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Spontaneous switching events in most characterized genetic
switches are rare, resulting in extremely stable epigenetic proper-
ties. We show how simple arguments lead to theories of the rate
of such events much like the absolute rate theory of chemical
reactions corrected by a transmission factor. Both the probability
of the rare cellular states that allow epigenetic escape and the
transmission factor depend on the rates of DNA binding and
unbinding events and on the rates of protein synthesis and
degradation. Different mechanisms of escape from the stable
attractors occur in the nonadiabatic, weakly adiabatic, and strictly
adiabatic regimes, characterized by the relative values of those
input rates.

rate theory � stochastic gene expression � gene switches

Information may be passed from one cellular generation to
another not just in the form of the DNA sequence but also in

the long-lived expression patterns of genes. The epigenetic state
of the cell, i.e., which genes are expressed at a given time, is
determined in part by binding and unbinding of transcription
factor proteins to the DNA. The genes with their partner
proteins form complex dynamical systems known as genetic
networks, which can have many steady states, i.e., an attractor
landscape (1, 2). The attractors are more stable than the
individual molecular protein–DNA adducts, because the pro-
teomic atmosphere of gene products renews the DNA’s binding
state, ultimately creating autocatalytically its own proteomic
atmosphere (1, 3, 4). The attractors of such a genetic network
may be associated with distinct cell types (2, 5). Experimental
evidence for this view has recently been presented (6, 7). The
growing experimental interest in this problem (6) as well as a
number of theoretical puzzles involving the stability of the
attractors (8, 9) call for a flexible and intuitive theory of the
lifetime of such genetic network attractors. Some progress has
already been made toward the goal (8, 10–12, 31), but existing
formalisms are cumbersome, certainly when compared with the
theory of activated events in molecular systems based ultimately
on transition-state ideas (13, 14). Our goal here is to present a
simple treatment of the noise-induced transitions between two
attractors on a landscape that is parallel to the treatment of
simple molecular rate processes, which starts with Wigner’s
absolute rate theory (15). In chemical kinetics, the ratio of
escape is proportional to the probability of rare configurations
equally likely to become reactant or product. These rare con-
figurations represent a stochastic separatrix of the motion.

Whereas thermal atomic motions cause the escape from
energy minima in molecular physics, the noise in genetic net-
works comes from the probabilistic nature of the chemical
reactions, because only a small number of proteins and individ-
ual copies of the target DNA are involved. Unlike molecules,
genetic systems being far from equilibrium cannot strictly be
described by thermodynamic free-energy functions. The stochas-
tic separatrix for molecular activated events is a dividing surface
passing through saddle regions of the free energy. We argue that,
even in the absence of a free-energy function, the notion of a
stochastic separatrix between basins of attraction remains a good
approximation (10, 12, 31) and allows a treatment of stochastic
switching along the lines of a transition-state theory with dy-

namic corrections involving the rates of elementary processes
(13, 16).

The dynamics of gene networks involves two very different
processes whose rates must be compared, protein synthesis and
DNA binding. The complexity and energy-consuming nature of
protein synthesis in prokaryotic cells generally causes changes in
protein number to take longer than the diffusion-controlled
binding times of transcription factors, even at their low concen-
trations. For this reason, it has been argued that one can describe
the binding of the transcription factors to each DNA-binding site
as an instantaneously equilibrated process, when considering
protein production. For steady states this approximation appears
to be reasonably accurate. It has also been noted (17–20),
however, that the DNA state fluctuations may influence the
protein-number state fluctuations. Here we show that the impact
of DNA state fluctuations on the escape process is considerable
in a rather wide parameter regime for which the steady states are
not much influenced by the DNA state fluctuations (Fig. 1). For
biologically relevant parameters, the DNA occupancy fluctua-
tions may significantly increase the spontaneous switching rate
from a given attractor. In what we call the nonadiabatic limit,
where DNA state fluctuations dominate the protein number
fluctuations, individual binding and unbinding events of the
transcription factors are directly responsible for the transition.
For much of the adiabatic regime, although the influence of
DNA fluctuations on the steady-state protein levels is negligible,
these fluctuations still modify the lifetime of a state; we will call
these transitions ‘‘weakly adiabatic.’’ DNA occupancy fluctua-
tions can only be neglected at very high values of the rate ratios,
in what we call the strongly adiabatic limit.

