. 70: 63–73.

Charlesworth, B., M. T. Morgan, and D. Charlesworth, 1993 The
effect of deleterious mutations on neutral molecular variation.
Genetics 134: 1289–1303.

Charlesworth, D., B. Charlesworth, and M. T. Morgan, 1995 The
pattern of neutral molecular variation under the background
selection model. Genetics 141: 1619–1632.

Comeron, J. M., and M. Kreitman, 2002 Population, evolutionary
and genomic consequences of interference selection. Genetics
161: 389–410.

Comeron, J. M., A. Williford, and R. M. Kliman, 2008 The Hill–
Robertson effect: evolutionary consequences of weak selection
and linkage in finite populations. Heredity 100: 19–31.

Coop, G., and R. C. Griffiths, 2004 Ancestral inference on gene
trees under selection. Theor. Popul. Biol. 66: 219–232.

Desai, M. M., and D. S. Fisher, 2007 Beneficial mutation–selection
balance and the effect of linkage on positive selection. Genetics
176: 1759–1798.

Ewens, W. J., 1972 The sampling theory of selectively neutral
alleles. Theor. Popul. Biol. 3: 87–112.

Ewens, W. J., 2004 Mathematical Population Genetics: I. Theoret-
ical Introduction. Springer, New York.

Fu, Y., 1997 Statistical tests of neutrality of mutations against
population growth, hitchhiking and background selection. Ge-
netics 147: 915–925.

Gessler, D. D. G., 1995 The constraints of finite size in asexual
populations and the rate of the ratchet. Genet. Res. 66: 241–253.

Gordo, I., and B. Charlesworth, 2000a The degeneration of asex-
ual haploid populations and the speed of Muller’s ratchet. Ge-
netics 154: 1379–1387.

Gordo, I., and B. Charlesworth, 2000b On the speed of Muller’s
ratchet. Genetics 156: 2137–2140.

Gordo, I., A. Navarro, and B. Charlesworth, 2002 Muller’s ratchet
and the pattern of variation at a neutral locus. Genetics 161:
835–848.

772 A. M. Walczak et al.



Hahn, M. W., 2008 Toward a selection theory of molecular evo-
lution. Evolution 62: 255–265.

Haigh, J., 1978 The accumulation of deleterious genes in a pop-
ulation-Muller’s ratchet. Theor. Popul. Biol. 14: 251–267.

Hermisson, J., O. Redner, H. Wagner, and E. Baake, 2002 Mutation-
selection balance: ancestry, load, and maximum principle.
Theor. Popul. Biol. 62: 9–46.

Hill, W., and A. Robertson, 1966 The effect of linkage on limits to
artificial selection. Genet. Res. 8: 269–294.

Hudson, R., and N. Kaplan, 1994 Gene trees with background
selection, pp. 140–153 in Non-neutral Evolution: Theories and
Molecular Data, edited by B. Golding. Chapman & Hall, New
York.

Hudson, R., and N. Kaplan, 1995 Deleterious background selec-
tion with recombination. Genetics 141: 1605–1617.

Kaiser, V. B., and B. Charlesworth, 2009 The effects of deleterious
mutations on evolution in non-recombining genomes. Trends
Genet. 25: 9–12.

Kaplan, N., T. Darden, and R. Hudson, 1988 The coalescent pro-
cess in models with selection. Genetics 120: 819–829.

Kim, Y., and W. Stephan, 2002 Recent applications of diffusion
theory to population genetics, Modern Developments in Theoret-
ical Population Genetics: The Legacy of Gustave Malecot, edited by
M. Slatkin, and M. Veuille. Oxford University Press, Oxford.

Kimura, M., 1955 Stochastic processes and distribution of gene
frequencies under natural selection. Cold Spring Harb. Symp.
Quant. Biol. 20: 33–53.

Kingman, J. F. C., 1982 The coalescent. Stochastic Process. Appl.
13: 235–248.

Krone, S. M., and C. Neuhauser, 1997 Ancestral processes with
selection. Theor. Popul. Biol. 51: 210–237.

McVean, G. A. T., and B. Charlesworth, 2000 The effects of Hill–
Robertson interference between weakly selected mutations on pat-
terns of molecular evolution and variation. Genetics 155: 929–944.

Neuhauser, C., and S. M. Krone, 1997 The genealogy of samples
in models with selection. Genetics 145: 519–534.

Nordborg, M., B. Charlesworth, and D. Charlesworth, 1996 The
effect of recombination on background selection. Genet. Res.
67: 159–174.

O’Fallon, B. D., J. Seger, and F. R. Adler, 2010 A continuous-state
coalescent and the impact of weak selection on the structure of
gene genealogies. Mol. Biol. Evol. 27: 1162–1172.

Przeworski, M., B. Charlesworth, and J. Wall, 1999 Genealogies
and weak purifying selection. Mol. Biol. Evol. 16: 246–252.

Sawyer, S. A., and D. L. Hartl, 1992 Population genetics of poly-
morphism and divergence. Genetics 132: 1161–1176.

Seger, J., W. A. Smith, J. J. Perry, J. Hunn, Z. A. Kaliszewska et al.,
2010 Gene genealogies strongly distorted by weakly interfering
mutations in constant environments. Genetics 184: 529–545.

Tavare, S., 2004 Ancestral inference in population genetics, pp.
1–188 in Lectures on Probability Theory and Statistics, Vol. 1837,
edited by J. Picard. Springer, Berlin.

Wakeley, J., 2009 Coalescent Theory: An Introduction. Roberts,
Greenwood Village, CO.

Williamson, S., and M. E. Orive, 2002 The genealogy of a se-
quence subject to purifying selection at multiple sites. Mol. Biol.
Evol. 19: 1376–1384.

Zeng, K., and B. Charlesworth, 2011 The joint effects of back-
ground selection and genetic recombination on local gene
genealogies. Genetics 189: 251–266.

Communicating editor: N. A Rosenberg

Appendix A: The Fitness-Class Coalescent Probabilities

PRF lineage-structure approach

In the main text, we used our PRF lineage-structure approach to write an integral expression for the probability Pk;k9/k2ℓ
c that

two individuals sampled from fitness classes k and k9 coalesce in class k 2 ℓ, Equation 13, above. In this appendix, we
evaluate this integral to calculate the coalescent probabilities.

Equation 13 depends on the transition probability for the change in the frequency of a lineage from x to y in a time
|t1 2 t2| in class k 2 ℓ, Gk2ℓ( y / x),|t2 2 t1|). This transition probability was calculated by Kimura (1955) and can
be expressed as an infinite sum of Gegenbauer polynomials. Fortunately, it appears in the context of an integral

IG ¼
ð
y   Gk2ℓð y/x; jt2 2 t1jÞdy; (44)

which is simply the average of y over Gk2ℓ. Hence this integral is given by the deterministic result for the change in the
frequency of the lineage,

IG ¼ xe2sðk2ℓÞjt22t1j: (45)

Note that this deterministic solution simply reflects the exponential decline in frequency of a rare deleterious allele.
Substituting Equation 45 into Equation 13, we find

Pk;k9/k2ℓ
c ¼

ð
dxdt1dt2Qk2ℓ

k;k9ðt1; t2Þ
x2fk2ℓðxÞ
h2k2ℓ

e2sðk2ℓÞjt22t1j: (46)

The x integral can be evaluated using standard asymptotic methods; we find

ð1
0
dxx2 fk2ℓðxÞ[ Ik2ℓ

x ¼ 1
1þ 2Nhk2ℓsðk2 ℓÞ: (47)
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Note that this and all further expressions for Ik2ℓ
x incorporate the branching process correction for fluctuations in hk described

in Appendix B. Plugging in this result, we find

Pk;k9/k2ℓ
c ¼ Ik2ℓ

x

ð
dt1dt2Qk2ℓ

k;k9ðt1; t2Þe2sðk2ℓÞjt22t1j: (48)

To make further progress, we must understand Qk2ℓ
k;k9ðt1; t2Þ, the joint distribution of the times at which individuals sampled

from fitness classes k and k9 originally mutated from class k 2 ℓ to class k 2 ℓ + 1. In general, t1 and t2 are not independent,
since for the two lineages to have coalesced in class k 2 ℓ they must not have coalesced in any earlier classes, which makes
them less likely to have been in those classes at the same time. In File S1, we analyze these distortions and their effects on
the coalescence probabilities. Here we make use of a simpler approximation: since the coalescence probability in each step
will turn out to be small, conditioning on not coalescing in a particular class does not shift the distribution of mutation
timings much. We therefore neglect the complications associated with the probability distributions of the mutant timings
conditional on noncoalescence. We refer to this as the nonconditional approximation and discuss its validity further in
File S1.