As Sasai and Wolynes (1) have pointed out, the stochastic
theory of a simple genetic switch can be considered analogous to
the physicists’ Kondo problem or the chemists’ electron-transfer
process, where DNA occupancy plays the role of a spin or
electronic state variable (13). In a simple and intuitive way, here
we exploit these analogies to compute the lifetime of a genetic
switch, using the idea of a landscape with a stochastic separatrix
(10), much like in the earlier proposed threshold model (12). Our
treatment is quite analogous to that used for characterizing
adiabatic vs. nonadiabatic regimes of quantum rates (13, 14). The
approach we present is easily generalizable to a many-gene
system. In the general case the present approximation yields the
lifetime of a given state of the switch, which is governed purely
by a few local properties of the landscape and does not require
computing complicated trajectories. Global properties, sensed
by the most probable escape paths, generally enter rates for
far-from-equilibrium systems (21). The present approach, there-
fore, must be admitted to be approximate. The simplicity
hopefully will make up for some inaccuracy.

Several treatments of the mean first passage time between
epigenetic states have already appeared. Most of these studies
assume the DNA state equilibrates on a much faster time scale
than the protein number (22, 23). We refer to this as the
adiabatic limit. In this limit the protein number states may then
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be treated as a continuous variable giving an expression for the
mean first passage time à la the Smoluchowski theory of diffusive
rates as sketched by Bialek (11). A more rigorous approach finds
the rate by constructing the most probable escape path (8) or by
calculating the distribution of paths (10, 24). These methods are
powerful, but they are hard to visualize, especially for more
complex switching systems. Although the usually invoked adia-
batic limit seems to be appropriate for simple switches in
prokaryotes, it is not an obviously correct approximation for
switches that have more complex operators, in which multiple
protein elements must combinatorically assemble at a given site,
slowing the binding (25). Nonadiabatic effects also should play
a significant role in eukaryotic systems where chromosome
restructuring, which may be quite slow, dominates the epigenetic
transition. Artificially engineered switches (26) may be con-
structed with parameters spanning the entire phase diagram.

The Simplest Switch
For illustration we will present our ideas using the simplest
example of a system in which we can consider the escape from
one minimum to another: a bistable self-activating switch (20).
We emphasize the approach is more generally applicable. The
self-activating switch consists of a single gene, which may be
found in one of two states: on or off. In the off state proteins are
produced at a basal level, but in the on state proteins are
produced at an enhanced level, leading to a number, n, of
proteins in the cell at any moment. The proteins act as activators
by binding to the same operator site as the gene governing their
production. We assume they bind as dimers with a rate h(n) �
hn(n � 1)�2. The unbinding of the transcription factors is
described by a rate f. We neglect time delays due to mRNA
synthesis, etc. (which admittedly may play a key role), so that
protein population dynamics is governed by a birth–death pro-
cess. Protein degradation occurs with a rate k, production with
the activated rate g1 in the on state and the basal rate g2 in the
off state. The system is characterized by a two-state joint
probability distribution P� (n), describing the probability of hav-
ing n proteins in the system and the DNA binding site being in

the bound (on-1) or unbound (off-2) state. A recent combined
experimental and theoretical study (26) has brought attention to
the bistability of a switch in previously unexplored limits, when
the degree of operon repression is small. Our discussion will turn
also to the nonadiabatic limit. Here the equilibration of the DNA
and changes in the protein number occur on comparable time
scales.

To compute escape rates from the steady-state attractors, one
must determine the stochastic separatrix (10). In the adiabatic
limit, the position nA

† of the minimum of the total probability
distribution P(n) � P1(n) � P2(n) is given by the condition of
zero mean protein flow dn�dt��n�nA

† � ( fg2 � h(n)g1)�( f �
h(n)) � kn��n�nA

† � 0. For a bistable switch, this equation is
satisfied by three values of n; one solution gives the separatrix,
and the other two give the positions of the high and low protein
number stable steady-state attractors, nA

2 and nA
1. In the non-

adiabatic limit the stochastic separatrix refers both to the DNA
and protein number state. Therefore, the values of the critical
separatrix numbers nN

† in the nonadiabatic, and nA
† in the

adiabatic limits are different. The direction of flow changes when
the DNA state changes. Therefore, the position of nN

†

corresponds to that number of proteins needed for the system to
have comparable probability to be in the on or off state. For
simplicity, we can approximate in the large n limit h(n) �
h�2n(n � 1) � hn2�2 and determine the position of the
nonadiabatic separatrix by means of mass action, using the
chemical equilibrium constant Keq: nN

† � V�Keq, where Keq �
2f�(hV2), where V is the cell volume. The steady-state attractors
in the nonadiabatic limit are determined by the birth–death
processes in the particular DNA states: n2 � g2�k in the off
state and n1 � g1�k in the on state. To function as a switch n2
must be less than nN

† , and n1 must be greater than nN
† . We can

rewrite the adiabatic separatrix positions in terms of the volume-
scaled equilibrium constant KeqV2, which scales with nN

†2, as nA
† �

Keq�n1 and n2 � nA
2 � nA

† � nN
† � nA

1 � n1.

Nonadiabatic Rate Theory
Here we compute the rate of escape of the system from the low
protein number attractor to the high protein number attractor
(kon) and vice versa (koff). Because in the nonadiabatic limit the
low protein number attractor corresponds to the off DNA
occupancy state and the high protein number state corresponds
to the on DNA occupancy state, the transition from the low
protein number to the high protein number state requires the
binding of an activator. Without the possibility of binding and
unbinding, the dynamics in each attractor would be described by
stochastic destruction and production of proteins alone, resulting
in fluctuations of the mean protein number around each steady
state. Consider a system maintained in the off DNA binding state
and that now has n2 proteins. The initial probability of being in
the off DNA state, with precisely n2 proteins present is
poff(n2) � P2(n2)�(P1(n2) � P2(n2)). n2 may be generally
assumed to be close to the mean number of proteins in the off
state (n2 � g2�k). If a binding event now occurs at time t � 0,
the gene spontaneously flips into the on state, and proteins are
now produced at an enhanced rate. The protein number in-
creases toward the mean number in the high protein state (n1�
g1�k). If the activator does not unbind before the number of
proteins becomes characteristic of the on state attractor a
successful switching event will have taken place, and the protein
number will now fluctuate around the on steady-state value.
However, because we are in the nonadiabatic limit, the time
scales to reach the steady state for both the DNA-binding state
and protein synthesis and degradation are assumed comparable,
so an activator may in fact unbind before reaching the separatrix
at nN

† . If an activator does unbind during that time, the gene
returns to an off state, albeit with a slightly higher number of
proteins than initially. Another binding event will repeat the

Fig. 1. The sum of the escape rates k � kon � koff as a function of the
adiabiaticity parameter � � (hg1

2 )�(2k3) for a self-activating switch with g1�
100, g2 � 8, k � 1, nN

† � 53.4. Comparison of the exact discrete n numerical
calculation based on the mean free passage time (black solid line), with
approximate methods: in the nonadiabatic limit (small �) (gray dashed line;
Eqs. 1 and 3), in the weakly adiabatic regime (black dashed line; Eqs. 5 and 8),
and mixed crossover regime (gray solid line). The adiabatic results tend
asymptotically to the strictly adiabatic limit (large �-flat escape rate) (light
gray dashed line; Eqs. 6 and 9). In the strictly adiabatic limit the binding of
transcription factors to the DNA-binding site is equilibrated. In the nonadia-
batic and weakly adiabatic limits the escape rates show a dependence on the
adiabaticity parameter; the process is influenced by the DNA-binding state
fluctuations.
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above scenario, until the protein number safely crosses the
separatrix at nN

† , and the steady state corresponding to an
activated gene is reached (Fig. 2A). The average time needed to
cross the barrier from an initial point n2, which is also the time
allowed for a unbinding event to occur, is the mean time to reach
nN

† for the enhanced production rate. The initial rate of binding
an activator h(n2) � h�2n2(n2 � 1) must be modified to
account for the possibility of unbinding again before the system
crosses the separatrix. Summing of these attempted crossings
results in an expression for the rate of escape from the off state
minimum (n2) to the on state (n � nN

† ) in the nonadiabatic
regime given by

kon�n2	 � poff�n2	h�n2	e
�


t�n2	

t�nN
† 	

fdt
. [1]

The exponential term gives the successful fraction of attempts to
reach the protein number-based separatrix, launched from the
steady state n2. The total time to reach the separatrix is given
by t(nN

† ) � t(n2), as determined by the average flows in the initial
DNA state, and the mean time for an unbinding event to occur
is f�1. Explicitly, the escape rate from the off state becomes
kon(n2) � poff(n2)h(n2)((g1 � kn2)�(g1 � knN

† ))�f/k. The
power-law term describes the motion on the surface with en-
hanced production after binding of the activator. In the non-
adiabatic limit, the probability distributions for the on and off
states are unimodal. Therefore, it is unlikely for the gene to be
in the on state if the number of proteins is small; thus, poff(n2) �
1. If the protein number is large and the unbinding rate is
comparable with the death rate, this expression yields

kon�n2	 � h�n2	e�
f
k �nN

† �n2	 � h�n2	e
��

��KeqV 2	3

n12 , [2]

where � � hg1
2 �(2k3). In the extreme nonadiabatic limit �3 0, the

first attempt may be successful; hence, the result simplifies to
kon(n2) � h(n2).