In the nonconditional approximation, the times t1 and t2 are independent, Qk2ℓ
k;k9ðt1; t2Þ ¼ Qk2ℓ

k ðt1ÞQk2ℓ
k9 ðt2Þ. We calculate

these distributions of mutant timings Qk2ℓ
k ðtÞ in File S2. Plugging these in, and evaluating the integrals as described in File S3,

we find

ð
dt1dt2Qk2ℓ

k;k9ðt1; t2Þ e2sðk2ℓÞjt22t1j ¼

�
k9

k2 ℓ

��
k

k2 ℓ

�
�

kþ k9
2ℓþ k92 k

� [ Ak;k9
ℓ : (49)

Plugging this result into Equation 48, we find Pk;k9/k2ℓ
c ¼ Ik2ℓ

x Ak;k9
ℓ , the result quoted in the main text. We note that

e2sðk2ℓÞjt22t1j is the probability that the ancestor of the first individual to mutate into class k2 ℓ is still there when the ancestor
of the second individual mutated into that class. Thus Ak;k9

ℓ is the probability that the ancestors of the two individuals were in
class k 2 ℓ at the same time, while Ik2ℓ

x is the probability that they coalesce if so, as described in the main text.

Sum of ancestral paths approach

In the main text, we considered the probability of any particular ancestral path in the history of a sample of two
individuals. In this section, we sum over the probabilities of all possible ancestral paths to compute the fitness-class
coalescence probabilities. First, we consider sampling two individuals from the same fitness class k. For these two
individuals to coalesce in class k, the first event must be a coalescent event. Using the event probabilities computed in
the main text, we find Pk;k/k

c ¼ Ikx , equivalent to our earlier lineage-based result. For these individuals to coalesce in class
k 2 1, the first event must be a deleterious mutation event. Since both individuals’ ancestral lineages are currently in class
k, the probability that the first event is a deleterious mutation event is 12Ikx . After this event, there is now one ancestral
lineage in class k 2 1 and one in class k. The next event must be a deleterious mutation in the latter, which occurs with
probability k=ð2k21Þ. Finally, the third event must be a coalescent event. This implies

fk
kð1Þ ¼

	
12 Ikx



Ik21
x

k
2k2 1

: (50)

Note that this logic has given us an expression for the probability that the coalescent steptime is 1, fk
kð1Þ, and not the

probability of coalescence in this class given that coalescence has not yet occurred, Pk;k/k2ℓ
c , because we have already

included the probability that the coalescence event does not happen in class ℓ.
We can continue to extend this logic to subsequent fitness classes. For example, for coalescence to occur in class k 2 2,

there are six possible paths. We can label them as AABBc, BBAAc, ABABc, ABBAc, BABAc, and BAABc, where A cor-
responds to a mutation in the first individuals’ ancestral lineage, B corresponds to a mutation in the second individ-
uals’ ancestral lineage, and c corresponds to a coalescent event. We can calculate the probability of each path. For
example,

PðAABBcÞ ¼
 
12 Ikx
2

!�
k2 1
2k2 1

��
k

2k2 2

��
k2 1
2k2 3

�
Ik22
x : (51)
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The probability of path BBAAc is identical, since it has the same probabilities at each step. However, the remaining four paths
have a different probability, because the ancestral lineages exist together in the k2 1 class at the same time. This distorts the
probability of mutations at that step, since coalescence could also have occurred. For paths of this type, we have

PðABABcÞ ¼
 
12 Ikx
2

!�
k

2k2 1

� 
12 Ik21

x
2

!�
k21
2k2 3

�
Ik22
x : (52)

We add up each path to find

fk
kð2Þ ¼ Ik22

x
kðk2 1Þ

4ð2k21Þð2k2 3Þ
	
2
	
12 Ikx



þ 4
	
12 Ikx


	
12 Ik21

x




(53)

¼ Ik22
x

3kðk2 1Þ
2ð2k2 1Þð2k2 3Þ

�
12 Ikx 2

2
3
Ik21
x þ 2

3
Ikx Ik21

x

�
: (54)

It is informative to consider the form of this result. The Ik22
x factor is the probability that the two ancestral lineages

coalesce in class k 2 2, given that they existed in class k 2 2 at the same time. The remaining factors represent the
probability that the two ancestral lineages existed at the same time in class k 2 2. This consists of a leading-order term
½kðk21Þ�=½4ð2k21Þð2k23Þ� (identical to our earlier result for Ak

ℓ¼2), multiplied by a correction due to the distortion in paths
from the possibility of coalescence in previous steps.

We can continue on to consider the probability of coalescence in class k 2 3. There are now a total of ð6
3
Þ possible paths.

These can be split into four types, depending upon whether the two ancestral lineages coexisted in both classes k 2 1 and
k 2 2 (e.g., ABABABc), in class k 2 1 only (e.g., ABAABBc), in class k 2 2 only (e.g., AABBABc), or in neither (e.g.,
AAABBBc). The probability of each type of path is identical, except for a distortion factor ð12Ik2i

x Þ for each class k 2 i in
which the two ancestral lineages were together at the same time. The probabilities can be calculated as before and summed
to yield fk

kð3Þ. Using similar logic, we can extend this approach to the situation in which two individuals are sampled from
different classes, k9 and k.

In File S4, we describe the details of carrying out this summation over all possible paths to determine the coalescent
probabilities. We find

fk9
k ðℓÞ ¼ Ik2ℓ

x

�
k9

k2 ℓ

��
k

k2 ℓ

�
�

k9þ k
k92 kþ 2ℓ

�
2
66412 Xℓ2 1

i¼0

�
k92 kþ 2i

i

��
2ℓ2 2i
ℓ2 i

�
�
k92 kþ 2ℓ

ℓ

� Ik2i
x (55)

þ
Xℓ22

i¼0

Xℓ21

j.i

�
k92 kþ 2i

i

��
2j2 2i
j2 i

��
2ℓ2 2j
ℓ2 j

�
�
k92 kþ 2ℓ

ℓ

� Ik2i
x Ik2j

x 2 . . .

3
775; (56)

where as always we have assumed k # k9 by convention. The form of this solution is intuitive. The factor Ik2ℓ
x is the

probability of coalescence in class k 2 ℓ, given that the two ancestral lineages existed in this class at the same time. The
remaining factors reflect the probability that the two lineages are together in class k 2 ℓ at some point. This consists of
a leading-order term, which is identical to the Ak;k9

ℓ calculated previously, times a correction. The correction represents the
distortion in the paths due to the possibility that coalescence could have occurred at previous steps. There are a total of l + 1
terms in the correction, each of which is known and calculable.

Provided that 2Nhksk .. 1, we can neglect the higher-order terms in Equation 56. This is equivalent to calculating the
probability of coalescence in a given class, without considering the possibility that coalescence events could have occurred in
previous classes. Thus it converts our expression for fk9

k ðℓÞ into an expression for Pk;k9/k2ℓ
c . Neglecting these terms also

implicitly makes the nonconditional approximation, as we did in the PRF method, because it assumes that the fact that
coalescence did not occur in previous classes does not distort the likelihood of taking particular paths. Making this
approximation, we find

Pk;k9/k2ℓ
c ¼ 1

1þ 2Nhk2ℓsðk2 ℓÞA
k;k9
ℓ ; (57)
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which exactly matches our expression for the coalescence probabilities in the nonconditional approximation in our PRF
approach, Equation 15.

The condition 2 Nhksk .. 1 is the condition we are already assuming in treating the frequencies of each class, hk as
constant (see Appendix B). Thus the results from the PRF method and the sum of ancestral paths are exactly equivalent in the
regime where they are valid. We discuss the correspondence between approximations in the sum of ancestral paths method
as compared to the PRF method in more detail in File S4.

Appendix B: Fluctuations in hK

Throughout our analysis, we have neglected fluctuations in the frequencies of each fitness class hk. This approximation was
necessary to write our PRF expressions for lineage structure, fk(x), which depend on hk. Similarly, it was necessary for us to
compute the probabilities of each possible ancestral event in our sum of ancestral paths method. In this appendix, we
examine this approximation in detail and analyze its regime of validity.

Fluctuations in the fitness-class frequencies affect the coalescence probability within class k in three different ways. First,
fluctuations in hk21 affect the rate at which mutations enter class k. When hk21 is larger than average, more mutations occur.
Within the PRF method, this means that there will be more small lineages than the steady-state fk(x) accounts for, which
reduces the coalescence probability. In the sum of ancestral paths method, this means that the probability of mutation events
increases relative to the probability of coalescence events, which similarly reduces the coalescence probability. When hk21 is
smaller than average, fewer mutations occur, and the reverse is true.

Second, fluctuations in hk affect the coalescence rates within this class. Consider the case in which hk is larger than
average. Within the PRF method, this means that the probability that two individuals randomly sampled from class k come
from a given lineage of size x is less than our assumption of x2=h2k. This reduces the coalescence probability. In the sum of
ancestral paths method, this means that the probability of coalescence events decreases relative to mutation events, which
similarly reduces the coalescence probability. As before, when hk is smaller than average, the reverse is true.