A similar calculation can be carried out starting from the other
steady state. The escape rate from the on state, with n1 � nN

†

proteins, is given by the rate of binding of an activator at time t �
0, providing the system is in the on state pon(n1) � P1(n1)�
(P1(n1) � P2(n1)), reduced by the probability that an activator
rebinds before the protein number decreases to numbers char-
acteristic of in the off state (n � nN

† ). The time available to rebind
is calculated by using protein production at a basal level. The koff
rate is therefore

koff�n1	 � pon�n1	 fe
�


t�n1	

t�nN
† 	

h�n�t	
dt
. [3]

For the off rate the mean free path before a rebinding event
depends on the mean number of proteins in the system n. The
argument of the exponential still describes the number of rebinding
events. In the strongly nonadiabatic case, pon(n1) � 1, and for very
large mean protein numbers the escape rate tends to

koff�n1	 � fe
�

h
4k �n12�nN

† 2	 � fe
�

�

2
n12�KeqV 2

n12 . [4]

Because of the time scale separation in the nonadiabatic limit the
system may be approximated as a two-state system. The ratio of the
escape rates, therefore, yields the ratio of the probabilities to be in
the individual steady states. The equilibrium constant for the
‘‘dressed’’ genetic states in the nonadiabatic limit KGS � koff�kon
therefore becomes KGS � (nN

† �n2)2exp(���2) � KeqV2�
n2

2
exp(���2). When � � 0 the proteomic atmosphere has no

effect on the relative stability of the DNA occupancy, which follows
the ordinary mass action law.

The formulae described above provide quite intuitive repre-
sentations of specific escape mechanisms. These results also may
be formally obtained by means of the path integral solution of
the master equation by using the method described by Wang,
Onuchic, and Wolynes (27) for kinetic protein folding. This
result also coincides with the heuristic approach of Ninio (28).

Adiabatic Rate Theories: Weak and Strong Regimes
In the nonadiabatic limit the switch reaches the separatrix within
the time for a few binding events, as schematically portrayed in
Fig. 2 A. In what we call the weakly adiabatic regime, the escape
process proceeds differently. The DNA occupancy responds
quickly to the changing proteomic atmosphere reaching a local
steady state before the protein number changes by a large
amount. The average occupancy then determines the average
local rate of protein synthesis and degradation. A few binding
and unbinding events are required in the nonadiabatic limit, but
in the adiabatic limit those events are much too common to allow
the direct mechanism. One is tempted to equate the local
diffusion rate to that coming from synthesis and degradation.
But this temptation can only be rigorously indulged at an
extraordinary high binding rate. Instead a random, but cyclic,
process of binding, growth, and unbinding churns the protein
number like a turbulent surf. The cyclic motions of eddies in an
ocean wave, if interrupted, contribute to a diffusive transport of
flotsam to the shore. In the same way, in most of the weak
adiabatic regime, protein numbers fluctuate from the mean flow
through this ‘‘churning mechanism.’’ The protein number
changes slightly with each cycle of binding�growth�unbinding
and eventually reaches the separatrix point because of the
resulting diffusive motion. One can show the system acts as if it
were diffusing along an effective potential, whose gradient gives
the mean flow expected from the average occupancy V(n) �
geff(n) � kn (Fig. 2B). The diffusion rate in this outwardly
adiabatic regime however depends on the nonadiabatic events.
Only at very high adiabaticity is diffusion ascribable to birth–
death alone.

Fig. 2. A schematic diagram of the difference in the character of the
transitions from the state with a small mean number of proteins to the state
with a large mean steady-state number of proteins in the nonadiabatic (A)
where the escape rate is given by Eqs. 1 and 3, adiabatic (B) where the escape
rate is given by Eqs. 5 and 8, and extremely adiabatic (C) regimes. The dark gray
dashed line marks the effective potential for protein number change. The
horizontal arrows signify binding and unbinding events.
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It is helpful to understand the ‘‘eddy-induced’’ diffusion in an
intuitive way. The effective production rate geff(n) � ( fg2 �
h(n)g1)�( f � h(n)) is the production rate averaged over the
binding and unbinding states, if they were in equilibrium. The
diffusion expected solely from the birth–death processes would
just be DBD(n) � geff(n) � kn. This f luctuation mechanism is
augmented by diffusion in the orthogonal two-state ‘‘binding-
space,’’ that is, the eddy motion. The difference in the mean
distance in protein number that would be traveled in the two
DNA states during a typical eddy cycle will be �n � (g1� g2)�( f
� h(n)). It is the typical difference in protein number expected
after a full cycle of an eddy has been traversed. It is given by the
difference in velocity in protein number space in a given binding
state, �v � �g1 � g2� times the mean time before the binding
state changes �t � ( f � h(n))�1, such that �n � �v�t. The mean
free time, or the eddy mixing time, is given by the sum of the
characteristic times for binding and unbinding, both of which
must occur to return to the original binding state, � � f�1 �
(h(n))�1. The rate that describes the eddy cycling thus becomes
��1 � fh(n)�( f � h(n)). The diffusion coefficient D � �n2�� is
the square of the mean change in protein number divided by the
characteristic time spent within a given eddy. The latter depends
on both binding and unbinding events. One thus finds
Dbinding(n) � fh(n)(g1 � g2)2�( f � h(n))3.

The mean number of proteins of a given type produced in the
active state is of the order of g1�k � 102. The degradation rate
of proteins gives lifetimes of the order of a bacterial generation
k � 10�3s�1. Dissociation rates from the DNA vary from f � 1
to 10�3s�1, and typical equilibrium constants may be taken to be
KeqV2 � 102 to 104, which results in association constants h�2 �
f�(KeqV2) � 10�2 to 10�7s�1 (based on � phage data as assembled
in ref. 29 and references therein). We therefore see that typical
adiabaticity parameters scan a wide range: � � hg1

2 �(2k3) � 100

to 105. The diffusion coefficient from churning, which depends
on the DNA occupancy dynamics, typically influences the escape
rate over four orders of magnitude of the adiabaticity parameter
� � (100 to 104), nearly covering the biologically relevant regime.
For escape processes the DNA-binding dynamics cannot be
neglected until the adiabaticity parameter becomes extremely
large, ultimately yielding the strongly adiabatic regime. As shown
in Fig. 2, the eddies due to the influence of the DNA-binding
state become smaller with faster binding until the motion
becomes dominated by simple birth–death diffusion along the
effective potential, giving the steady-state probabilities, aver-
aged over the DNA-binding states (Fig. 2C).

In the adiabatic limit, the escape rate is governed largely by the
fraction of systems at the separatrix NA

† compared with the
fraction residing near the original attractor Nattr: NA

† �Nattr �
P(nA

† )�p�
s (nA

† ), where p �
s �nA

† 	 � ¥n � nA
† P�n	 , and P(n) is the

steady-state probability density for a state with n proteins.
Clearly p�

s (nA
† ) � P(nin)�nin, where �nin is the width of the

attractor. It is important to understand the spatial variation of
P(n), described by the ‘‘potentials’’ in Fig. 2. The spatial variation
depends on the balance of the local mean flow against the flow
due to diffusion. We can understand this balance by considering
the motion pictured in Fig. 2B. The mean local velocity by which
the protein number changes is v� � geff � kn. In addition to this
drift the protein number changes by diffusive motion from places
of low to high probability, with a velocity of vdiffusion � Di(n)�
(2lc), where lc is a characteristic ‘‘length scale’’ over which the
steady-state probability changes by roughly one e-fold. Di(n)
refers to the diffusion coefficient, which governs the motion in
a particular regime. It is equal to Dbinding(n) in the weakly
adiabatic regime, DBD(n) in the strictly adiabatic regime and is
roughly DBD(n) � Dbinding(n) in the small crossover region in
between. To traverse this scale the local velocity has to be at least
as large as the velocity of the diffusive motion v� � vdiffusion. The

equality v� � vdiffusion sets a characteristic length scale of the
problem lc � Di(n)��2v�(n)�, over which locally the probability in
a steady state should change by a factor of e. This relation is valid
both in the adiabatic and nonadiabatic regimes. The quantity lc
is analogous to the ‘‘scale height’’ in the equilibrium barometric
problem. How many of these characteristic steps of length lc are
needed for the system to reach nA

† from its steady-state value?
Bearing in mind that the length of each step depends on n, we
must concatenate these steps to give the probability to be at the
separatrix relative to being near the initial state. The probability
exponentially depends on the number of scale heights of varying
length lc needed to reach the improbable separatrix starting from
the most probable situation at the basin center,

exp�� �
nA
2

nA
†

dnlc
�1� .