The third effect of fluctuations is specific to the PRF method, in which we assumed that the probability that two
individuals in class k come from a lineage of frequency x (given that the lineage exists) is x2=h2k . This implicitly assumes that
the fact that there exists a lineage of frequency x in fitness class k does not affect the expected frequency of the class hk. This
is not strictly true: given that there exists a lineage at high frequency, it is likely that hk is larger than average, and vice versa.
In other words, there is a correlation between the size of a lineage and the frequency of the class, so the probability that two
individuals picked from a class come from a lineage of frequency x is not precisely x2=h2k. When x is large, this expression
overestimates the probability that two individuals are from the same lineage, since given that those high-frequency lineages
exist, hk will be larger than average. Similarly (although less dramatically), when x is small our expression underestimates
the probability that two individuals are from the same lineage.

Note that this third effect of fluctuations is distinct from the second effect above. The second effect describes fluctuations
in hk that are uncorrelated to the frequency of a particular lineage. It thus applies to both the PRF and the sum of ancestral
paths methods; it reflects the general fact that when hk is larger, coalescence is less likely. The third effect, on the other hand,
reflects the fact that if we assume that we sample an individual from a lineage of size x, this biases the value of hk. Since our
sum of ancestral paths method never makes any references to lineages, this third effect of fluctuations applies only to the PRF
method.

These three effects all depend on the size of the fluctuations relative to the average size of the each fitness class. Thus
neglecting fluctuations will be a good approximation provided that the fluctuations in hk are small compared to hk. To
determine when this will hold, we note that each lineage in class k can reach, at most, a maximum size of order 1=sk
individuals (selection prevents any individual lineage from becoming more common than this). The total number of
individuals in the class is on average Nhk. This means that, provided that Nhk..1=sk, each fitness class is made up of many
individual lineages. Thus we would expect that the fluctuations in the sizes of each one would tend to cancel, and the overall
fluctuations in hk should be negligible provided that this condition holds.

To make this intuition more precise, we must calculate the variance in hk and compare it to hk. In principle this information is
contained in our PRF expressions, but it is much simpler to compute using a continuous-time branching process method. That is,
rather than use a diffusion approximation to describe the dynamics of each lineage, we use a continuous-time branching process.
As before, we imagine that new lineages in class k are created at a rate uk/2. In steady state there will be some time-independent
probability that there are n total individuals across all the lineages in the class, P(n). Note that on average we must have n/N =
hk, and that P(n) contains information on the fluctuations in the hk. We first compute the generating function for P(n),

HðzÞ[
XN
n¼0

PðnÞzn: (58)
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To do so, we start by computing the generating function for the probability distribution of the number of individuals from
each lineage, as described by Desai and Fisher (2007, Equations 7–9). We substitute this expression into Desai and Fisher
(2007, Equation 24) and integrate. We find

HðzÞ [
XN
n¼0

Pðn; tÞzn [ hzni ¼
�

s
12zð12sÞ

� u
2ð12sÞ

; (59)

where angle brackets denote expectation values, and we have suppressed the k subscripts. Note that this calculation is based
on a continuous-time branching process, in which individuals have a different distribution of offspring number than in
a Wright–Fisher process, leading to a transient distribution of the frequencies of individual lineages that is half as large as in
the Wright–Fisher model for lineages of substantial frequency. Thus to make comparisons with the Wright–Fisher process, we
have to take u / 2u (as we would in comparing Wright–Fisher to Moran models), as described by Desai and Fisher (2007).

Equation 59 describes the fluctuations in the size of an individual fitness class: the mean, variance, and higher moments of
n can be easily computed by taking derivatives of H(z). Thus we can immediately compute Var(hk)/hk using standard
generating function methods. We find that in fact the fluctuations in hk are indeed negligible provided that

Nhksk..1: (60)

In practice, this condition will often break down in the high- and low-fitness tails of the fitness distribution. Fortunately,
provided it holds in the bulk of the distribution in which most individuals will be sampled, which will typically be true
provided Ns .. 1, our approach will still be a good approximation.

All three effects of fluctuations in hk described above are negligible in the same parameter regime, Nhksk.. 1. However, the fact
that the third effect applies only to our PRF result obscures the precise relationship between our two approaches and the relationship
to earlier work. Further, relaxing this approximation provides a useful comparison of the subtle differences between the assumptions
underlying the approaches. Thus we describe here an alternative approach to understanding the lineage structure in a fitness class
that allows us to account for these correlations between the size of a lineage, x, and the frequency of the fitness class, hk.

We first note that, in his original calculation of the neutral ESF, Ewens (1972) used a diffusion result, f(x), roughly
analogous to our PRF expression to describe the probability that there exists a lineage with frequency x in the population at
a given time. However, Ewens’ f(x) was derived as the solution to the diffusion approximation to the K-allele Wright–Fisher
process, in the limit of infinite alleles. This process explicitly imposes the constraint that the sum of all lineages in the
population at a given time must add to 1. This means that there is no correlation between the size of a lineage and the total
number of individuals in the population.

The PRF calculation of the lineage structure does not involve this explicit constraint. This is what makes it possible to
compute a simple analytical expression for fk(x). This lack of constraint means that the PRF result admits fluctuations in hk,
which lead to corresponding correlations between x and hk. We could partially avoid this by defining gk = Nhksk, rather than
Nhk, as we have so far. This would effectively mean that each lineage is assumed to be diffusing between 0 and hk rather than
between 0 and 1 and forbid any lineage from reaching a frequency larger than hk. Thus it reduces the discrepancies
associated with the correlations between x and hk. However, even with this redefinition, there is no constraint that the
lineages in a given class all add to precisely hk, and so correlations still exist.

To correct exactly for the effects of correlations between x and hk, we extend the continuous-time branching process
model introduced above. We now imagine that there are B sites in the genome, each of which can mutate to create a new
lineage in class k. In the large-B limit, each distinct lineage in class k arose from a mutation at a different site in the genome
(and we later make the infinite-sites assumption B / N, which makes this exactly true). The rate at which new mutations
found lineages in class k due to mutations at a specific one of these B sites is uk=2B. This means that, analogous to Equation
59, the generating function for the probability that there are n mutations at a particular site i in class k is

HiðzÞ ¼
�

s
12zð12sÞ

�u=Bð12sÞ
; (61)

where again we have suppressed the k subscripts and we have taken u / 2u to match to the Wright–Fisher model as
described above.

If we define ni,k to be the total number of mutants at site i in class k, we have that

sk [
XB
i¼1

ni;k (62)

is the total number of individuals in the class (note that on average we expect sk = Nhk). We now imagine that we sample
some number m individuals from class k. The probability that they are all from the same lineage is
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JðkÞm ¼
*XB

i¼1

nmi;k
sm
k

+
¼
*

nm1;k�
n1;k þ . . . n1;B

�m þ
nm2;k�

n1;k þ . . . n1;B
�m þ :::þ

nmB;k�
n1;k þ ::n1;B

�m
+
: (63)

Note that this has the same form as our PRF expression, except that we average over nmi =s
m rather than averaging over nmi

and then dividing by the average sm. In other words, we explicitly account for the correlations between x and hk.
We can rewrite Equation 63 using the identity

1
sm
k
¼
ðN
0

xm21

ðm2 1Þ! e
2xskdx: (64)

This identity can easily be verified by integrating the RHS by parts. Using this, and noting that lineages at each of the B sites
are independent, we find

JðkÞm ¼
PB

i¼1
nim
ÐN
0

xm21

ðm2 1Þ! e
2xskdx

+

¼ B
ÐN
0

xm21

ðm2 1Þ!
�
nm1 e

2xsk
�
dx

¼ B
ÐN
0

xm21

ðm2 1Þ!he
2xniiB21�nm1 e2xn1

�
dx:

(65)

The first expectation value inside the integral can be computed by noting that

he2xnii ¼ Hðz ¼ 12 xÞ ¼
�
1þ x

12s
s

�u=½Bð12sÞ�
: (66)

Differentiating this result m times with respect to x results in an expression for hnm1 e2xn1 i. Plugging these results in and
integrating, taking the limit B / N, and neglecting higher-order terms in s, we find

JðkÞm ¼ u
Xm21

j¼0

ð21Þ j
�
m2 1

j

�
1

uþ j
¼ ðm2 1Þ!Qm21

j¼1 ðuþ jÞ ¼
1�

uþm2 1
u

�: (67)

If we were to use the original PRF result to calculate the probability that two individuals sampled simultaneously from
class k are from the same lineage, we would find

Ð 1
0 ð xhkÞ

2fkðxÞdx ¼ 1=u. Using our branching process result for JðkÞ2 , we see that
correcting the PRF result for the third effect of fluctuations in hk yields the modified probability 1=ð1þ ukÞ. As expected, the
branching process result precisely matches the sum of ancestral paths approach, which is also unaffected by this third effect
of fluctuations in the hk. All of the formulae quoted in the main text and shown in the figures incorporate this correction,
which appropriately handles the correlations between the frequency of an individual lineage and the size of the fitness class.

Appendix C: Relation to Previous Work

In this appendix we compare our analysis to related work and summarize the key approximations that we and others have
used. We have presented two main approaches to calculating coalescence probabilities in this article. The first approach is
based on the lineage structure within each fitness class, described using a PRF-based method. The second approach involves
summing over all possible ancestral paths, based on the structured coalescent framework introduced by Kaplan et al. (1988)
and Hudson and Kaplan (1994, 1995). We show in this article that both approaches involve closely related approximations
and yield equivalent expressions for the coalescence probabilities.