To find the rate, we finally need the width �nin. The size of the
attractor �nin is analogous to lc at the bottom of the basin, but
quadratic-order effects must be included. To compare the
velocities of the motion near the basin center due to drift and
diffusion, the drift velocity must be computed as the ‘‘drift
frequency’’ in the initial state �(nin) � (	v(n)�	n)�nin

� fhnin(g1
� g2)�( f � h(nin))2 � k times the distance from the stationary
point. Comparing drift and diffusion velocities in the same
region �(nin)�nin � Di(nin)��nin, gives the size of the attractor
�nin � ��Di(nin)��(nin)�. The exponential term counts the paths
from all possible positions within the attractor. We therefore
must divide the by the width of the attractor.

To determine the epigenetic escape rate we also need the
transmission factor. In the adiabatic limit, reaching the separatrix
does not yet guarantee a successful escape. Once the protein
number reaches the vicinity of the stochastic separatrix the system
may directly cross the separatrix or recross it many times before
committing to the new attractor. The number of escapes per unit
time is thus proportional to the velocity with which the system
moves over the separatrix, divided by the number of attempts before
it successfully commits to the new attractor k � �v�NP(nin3 n �
peak). The velocity around the peak is determined by a mean free
path for number fluctuations lmfp and a mean free time � relevant
to that region, �v � lmfp��. Only in the crossover region is it
necessary to take all processes into account on equal footing when
evaluating the mean free path lmfp and the associated mean free
time �. In the weakly and strongly adiabatic limits the results
simplify. In the weakly adiabatic region, the mean free path is
dominated by the DNA churning cycles and is given by the typical
eddy size lmfp � (g1 � g2)�( f � h(n)) and � � f�1 � (h(n))�1. In
the strictly adiabatic limit, the motion is determined by the birth and
death of proteins. Effectively, the protein number changes by lmfp

equal to one protein in the mean free time � � (geff(n) � k)�1. Once
the mean free path has been determined, the number of crossings
is then the number of steps of the size of the mean free path needed
to cross the transition state region lTST. Like the basin size, the
size of the transition state region is lTST � �Di(nA

† )��(nA
† ). The

escape rate from the left attractor, nA
2, is

kon�nA
2	 � lmfp

2 �� lTST�	��nA
2	�1e

�

nA
2

nA
†

dnlc
�1

,

where lmfp
2 �� � Di(nA

† ) and i indicates BD, binding and mixed in
the appropriate regimes. The rate of the escape from the low
protein number state in the weakly adiabatic regime becomes

kon�nA
2	 �

k
2


Di�nA
† 	 ����nA

2	��nA
† 	 �

Di�nA
† 	Di�nA

2	
e

�

nA
2

nA
†

dnlc
�1

, [5]
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where nA
† is the number of proteins corresponding to the

minimum of the total steady-state probability distribution. In
the adiabatic regime the separatrix is given as the fixed point of
the average flow: geff(nA

† ) � knA
† .

In the strictly adiabatic limit, the eddy motion may be ne-
glected. So lc

�3� is determined solely by the equilibrated diffu-
sion in protein number space lc

�3� � (geff � kn)�(2(geff � kn)).
All of the components in Eq. 5 can be obtained by using
quadrature, in this case, yielding a complex expansion. A more
simplified result, explicit in terms of chemical rate constants,
follows if we linearize lc

�1 in the region, which contributes most
to the result of the integral. In this situation Eq. 5 becomes

kon�nA
2	 � f̃1�Keq	e

�
�lc

�1�nmin	�

4�nA
† �nmin	

�nA
† �nA

2	2

, [6]

where nmin is the number of proteins for which lc
�1 has the largest

value. The largest value of lc
�1 corresponds to the smallest

characteristic length scale in the region of integration. The value
of lc

�1(nmin) scales as nmin � V�Keq�2. The preexponential factor
has the form f̃1(Keq) � kV�(2
)(Keq�(a0n1

6
)(n1

4
� (KeqV2)2 �

2KeqV2(n1)2))1/2, where a0 � g2�g1. The escape rate decreases
with the equilibrium constant and system size. By using the
dependence of the minimum of the integrand as a function of the
equilibrium constant KeqV2, one finds the escape rate scales as
e��1n

1�2(KeqV2�3a0n
12)3/2

, where �1 is a numerical factor of the order
of 1�2. The rate of escaping from the off-state attractor expo-
nentially decreases with increasing of the equilibrium constant.