Historically, attempts to describe the coalescent process in the presence of selection go back to the structured coalescent
introduced by Kaplan et al. (1988). These authors considered a sample of individuals from given fitness classes and
computed the relative probabilities that the next event to occur backward in time would involve a mutation or coalescent
event, without explicitly describing lineage structure. In their original work, Kaplan et al. (1988) used a full stochastic
description of the frequencies of each fitness class, in which one keeps track of the probability distribution of these frequen-
cies to account for selection. They derived diffusion equations for the transition probabilities between states. This approach is
very general, but as a result is complex and requires numerical evaluation. Barton and Etheridge (2004) developed this
diffusion approach to compute the effect of selection on genealogies in a system in which selection acts only on a single locus.
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Hudson and Kaplan (1994) later simplified their original structured coalescent approach to describe the case in which
fluctuations in the frequencies of fitness classes can be neglected. In this deterministic approximation, they showed that one
can compute very simple expressions for the relative probabilities of the next event to occur backward in time in the history
of a sample. In this manner, Hudson and Kaplan (1994) were able to generate a simple recursion relation for the mean time
to a common ancestor, their Equation 12. Gordo et al. (2002) used this equation as the basis for a coalescent simulation, and
Zeng and Charlesworth (2011) recently extended this method to describe the joint effects of recombination and background
selection.

Recursion relations of the Hudson and Kaplan (1994) form can be solved numerically and have been used to generate
data describing coalescent statistics, but have not yet led to an analytic description of the structure of genealogies in the
presence of negative selection at many linked sites. In this article we have shown that one can sum over ancestral paths
within this framework, to derive analytical formulas for the coalescence probabilities that are equivalent to those computed
from our lineage-based formalism. This equivalence means that our analytical results in this article match earlier numerical
and simulation results based on the Hudson and Kaplan (1994) formulation. However, like the Hudson and Kaplan (1994)
framework, neither of our approaches in this article account for fluctuations in the frequencies of fitness classes.

In reality, the frequency of each fitness class will fluctuate due to genetic drift. As we have described in Appendix B, these
fluctuations are substantial in classes whose deterministic size is small compared to the inverse of the effective selection
pressure against individuals in that class, Nhksk , 1. This leads to important effects on the structure of genealogies if most
fitness classes through the bulk of the fitness distribution fluctuate substantially. This will occur whenever Ns ≲ 1, so
fluctuations must therefore be taken into account for small Ns. While the diffusion approach of Kaplan et al. (1988) in
principle provides a complete solution to this problem for all values of Ns, this formalism and the related results of Barton
and Etheridge (2004) are computationally strenuous. A need for further work on accurate but more analytically tractable
approaches that are able to account for the frequency fluctuations remains.

We note that the work of O’Fallon et al. (2010) and of Hermisson et al. (2002) introduced analytical approaches valid for
the case of Ns �1, although these methods are not based on a model related to the ideas of Kaplan et al. (1988). We also note
that the problem of fluctuating fitness-class sizes has been considered in the case of other problems (for example, forward
selection; Coop and Griffiths 2004), but a detailed discussion is outside the scope of this work (Table C1).

Neglecting the fluctuations in fitness-class frequencies is in principle reasonable when Ns .. 1. However, we note that
even when Ns .. 1, the sizes of the smallest fitness classes near the tails of the distribution may still fluctuate substantially.
Muller’s ratchet is one aspect of this general effect. Recently Seger et al. (2010) extended the simulation scheme of Gordo
et al. (2002) to address this problem by first doing a forward-time simulation, recording the fluctuations in the classes
(including Muller’s ratchet) from this simulation, and then putting these fluctuations into a backward simulation by hand.
Our methods do not account for these effects. They are therefore less general than the work of Seger et al. (2010), and break
down due to fluctuation effects more quickly as Ns decreases. On the other hand, our analysis does not rely on forward
simulations and is able to compute simple analytic expressions for coalescence probabilities.

We also note that although we consider the large Ns approximation, our approach has a broader range of applicability
than the effective population-size approximation, which assumes that the coalescence time is dominated by the time to
coalescence within the most-fit class. For the EPS approximation to be valid requires that this latter time ð� Ne2Ud=sÞ is small
compared to the time average individuals took to descend from the most-fit class ð� ð1=sÞ lnNsÞ. Thus for the EPS
approximation to hold, we require Ne2Ud=s..ð1=sÞln ½Ud=s�, not just Ns .. 1. Thus we can easily have Ns .. 1, yet
Nse2Ud=s,,ln½Ud=s�, in which case the EPS approximation breaks down and yet our approach is still valid.

TABLE C1 A summary of related approaches to the coalescence process in the presence of purifying selection

This
work

Kaplan et al.
(1988)

Hudson and
Kaplan

(1994, 1995)

Gordo
et al.
(2002)

Charlesworth
et al. (1993)

Barton and
Etheridge
(2004)

Seger
et al.
(2010)

O’Fallon
et al.
(2010)

Analytical expressions for
genealogy structure

x x x x

Accounts for frequency class
fluctuations (valid for Ns �1)

x x x xa

Valid for Nse2U/s ,, ln [U/s] x x x x x x x
Valid for Ns .. 1 x x x x x x x
Valid for many classes x x x x x x x
Accounts for Muller’s ratchet x xb x
Discrete fitness classes x x x x x x x
a Addresses Ns �1 situation, but assumes deterministic fitness distribution.
b Within a two-class framework.
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FILE S1: THE FULL CONDITIONAL CALCULATION

In the main text, we focused primarily on the non-conditional approximation to the coalescence probabilities,

which led to our simple expression for the coalescence probabilities, Eq. (15). In this Supplementary File,

we show how this approximation can be relaxed in our lineage-structure framework by carrying out the full

conditional calculation for some of the simplest possible cases. We use this to understand the structure

of the conditional results and discuss the validity of the non-conditional approximation. We note that the

full conditional result can also be obtained from the sum of ancestral paths approach by keeping the higher

order terms in Eq. (56) of Appendix A, as described in File S4, and the validity of the non-conditional

approximation can be directly assessed with that approach.

We begin by considering the full conditional result for the probability that two individuals both sampled

from class k coalesce in class k − 2. From Appendix A of the main text, we have

P k,k→k−2
c = Ik−2

x

∫
Qk−2

k,k (t1, t2) exp [−s(k − 2)|t1 − t2|] dt1dt2. (S.1)

In order to evaluate this integral, we need to determine the probability distribution of mutant timings

Qk−2
k,k (t1, t2). The time t1 is the sum of the time for one individual to have mutated from class k− 2 to class

k−1 plus the time for it to have mutated from class k−1 to class k, and analogously for t2. However, in order

for the two lineages to coalesce in class k − 2, they must not have coalesced in class k − 1. To illustrate the

main point, we neglect the distortion in the mutant timings due to the fact that individuals did not coalesce

in class k and focus only on the distortions due to the fact that coalescence did not occur in class k − 1;

if desired, the former distortion can also be included using analogous methods. We refer to the probability

distribution of the times when these individuals mutated from class k− 1 to class k conditional on them not

having coalesced in class k− 1 as Qk−1
k,k (t1, t2|nc). The distribution of the times for these individuals to then

have mutated from class k − 2 to class k − 1 is then given by

Qk−2
1step(t1, t2) = [s(k − 1)]2e−s(k−1)(t1+t2). (S.2)

Thus the distribution of t1 and t2 is given by

Qk−2
k,k (t1, t2) = Qk−1

k,k (t1, t2|nc) ⋆ Qk−2
1step(t1, t2), (S.3)

where ⋆ indicates a convolution. Note that much of the time when the individuals did coalesce in class k−1,

they did so because t1 happened to be close to t2 (since this increases the chance the two individuals mutated

from the same lineage). Thus in Qk−1
k,k (t1, t2|nc), t1 and t2 are on average further apart than in Qk−1

k,k (t1, t2),

and t1 and t2 are no longer independent random variables.