How the escape rate depends on the molecular parameters can
be seen by assuming, for simplicity, a highly cooperative variation
of the equilibrium DNA occupancy with protein concentration.
In this case the effective production rate can be approximated by
the production rate in the off-state attractor, geff(n) � g2. Now,
the protein dynamics will be determined by the rates character-
istic of the attractors, until the system reaches the separatrix. This
approximation is like the threshold picture of Metzler and
Wolynes (12). In this approximation one finds

kon�nA
2	 � f̃1�Keq	e

�
1
2

k�nA
† �nA

2	2

knA
† �g2 . [7]

When the cell is sufficiently small the separatrix merges with
both attractors. In such a regime, this simple formula correctly
predicts the functional dependence of the escape rate on the
equilibrium constant and the protein production rates. When the
separatrix begins to merge the attractor, the exponential term
approaches unity. Thus, stability is compromised. When the
attractors merge with the separatrix the preexponential factor
becomes important for quantitative analysis (8, 23).

In the �-dependent weakly adiabatic region, the probability
distributions look qualitatively similar to those in the strictly adia-
batic limit: the extrema do not change as � increases. In the
escape-rate calculation, however, one compares the ratios of the
probabilities near the minimum and the saddle regions. This ratio
is significantly different in the weak and strong adiabatic regimes
and strongly affects the spontaneous switching rates, as seen in Fig.
1. In the weak adiabatic regime one finds the escape rates depend
exponentially on the adiabaticity parameter �. The escape rate
therefore is approximately dominated by kV�(2
)Keqn1

3�
a0�n12�2KeqV2�(n1

2
� KeqV2)3exp(�f�kKeqV2a0�n1(nA

† � nA
2)�

(nA
2nA

† ). In the weakly adiabatic regime, the effective growth rate
can be well approximated as that with a fixed DNA occupancy, as
in the Metzler–Wolynes threshold model (12).

The transition can be treated from the high protein number
state to the low protein number state much as above in the
adiabatic limit. The rate of escape from high to low protein
number depends on the relative probability that the system is to
the right of the separatrix, characterized by a mean protein

number n1 compared with the steady-state probability of being
at the separatrix nA

† , k(n13 n � peak) � P(nA
† )�p�

s (nA
† ). p�

s (x) �
¥n�x

n��P(n). The escape rate turns out to be

koff�n1	 �
k

2

Di�nA

† 	 ����n1	��nA
† 	 �

Di�nA
† 	Di�n1	

e
�
nA

†
n1

dnlc
�1

. [8]

We can approximate lc
�1 in the strictly adiabatic limit as for the

kon calculation. Then the strictly adiabatic escape rate becomes

koff�n1	 � f̃2�Keq	e
�

lc
�1�nmax	

4�nmax�nA
† 	

�nA
1�nA

† 	 2

, [9]

where nmax is the number of proteins at the maximum of lc
�1,

which scales as nmax �� V�Keq. The preexponential factor has
the form f̃ 2(Keq) � kV�(2
)(n1

4
� (KeqV 2)2 �

2KeqV2n1
2
)�Keq�n1

5
. More explicitly, the escape rate from the

on state scales as

� e��2n1�2���n12�KeqV 2	
3

,

where �2 � 2 and � � 1�4 � a0�2 are constant numerical factors.
The escape rate from the on-state attractor exponentially in-
creases with the increase of the equilibrium constant. A simple
result also is obtained by replacing the effective production rate
by the value of the effective production rate in the on-state
attractor geff(n) � geff(nA

1)

koff�nA
1	 � f̃2�Keq	e

�
1
2

k�nA
1�nA

† 	2

knA
† �geff�nA

1	. [10]

The equilibrium constant for the dressed genetic switch state
in the strongly adiabatic limit is