2 SI A. M. Walczak et al.



We now need to calculate Qk−1
k,k (t1, t2|nc). We have

Qk−1
k,k (t1, t2|nc) =

Qk−1
k,k (t1, t2)−Qk−1

k,k (t1, t2|c)P k,k→k−1
c

1− P k,k→k−1
c

, (S.4)

where Qk−1
k,k (t1, t2|c) is the distribution of timings of mutations from class k − 1 to k given that the lineages

do coalesce in class k − 1. Applying the general probability identity P (t1, t2|c) = 1
P (c)P (c|t1, t2)P (t1, t2),

and reading off the coalescence probability given t1 and t2 from Eq. (13), we find that

Qk−1
k,k (t1, t2|c) =

Ik−1
x

P k,k→k−1
c

Qk−1
k,k (t1, t2)e

−s(k−1)|t1−t2|. (S.5)

We therefore find

Qk−1
k,k (t1, t2|nc) =

1

1− P k,k→k−1
c

[
(sk)2e−sk(t1+t2) − Ik−1

x (sk)2e−2k(t1+t2)e−s(k−1)|t1−t2|
]
. (S.6)

Plugging this into our convolution formula for Qk−2
k,k (t1, t2) and evaluating the integrals by separating out

the possible time orderings, we find

Qk−2
k,k (t1, t2) =

k2 [s(k − 1)]
2

1− P k,k→k−1
c

e−s(k−1)(t1+t2)

[(
1− e−st1

) (
1− e−2t2

)
− Ik−1

x

k − 2
B

]
, (S.7)

where we have defined

B =
1

(k − 2)

[
1− e−2smin(t1,t2) − 2

k

(
1− e−skmin(t1,t2)

)
+
1

k

(
1− e−2k|t1−t2|

)(
e−2smin(t1,t2) − e−skmin(t1,t2)

)]
. (S.8)

We can now use this expression in Eq. (S.1) to calculate the coalescence probability P k,k→k−2
c . Since the

result is tedious and does not further illuminate the structure of the full conditional calculation, we do not

do so explicitly here, but the integrals are straightforward to evaluate with the methods we have used above.

To motivate the validity of the non-conditional approximation, we need to consider the full calculation

going back one additional step. Thus we consider the probability that two individuals both sampled from

class k coalesce in class k − 3, P k,k→k−3
c . This will be given by

P k,k→k−3
c =

∫
Qk−3

k,k (t1, t2)
x2

h2k−3

fk−3(x)e
−s(k−3)|t1−t2|dt1dt2dx, (S.9)

where here Qk−3
k,k (t1, t2) is the distribution of the time at which the ancestors of the two sampled individuals

originally mutated from class k−3 to class k−2, conditional on them not coalescing in classes k−2 or k−1.

We can calculate Qk−3
k,k (t1, t2) in the same way we calculated Qk−2

k,k (t1, t2). Explicitly,

Qk−3
k,k (t1, t2) = Qk−2

k,k (t1, t2|nc) ⋆ Qk−3
1step(t1, t2), (S.10)
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where analogously to the expression in the previous step

Qk−2
k,k (t1, t2|nc) =

1

1− P k,k→k−2
c

[
Qk−2

k,k (t1, t2)−Qk−2
k,k (t1, t2|c)P k,k→k−2

c

]
. (S.11)

We note that Qk−2
k,k (t1, t2) is the expression in Eq. (S.7) we calculated above. As before, we have

Qk−2
k,k (t1, t2|c)P k,k→k−2

c = Ik−2
x Qk−2

k,k (t1, t2)e
−s(k−2)|t1−t2|, (S.12)

hence we can write

Qk−2
k,k (t1, t2|nc) =

Qk−2
k,k (t1, t2)

1− P k,k→k−2
c

[
1− Ik−2

x e−s(k−2)|t1−t2|
]
. (S.13)

Plugging the above expression back into Eq. (S.10), we obtain

Qk−3
k,k (t1, t2) =

s2(k − 1)2k2s2(k − 2)2

(1− P k,k→k−1
c )(1− P k,k→k−2

c )
e−s(k−2)(t1+t2)

∫ t2

0

∫ t1

0

es(k−2)(y+z)es(k−1)(y+z)

×
[
1− Ik−2

x e−s(k−z)|y−z|
] [

(1− e−sy)(1− e−sz)− Ik−1
x

k − 2
B

]
. (S.14)

We could evaluate the integrals in the above expression for Qk−3
k,k (t1, t2) in the same way that we did

in our calculation for Qk−2
k,k (t1, t2). We would then substitute this result for Qk−3

k,k (t1, t2) into an analogous

calculation of Qk−4
k,k (t1, t2), and so on. In this way we can build up the full conditional results. The most

useful way to go about this is to separate the results into powers of Ix, which is a small parameter related to

the coalescent probability in each step. We see from the expression for Qk−3
k,k (t1, t2) that there is a term in

(Ix)
0, which is exactly the non-conditional approximation. There are two terms involving (Ix)

1, and a single

term involving (Ix)
2. In general, in the expression for Qk−ℓ

k,k (t1, t2), we will have one (Ix)
0 term (which equals

the result in the non-conditional approximation) plus ℓ terms proportional to Ix,
(
2
ℓ

)
terms proportional to

(Ix)
2, and so on. Fortunately, the dependence on the population parameters is entirely contained within

these powers of Ix. That is, the coefficients of these various powers of Ix depend only on k and ℓ, and not

at all on the population parameters N , s, and Ud. Thus we could simply calculate a table of coefficients

once, and then would be able to understand all the distributions of mutant timings (and from this all the

coalescent probabilities).

In practice, it is easier to make these full conditional calculations within the sum of ancestral paths

approach. As we show in File S4, that approach leads naturally to a power series in Ix of exactly the form

described above, in which the leading order term is the non-conditional approximation and the additional

terms represent the conditional corrections. This calculation shows that provided Ix ≪ 1, which is true

provided our usual condition that Nhksk ≫ 1 holds, these higher order terms are all small, and our non-

conditional approximation is valid.

These full conditional results are, however, very complex and unilluminating. Therefore we focus here on
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understanding the general structure of these results, and on showing why the non-conditional approximation

is good description of the distribution of mutation timings. We can see that at each step back through the

fitness distribution, the probability distribution of times shifts from the non-conditional results by a factor

which is roughly proportional to the coalescence probability at that step. That is, in general we have

Qk−ℓ
k,k (t1, t2) =

1

1− P k,k→k−ℓ
c

[
Qk−ℓ

k,k (t1, t2)− P k,k→k−ℓ
c Qk−2

k,k (t1, t2|c)
]
. (S.15)

The first term in square brackets reflects the fact that the probability distribution at a given step conditional

on non-coalescence at that step is almost equal to the unconditional probability distribution at that step.

The second term represents the correction: note that it is proportional to the coalescence probability in that

step, P k,k→k−ℓ
c . The nature of the correction can be seen by plugging in the distribution of times conditional

on coalescence, giving

Qk−ℓ
k,k (t1, t2) =

Qk−ℓ
k,k (t1, t2)

1− P k,k→k−ℓ
c

[
1− Ik−ℓ

x e−s(k−ℓ)|t1−t2|
]
. (S.16)

We see that the correction acts to reduce the probability that |t1 − t2| is small — that is, it makes it more

likely that t1 and t2 are further apart, because this is more likely to be the case given that coalescence did

not occur.

Since at each step the shift in the distribution of mutant timings is proportional to the coalescence

probability, and the coalescence probability at each step is small, it seems clear that the non-conditional

approximation where we simply ignore this shift in mutant timings is reasonable. However there is one

potential caveat we must consider: although the shift in the distribution of mutation timings due to condi-

tioning on non-coalescence is small in each step, we typically take many steps before the lineages coalesce.

In fact, since the shift in mutation timings is proportional to the coalescence probability, and we typically

go back a number of steps of order one over the coalescence probability, in principle the shifts in mutation

timings could add up to a substantial shift.

Fortunately, there are three factors which prevent this from happening. First, the shift in mutation

timings at each step is always to reduce the probability of times t1 and t2 where |t1 − t2| . 1
(k−ℓ)s . Since

at each step ℓ is increasing, and the range of separations between mutation timings at which coalescence

can happen is also increasing, the shifts in mutation timings from many steps ago are not a huge factor in

determining coalescence probabilities in a particular step. That is, though the shifts in mutation timings add

up over many steps, the shifts most relevant to the coalescent probability in a given step do not. Second,

the coalescence probabilities at each step are different. This reduces the chance that we take enough steps

to shift the overall mutation timings substantially by the time we coalesce. Finally, and most importantly,

we will see that the there is a substantial probability that the ancestors of the two individuals sampled do
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not coalesce until they are in the most-fit class. This means that the total sum of coalescence probabilities

(and hence the total possible weight in the shift of mutation timings) remains small even in the worst case

where the two lineages do not coalesce for the maximum possible number of steps. The non-conditional

approximation will always be good in the regime where this is true. All of these heuristic conclusions are

reflected in the fact that the full conditional result we calculate in the sum of ancestral paths approach is

equal to the non-conditional result plus corrections that are small provided Ix ≫ 1.
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FILE S2: THE NON-CONDITIONAL DISTRIBUTIONS OF MUTANT TIMINGS

Within the non-conditional approximation we need to calculate the distribution of mutant timings, as used

in Eq. (48). Specifically, we need to calculate

Qk−ℓ
k (t) = Qk−1

k (t) ⋆ Qk−2
k−1(t) ⋆ Q

k−3
k−2(t) ⋆ . . . ⋆ Q

k−ℓ
k−ℓ+1(t), (S.17)

where ⋆ refers to a convolution and

Qk−ℓ
k−ℓ+1(t) = s(k − ℓ+ 1)e−s(k−ℓ+1)t, (S.18)

as given by Eq. (6). In general, the convolution of n exponential distributions with parameters λ1 . . . λn is

given by
n−1∑
i=0

λie
−λit

n−1∏
j=0, ̸=i

λj
λj − λi

. (S.19)

Applying this identity with λi = s(k − i), we find

Qk−ℓ
k (t) =

ℓ−1∑
i=0

se−s(k−i)t


ℓ−1∏
j=0

k − j

ℓ−1∏
j=0, ̸=i

i− j

 (S.20)

We can simplify this expression by noting that

ℓ−1∏
j=0

(k − j) =
k!

(k − ℓ)!
, (S.21)

and similarly that
ℓ−1∏

j=0,̸=i

(i− j) = i!(ℓ− 1− i)!(−1)ℓ−1−i. (S.22)

This means we have

Qk−ℓ
k (t) =

ℓ−1∑
i=0

sℓe−s(k−i)t(−1)ℓ−i−1

(
ℓ− 1

i

)(
k

k − ℓ

)
. (S.23)

We can evaluate this sum by recognizing the binomial expansion formula

(1 + x)n =
n∑

i=0

xi
(
n

i

)
, (S.24)

where we identify x = −est. We find

Qk−ℓ
k (t) = sℓ

(
k

ℓ

)
e−skt

(
est − 1

)ℓ−1
. (S.25)
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More generally, we have

Qb
a(t) = s(a− b)

(
a

b

)
e−sat

(
est − 1

)a−b−1
. (S.26)
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FILE S3: GENERAL COALESCENCE PROBABILITIES IN THE NON-CONDITIONAL
APPROXIMATION

The probability of coalescence for two individuals originally in two different classes k and k′, as defined in

Eq. (48) can be rewritten as

P k,k′→k′−ℓ
c =

1

1 + 2Nhk−ℓs(k − ℓ)
[I1 + I2] , (S.27)

where we have defined

I1 =

∫ ∞

0

Qk−ℓ
k′ (t1)e

−s(k−ℓ)t1

∫ t1

0

Qk−ℓ
k (t2)e

s(k−ℓ)t2dt2dt1 (S.28)

I2 =

∫ ∞

0

Qk−ℓ
k (t2)e

−s(k−ℓ)t2

∫ t2

0

Qk−ℓ
k′ (t1)e

s(k−ℓ)t1dt1dt2. (S.29)

Note that both I1 and I2 involve integrals of the form

Ia =

∫ t

0

Qb
a(t

′)esbt
′
dt′. (S.30)

Plugging in the results for the non-conditional distributions of mutant timings, Eq. (S.26), and making use

of the binomial expansion formula for (1 + x)n noted in File S2, we find this integral becomes

Ia = s(a− b)

(
a

b

)∫ t

0

es(b−a)t′
(
est

′
− 1
)a−b−1

dt′ (S.31)

= s(a− b)

(
a

b

) a−b−1∑
i=0

(−1)a−b−1+i

(
a− b− 1

i

)∫ t

0

es(b−a+i)t′dt′ (S.32)

= (a− b)

(
a

b

)
(−1)a−b

a−b−1∑
i=0

(−1)i

a− b

(
a− b

i

)(
es(b−a+i)t − 1

)
(S.33)

=

(
a

b

)
(−1)a−b

a−b∑
i=0

(−1)i
(
a− b

i

)(
es(b−a+i)t − 1

)
(S.34)

=

(
a

b

)
(−1)a−bes(b−a)t

a−b∑
i=0

(
−est

)i(a− b

i

)
(S.35)

=

(
a

b

)
es(b−a)t

(
est − 1

)a−b
. (S.36)

We now substitute this result for Ia into our expressions for I1 and I2. We note that both have terms of

the form

Ib =

∫ ∞

0

Qb
a(t)

(
c

b

)
e−sct

(
est − 1

)c−b
dt. (S.37)
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Using similar manipulations to those above, we find

Ib = (a− b)

(
a

b

)(
c

b

)∫ ∞

0

e−s(a+c)t
(
est − 1

)a+c−2b−1
dt (S.38)

= s(a− b)

(
a

b

)(
c

b

)
(−1)a+c−1

a+c−2b−1∑
i=0

(
a+ c− 2b− 1

i

)
(−1)i

∫ ∞

0

e−s(a+c−i)tdt (S.39)

= (a− b)

(
a

b

)(
c

b

)
(−1)a+c−1

a+c−2b−1∑
i=0

(−1)i
(
a+ c− 2b− 1

i

)
1

a+ c− i
. (S.40)

Using the partial fraction decomposition

1(
n+x
n

) =
n∑

i=1

(−1)i−1

(
n

i

)
i

x+ i
, (S.41)

we find

Ib =
a−b

a+c−2b

(
a
b

)(
c
b

)
(−1)a+c( −2b−1

a+c−2b

) =
a−b

a+c−2b

(
a
b

)(
c
b

)
(−1)2b(

a+c
a+c−2b

) . (S.42)

We can now use this result for Ib to determine I1 and I2, and hence compute P k,k′→k′−ℓ
c . We find

P k,k′→k′−ℓ
c =

1

1 + 2Nhk−ℓs(k − ℓ)

(
k′

k−ℓ

)(
k

k−ℓ

)(
k+k′

2ℓ+k′−k

) . (S.43)

As we noted in the main text, this is just

P k,k′→k−ℓ
c =

1

1 + 2Nhk−ℓs(k − ℓ)
Ak,k′

ℓ , (S.44)

with Ak,k′

ℓ as defined in Eq. (16). Note that when k = k′, this result simplifies to P k,k→k−ℓ
c as defined in

the main text, as expected.
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FILE S4: COMPUTING SUMS OF ANCESTRAL PATHS

In this Supplementary File, we describe the calculation of ϕk
′

k (ℓ) using the sum of ancestral paths approach.

Calculation of ϕkk(3): We begin by considering a simpler specific case, where k = k′ and ℓ = 3. There

are a total of
(
6
3

)
= 20 possible ancestral paths by which two individuals sampled from class k can coalesce

in class k− 3. These can be separated into four types, according to whether the two ancestral lineages were

ever together in classes k − 1 or k − 2. We can list all paths of each type, using the notation that A is a

mutation event in the first lineage, and B is a mutation event in the second lineage. We have

ABABAB

ABABBA

ABBAAB

ABBABA

BAABAB

BAABBA

BABAAB

BABABA


︸ ︷︷ ︸
(21)(

2
1)(

2
1)=8 ways



ABAABB

ABBBAA

BAAABB

BABBAA


︸ ︷︷ ︸

(21)((
4
2)−(

2
1)(

2
1))=4 ways



AABBAB

AABBBA

BBAAAB

BBAABA


︸ ︷︷ ︸

(21)((
4
2)−(

2
1)(

2
1))=4 ways



AAABBB

AABABB

BBBAAA

BBABAA


︸ ︷︷ ︸
(63)−others=4ways

.

The probabilities of all paths of a particular type are identical. We can calculate the probability of each

of the four types of paths using the same logic as outlined in the main text. We find

P (AAABBBc) = Ik−3
x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

)
, (S.45)

P (AABBABc) = Ik−3
x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

) (
1− Ik−1

x

)
, (S.46)

P (ABAABBc) = Ik−3
x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

) (
1− Ik−2

x

)
, (S.47)

P (ABABABc) = Ik−3
x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

) (
1− Ik−1

x

) (
1− Ik−2

x

)
. (S.48)

Summing over all the possible paths, we find

ϕkk(3) = Ik−3

(
k

k−3

)(
k

k−3

)(
2k
6

) [
1−

(
2
1

)(
4
2

)(
6
3

) Ik−1 −
(
2
1

)(
4
2

)(
6
3

) Ik−2 +

(
2
1

)(
2
1

)(
2
1

)(
6
3

) Ik−1Ik−2

]
. (S.49)

We now pause to consider the form of the probabilities of each type of ancestral path. These probabilities

differ only by factors of (1− Ik−i
x ). One such factor arises each time the two ancestral lineages are together

in class k− i. In other words, we can rewrite the probability of each path as the probability of an undistorted

path (defined to be a path in which the contributions due to the possibility of coalescence in previous classes
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are neglected), times a correction for each class in which the two lineages are together:

P (AAABBBc) = P (Undistorted Path)
(
1− Ikx

)
(S.50)

P (AABBABc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−1

x

)
(S.51)

P (ABAABBc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−2

x

)
(S.52)

P (ABABABc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−1

x

) (
1− Ik−2

x

)
. (S.53)

By definition, the “undistorted path” probability is the probability neglecting the contributions due to the

possibility of coalescence in previous steps, and is therefore the same for all paths. We have

P (Undistorted Path) =
k(k − 1)(k − 2)k(k − 1)(k − 2)

2k(2k − 1)(2k − 2)(2k − 3)(2k − 4)(2k − 5)
Ik−ℓ
x (S.54)

=

k!
(k−3)!

k!
(k−3)!

2k!
(2k−6)!

Ik−ℓ
x . (S.55)

Using these results, we can write ϕkk(3) as

ϕkk(3) = [# of Paths]P (Undistorted Path)
[
Fk(1− Ikx) + Fk,k−1(1− Ikx)(1− Ik−1

x )

+Fk,k−2(1− Ikx )(1− Ik−2
x ) + Fk,k−1,k−2(1− Ikx)(1− Ik−1

x )(1− Ik−2
x )

]
, (S.56)

where we have defined F{a} to be the fraction of paths that are together in the set of classes {a} (and are

not together in any other class).