K� GS � koff�kon

� f r�Keq	e�n1
�3

�
1����n1
2
�KeqV 2	

3
�
2��KeqV 2�3a0n12	

3
	,

which sharply depends on the proteomic atmosphere. fr(Keq) �
(a0(n1

4
� (KeqV2)2 � 2KeqV2n1

2
)�n1

4
)1/2, 
1 � 2, 
2 � 1�4 are

numerical factors.
In the weakly adiabatic regime the exponential term in the

off escape rate becomes exp(�h�(2k)n1
�2�(KeqV 2)(1�

6(nA
† )6 � (nA

1)6 � geff(nA
1)�(5k)((nA

† )5 � (nA
1)5))). So in the

weakly adiabatic limit the equilibrium coefficient for the
dressed genetic switch states K� GS � koff�kon scales as K� GS �
a0n13��KeqV23e�h��2k	�1n1�2��KeqV 2	��n1	6 � �2�KeqV 2)3), where the co-
efficients are determined by the positions of the on- and
off-state attractors and are of the order of �1 � 0.01 and
�2 � 100.

Whether the switch is nonadiabatic or adiabatic can be
determined by comparing the mean free path to the size of the
transition region. If lTST�lmfp � 1 many crossings are required
and the transition is adiabatic. If lTST�lmfp � 1 the system
commits to the new attractor once it reaches the separatrix,
hence the transition is nonadiabatic. In the strictly adiabatic
regime the diffusion of the system is governed by protein
diffusion induced by the birth–death process, as opposed to the
weakly adiabatic regime, where diffusion due to churns domi-
nates. A phase diagram showing the different escape mecha-
nisms in parameter space for fixed KeqV2 is shown in Fig. 3.

Comparison with Numerically Exact Results
Although the mechanism of spontaneous switching or epigenetic
escape is different in the various regimes, we understand the
rates in all regimes using the notion of a stochastic separatrix. We
can compare these approximations with numerical calculations
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due to Kepler and Elston (22, 30) and our own full numerical
results.

In the nonadiabatic limit (small � � hg1
2 �(2k3)) the escape

process is determined by the rate of DNA state fluctuations. In
this regime the rates are given by Eqs. 1 and 3 (gray dashed line)
(Fig. 1). These rates agree with the discrete numerical calcula-
tion of the mean free passage time from each basin. Our
numerical calculations confirm that only in the extremely adia-
batic limit (large � � f lat escape rate) can the DNA fluctuations
safely be neglected. Only for this extreme limit does the lifetime
become determined by protein synthesis�degradation fluctua-
tions alone (light gray dashed line). Estimates of the input
parameter would suggest that the weakly adiabatic regime is

common for biological switches. In the weakly adiabatic regime
the escape rate does not just depend on occupancy averaged
growth rates but still depends on the adiabaticity parameter, as
shown in Fig. 1. Neglecting the influence of DNA fluctuations
in this limit, as many treatments have done, would give the
extreme adiabatic asymptotic value of the escape rate also
pictured on the graph. Both the strictly and weakly adiabatic
regimes can be obtained from the more general calculation by
using the full diffusion coefficient. The full treatment is only
required in a small crossover regime (gray solid line).

Summary
Spontaneous transitions between attractors of genetic systems
are caused by coupled stochastic f luctuations in the DNA state
and protein number. Even in parameter regimes where the DNA
state locally would appear to reach a steady state much more
rapidly than the protein number state, the fluctuations due to
binding and unbinding of transcription factors greatly influence
the protein number fluctuations and hence modify the rate of
spontaneous transitions between epigenetic states. We call such
a regime the weakly adiabatic by contrast to the strongly
adiabatic limit, where the DNA-binding state may be taken to be
in equilibrium. The mechanism of spontaneous switching be-
tween stable attractors in the weakly adiabatic regime is graph-
ically explained by a churning process, which causes protein
numbers to fluctuate from the mean flow. How the escape rates
kon and koff depend on molecular parameters in the nonadiabatic,
weakly, and strongly adiabatic should allow one to understand
the evolutionary constraints necessary to achieve stable yet
responsive switches, a topic we hope to revisit. By considering
both the DNA and protein degrees of freedom, the rate theories
we have presented provide an intuitive description of spontane-
ous switching events, in terms of the molecular parameters that
determine the functioning of a genetic switch.
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Fig. 3. A phase diagram as a function of the activated production rate g1
and the unbinding rate f for constant KeqV2, showing the areas of parameter
space where a given escape mechanism dominates based on the ratio of the
size of the transition-state region lTST to the mean free path lmfp. If the number
of crossings of the separatrix is large, lTST�lmfp � 1, the transition is adiabatic.
If the system commits to a new attractor after one crossing, lTST�lmfp � 1, the
transition is nonadiabatic.
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