Calculation of ϕkk′(ℓ): We now use this approach to calculate the coalescence probability in the general

case. The probability of any particular ancestral path from k and k′ to k− ℓ is the product of the individual

probabilities of each mutational step that makes up this path. Each such individual probability consists

of three parts: a numerator, which depends only on the current class of the lineage that mutates, divided

by a denominator, which depends only on the sum of the current set of classes for both lineages, times a

correction factor of (1− Ik−i
x ) if the two lineages are in the same class at that step.

Although in each ancestral path the mutations will occur in a different order, all paths will ultimately

consist of the same set of mutations (k′ → k′ − 1 → . . . → k − ℓ and k → k − 1 → . . . → k − ℓ). Therefore,

regardless of the path taken, the product of the numerators from each step will be identical. Similarly, the

sum of the current set of classes will begin at k′+ k, and decrement by one each time a deleterious mutation

occurs, until both lineages are in the final class (k′ + k → k′ + k− 1 → . . .→ 2k− 2ℓ). Therefore, regardless

of the path taken, the product of the denominators from each step will also be identical. Therefore, the

paths will differ only by the correction factor (1 − Ik−i
x ) for each class in which the two ancestral lineages

are together. This means that, analogous to the case of ϕkk(3) we described above, the probability of each

12 SI A. M. Walczak et al.



path is the probability of an “undistorted path” times the appropriate correction factor. The probability of

the undistorted path is

P (Undistorted Path) =
k′(k′ − 1) . . . (k − ℓ+ 1)k(k − 1) . . . (k − ℓ+ 1)

(k′ + k)(k′ + k − 1) . . . (2k − 2ℓ+ 1)
Ik−ℓ
x . (S.57)

We can now sum up all possible paths to obtain

ϕkk′(ℓ) = [# of Paths]P (Undistorted Path)

[
F∅ +

ℓ∑
i=0

Fk−i(1− Ik−i
x )

+

ℓ−1∑
i=0

ℓ∑
j>i

Fk−i,k−j(1− Ik−i
x )(1− Ik−j

x ) (S.58)

+
ℓ−2∑
i=0

ℓ−1∑
j>i

ℓ∑
m>j

Fk−i,k−j,k−m(1− Ik−i
x )(1− Ik−j

x )(1− Ik−m
x ) + . . .

 ,
where as before F{a} is the fraction of paths that are together in the set of classes {a} (and are not together

in any other class). Note that there are a total of ℓ + 1 terms in this equation, representing the possibility

that the two lineages can be together in anywhere from 0 to ℓ of the classes. We can rearrange these terms

to write

ϕkk′(ℓ) = [# of Paths]P (Undistorted Path)

[
1−

ℓ∑
i=0

Gk−iI
k−i
x

+
ℓ−1∑
i=0

ℓ∑
j>i

Gk−i,k−jI
k−i
x Ik−j

x (S.59)

−
ℓ−2∑
i=0

ℓ−1∑
j>i

ℓ∑
m>j

Gk−i,k−j,k−mI
k−i
x Ik−j

x Ik−m
x + . . .

 ,
where we have defined G{a} to be the fraction of paths that are together in at least the set of classes {a}.

We can evaluate each of these factors of G. For example, the fraction of paths that are together in class

k− i equals the number of ways for the two lineages to descend from classes k′ and k to be together in class

k− i,
(
k′−k+2i

i

)
, times the number of ways for the two lineages to descend from class k− i to be together in

class k − ℓ,
(
2i−2ℓ
i−ℓ

)
, divided by the total number of ways for the two lineages to descend from classes k′ and

k to be together in k − ℓ,
(
k′−k+2ℓ

ℓ

)
. Using this logic, we find

ϕkk′(ℓ) = [# of Paths]P (Undistorted Path) (S.60)

×

1− ℓ−1∑
i=0

(
k′−k+2i

i

)(
2ℓ−2i
ℓ−i

)(
k′−k+2ℓ

ℓ

) Ik−i
x +

ℓ−2∑
i=0

ℓ−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2ℓ−2j
ℓ−j

)(
k′−k+2ℓ

ℓ

) Ik−i
x Ik−j

x . . .

 .
The total number of paths is

(
k′−k+2ℓ

ℓ

)
, so we finally find that the full probability of coalescence in class
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k − ℓ is

ϕk
′

k (ℓ) = Ik−ℓ
x

(
k′

k−ℓ

)(
k

k−ℓ

)(
k′+k

k′−k+2ℓ

) [1− ℓ−1∑
i=0

(
k′−k+2i

i

)(
2ℓ−2i
ℓ−i

)(
k′−k+2ℓ

ℓ

) Ik−i
x +

ℓ−2∑
i=0

ℓ−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2ℓ−2j
ℓ−j

)(
k′−k+2ℓ

ℓ

) Ik−i
x Ik−j

x − . . .

 . (S.61)

This is Eq. (56) from the main text. Note that it equals our non-conditional result for P k,k′→ℓ
c times a

correction factor. There are a total of ℓ+1 terms in this correction factor. This full correction factor can be

arbitrarily complex for large ℓ, so we do not write out a general form here. However, it is straightforward to

calculate for any values of k, k′, and ℓ; a Mathematica script to do so is available on request.
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FILE S5: THE CORRESPONDENCE BETWEEN STEPTIMES AND REAL TIMES

In this Supplementary File, we calculate the correspondence between steptimes and the actual times measured

in generations. Our goal is to calculate the probability distribution of real coalescence times, ψ(t|k, k′, ℓ),

given that individuals were initially in classes k and k′ and coalesced in class k − ℓ.

To begin, we neglect the coalescence time within class k− ℓ, and consider the distribution of the time at

which an ancestor of one of the two sampled individuals first mutated from class k− ℓ to class k− ℓ+1. We

refer to this as ψ1(t|k, k′, ℓ). We first calculate the joint distribution of the times at which both ancestors

mutated out of the class, Rk−ℓ
k,k′ (t1, t2). Conditional on coalescence in class k− ℓ, Rk−ℓ

k,k′ (t1, t2), is given by the

probability of t1 and t2 and coalescence divided by the total probability of coalescence. That is,

R(t1, t2) =
P (coal|t1, t2)P (t1, t2)

P (coal)
. (S.62)

Substituting in the relevant expressions from the main text, this gives

Rk−ℓ
k,k′ (t1, t2) =

1

Ak,k′

ℓ

Qk−ℓ
k,k′(t1, t2)e

−s(k−ℓ)|t1−t2|. (S.63)

The time at which the first ancestor mutated out of class k − ℓ is the longer of the two times t1 and t2,

ψ(t|k, k′, ℓ) =
[∫ t

0

Rk−ℓ
k,k′ (t1, t)dt1 +

∫ t

0

Rk−ℓ
k,k′ (t, t2)dt2

]
. (S.64)

Substituting in our expression for Rk−ℓ
k,k′ (t1, t2) and carrying out the integrals as in File S3, we find

ψ1(t|k, k′, ℓ) = sπde
−s(k′+k)t(est − 1)πd−1

(
k′ + k

πd

)
, (S.65)

where we have used πd = k′ − k + 2ℓ.

We can alternatively calculate ψ1(t|k, k′, ℓ) using our sum of ancestral paths approach. As before, we

imagine two individuals sampled from classes k and k′ and condition on them coalescing in class k − ℓ.

Consider a case where k ̸= k′. Then the first event in the history of these two individuals must be a

deleterious mutation. Since these mutations happen at rate sk and sk′ in each lineage, the distribution of

times since this mutation occurred in one of the two ancestral lineages is

P (t) = s(k + k′)e−s(k+k′)t. (S.66)

With probability k′

k+k′ , this mutation is in the lineage sampled from class k′, in which case the two lineages

are now in classes k and k′ − 1. Alternatively, the mutaion occurred in the lineage sampled from k and the

lineages are in classes k − 1 and k′.

We can now consider the time to the next event backwards in time. If the two lineages are in the same
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class (but not yet in class k−ℓ), the distribution of times to the next deleterious mutation event is somewhat

shorter, because we are conditioning on coalescence not occuring. However, provided that 2sk1 ≫ 1
Nhk

(the

condition we are already making elsewhere), this shortening of the time will be a small correction and

neglecting it is a good approximation.

Making this approximation, the rate at which the next deleterious mutation event occurs when the two

lineages are in classes k1 and k2 is just s(k1 + k2). Regardless of the order in which these mutations happen

between the two lineages, this sum is simply decreased by s at each step. This will continue until the both

ancestral lineages are in class k − ℓ. Therefore, the distribution of times until the original mutation out of

class k − ℓ is given by:

ψ1(t|k′, k, ℓ) = s(k′ + k)e−s(k′+k)t ⋆ s(k′ + k − 1)e−s(k′+k−1)t ⋆ . . . ⋆ s(2k − 2ℓ+ 1)e−s(2k−2ℓ+1)t. (S.67)

This can be written as

ψ1(t|k′, k, ℓ) = λ0e
−λ0t ⋆ λ1e

−λ1t ⋆ . . . ⋆ λk′−k+2ℓ−1e
−λk′−k+2ℓ−1t, (S.68)

where we have defined:

λi = s(k′ + k − i). (S.69)

We can compute this convolution as in File S2 (compare to Eq. (S.17) for Q2k−2ℓ
k+k′ (t)). We find

ψ1(t|k, k′, ℓ) = sπde
−s(k′+k)t(est − 1)πd−1

(
k′ + k

πd

)
, (S.70)

identical to the result of our lineage structure calculation above.

Distribution of Coalescence Times: To calculate the correspondence between steptimes and real

times, we now need to add the time it takes two individuals two coalesce in class k− ℓ, which we refer to as

ψ2(t|k, k′, ℓ), to the time it took them both to get to that class, ψ1(t|k, k′, k − ℓ). The rate of coalescence

once in class k − ℓ is 1
Nhk−ℓ

, so we have

ψ2(t|k′, k, ℓ) = (2s(k − ℓ) + 1/Nhk−ℓ) e
−[2s(k−ℓ)+1/Nhk−l]t. (S.71)

Putting this together, the full distribution of times since coalescence is

ψ(t|k′, k, ℓ) = ψ1(t|k′, k, ℓ) ⋆ ψ2(t|k′, k, ℓ). (S.72)

Carrying out this convolution (and expanding the binomial factor (est − 1)πd−1 in ψ1), we find

ψ(t|k′, k, ℓ) =
πd−1∑
i=0

sπd(−1)πd−i−1

(
πd − 1

i

)(
k′ + k

πd

)
B

A−B

(
e−sBt − e−sAt

)
, (S.73)
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where we have defined A ≡ k′ + k − i and B ≡ 2 (k − ℓ) + 1
Nshk−ℓ

.
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FILE S6: AN ALTERNATIVE APPROACH TO NEUTRAL DIVERSITY

Instead of calculating the distribution of neutral heterozygosity by first computing the distribution of real

times, we could alternatively incorporate neutral mutations directly into the sum of ancestral paths frame-

work. This completely bypasses the correspondence with real coalescence times. To do this, we characterize

ancestral paths not only by the ordering of deleterious mutation and coalescence events, but also by the

ordering of neutral mutations. This means that if we sample two individuals A and B, there are five types

of events that can happen in their ancestral paths: a deleterious mutation (DM) in A or in B, a neutral

mutation (NM) in either A or in B, and or a coalescence (C) event (if A and B are currently in the same

class).

We now imagine that we sample two individuals from classes k and k′, and that they coalesce in class

k − ℓ. Our goal is to calculate the probability distribution of πn given k, k′, and ℓ, ρ(πn|k, k′, ℓ). We will

find it helpful to divide the five types of events that can occur into two classes: neutral mutations on the one

hand, and deleterious mutations or coalescence (which we call “steps”) on the other. We begin by computing

the probability that a given number of NMs occur before the next DM or C events (i.e. the number of neutral

mutations that occur at this “step”). We have

P (a NMs, then DM in k′ or k′|k′, k) =

(
2Un

s

k′ + k + 2Un

s

)a
k + k′

k′ + k + 2Un

s

, (S.74)

where we have made our usual assumption that Nhksk ≫ 1, allowing us to neglect the rates of coalescence

events (when k = k′) in writing this expression.

This probability only depends on the sum of the current classes the individulas are in. At each subsequent

step, regardless of the path taken, this sum of the classes will decrease by one. Therefore, the probability

that ai neutral mutations occur at step i is independent of the path taken. This observation allows us to

calculate the probability that a given total number of neutral mutations have occurred since coalescence.

We first calculate the probability that a given number of neutral mutations have occurred since the first

deleterious mutation out of the k− ℓ class. We will add in the additional neutral mutations once in the k− ℓ

class at the end.

In order for πn neutral mutations to have occurred since the first deleterious mutation out of class k− ℓ,

we require that a0 mutations occurred at the first step, a1 mutations occurred at the second step, and so

on, such that a0 + a1 + . . .+ ak′−k+2ℓ−1 = πn. This gives

ρ(πn = X|k′, k, ℓ) =
(k′+k)!
(2k−2ℓ)!

( 2Un
s +k′+k)!

( 2Un
s +2k−2ℓ)!

∑
|⃗a|=X

(
2Un/s

2Un/s+ k + k′

)a0

. . .

(
2Un/s

2Un/s+ 2k − 2l + 1

)ak′−k+2l−1

. (S.75)
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We can define x ≡ 2Un/s+ k + k′, recognize πd = k′ − k + 2ℓ, and relabel the ai as

a0 → X − b0, a1 → b0 − b1, . . . aπd−2 → bπd−3 − bπd−2, aπd−1 → bπd−2. (S.76)

This gives

ρ(πn = X|k′, k, ℓ) =

(
k′+k
πd

)( 2Un
s +k′+k

πd

) (2Un

s

)X (
1

x

)X X∑
b0=0

(
x

x− 1

)b0

(S.77)

b0∑
b1=0

(
x− 1

x− 2

)b1

. . .

bπd−3∑
bπd−2=0

(
x− πd + 2

x− πd + 1

)bπd−2

.

To simnplify this expression, it is helpful to define a function f such that:

f (A,B) ≡
(
1

x

)X X∑
b0=0

(
x

x− 1

)b0

(S.78)

b0∑
b1=0

(
x− 1

x− 2

)b1

. . .
X∑

bA−1=0

(
x−A+ 1

x−A

)b0 bA−1∑
bA=0

(
x−A

x−B

)bA

In other words, f (A,B) is a set of A nested sums, each of the same form, except for the final sum, which

can have a different denominator. Using this definition, we have

P (πn = X|k′, k, ℓ) =
(
k′+k
πd

)( 2Un
s +k′+k

πd

) (2Un

s

)X

f (πd − 2, πd − 1) . (S.79)

The virtue of this definition is that this sum can be solved recursively. We have

bA−1∑
bA=0

(
x−A

x−B

)bA

=
x−B

A−B
− x−A

A−B

(
x−A

x−B

)bA−1

. (S.80)

Therefore we have

f (A,B) =
x−A

B −A
f (A− 1, B)− x−B

B −A
f (A− 1, A) . (S.81)

Repeatedly inserting this result yields:

f (A,A+ 1) → (x−A)(x−A− 1)

1

(
f (A− 1, A+ 1)

x−A− 1
− f (A− 1, A)

x−A

)
f (A,A+ 1) → (x−A+ 1)(x−A)(x−A− 1)

2

[
f (A− 2, A+ 1)

x−A− 1
− 2f (A− 2, A)

x−A
+

f (A− 2, A− 1)

x−A+ 1

]
...

f (A,A+ 1) → (m+ 1)

(
x−A− 1 +m

m+ 1

) m∑
i=0

(−1)i+m

x−A− 1 + i

(
m

i

)
f (A−m,A+ 1− i) . (S.82)
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Note that f(−1, B) = 1/BX , since there are no more sums to compute. Thus, for m = A+ 1 we have

f (A,A+ 1) = (A+ 2)

(
x

A+ 2

)A+1∑
i=0

(−1)i+A+1

(x−A− 1 + i)X+1

(
A+ 1

i

)
. (S.83)

Relabeling the sum and taking A = πd − 2, we have

f (πd − 2, πd − 1) = πd

(
x

πd

) πd−1∑
i=0

(−1)i

(x− i)X+1

(
πd − 1

i

)
. (S.84)

We can now substitute these results into our expression for πn, to find

ρ1(πn = X|k′, k, ℓ) = πd

(
k′ + k

πd

)(
2Un

s

)X πd−1∑
i=0

(−1)i

(2Un/s+ k + k′ − i)X+1

(
πd − 1

i

)
(S.85)

Note, however, that this is only the distribution of neutral mutations since the first deleterious mutation out

of class k− l. It is also possible for neutral mutations to occur prior to the coalescence event. Adding in this

factor, we find

ρ(πn = X|k′, k, ℓ) = πd

(
k′ + k

πd

) πd−1∑
i=0

(−1)i
(
πd − 1

i

)
(S.86)

×
πn∑

X=0

(2Un/s)
X

(2Un/s+ k + k′ − i)X+1

(
2Nk−lUn

1 + 2Nk−lUn + 2Nk−ls(k − l)

)πn−X

.

Rearranging this expression gives

ρ(πn|k′, k, ℓ) =
πd−1∑
i=0

πd(−1)πd−i−1

(
πd − 1

i

)(
k′ + k

πd

)
B

A−B

(
( 2Un

s )πn

( 2Un

s +B)πn+1
−

( 2Un

s )πn

( 2Un

s +A)πn+1

)
, (S.87)

where we have defind

A = k′ + k − i, B = 2 (k − ℓ) +
1

Nshk−l
, (S.88)

identical to our earlier result.
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