
Extinction and resurrection in gene networks
Daniel Schultz, Aleksandra M. Walczak1, José N. Onuchic2, and Peter G. Wolynes
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When gene regulatory networks operate in regimes where the
number of protein molecules is so small that the molecular species
are on the verge of extinction, the death and resurrection of the
species greatly modifies the attractor landscape. Deterministic
models and the diffusion approximation to the master equation
break down at the limits of protein populations in a way very
analogous to the breakdown of geometrical optics that occurs at
distances <1 wavelength of light from edges. Stable stochastic
attractors arise from extinction and resurrection events that are
not predicted by the deterministic description. With this view, we
explore the attractors of the regular toggle switch and the exclu-
sive switch, focusing on the effects of cooperative binding and the
production of protein in bursts. Our arguments suggest that the
stability of lysogeny in the !-phage may be influenced by such
extinction phenomena.

cooperativity ! regulation ! stochasticity

Genetic networks are nonlinear stochastic systems. The
genes, single DNA molecules, are regulated by transcription

factors, proteins that are themselves products of other genes
within the network (1). The dependence of the expression of a
gene directly or indirectly on its own products makes gene
switches intrinsically nonlinear (2, 3). Additional nonlinearity
also can arise from details of promoter architecture such as
binding-site overlap or cooperative binding of proteins to the
DNA (4). The discreteness of the molecular entities involved
makes genetic networks also intrinsically stochastic (5, 6). Indi-
vidual binding transitions and the events leading to the produc-
tion and destruction of gene products introduce ‘‘shot noise’’ into
the description of genetic networks (7, 8). Shot noise does not
simply modify deterministic behavior. Although continuous
deterministic descriptions that neglect the noise present in
genetic networks give insight into their behavior, molecular
discreteness can lead to entirely novel network behaviors (9, 10).
The most dramatic of these effects is the possible extinction of
molecular species involved in cellular regulation. After a mo-
lecular extinction event occurs, other stochastic molecular pro-
cesses may resurrect such a species, resetting the dynamics. Such
extinction and resurrection events cannot be described simply as
the perturbative effects of noise on deterministic behavior (11,
12). Behavior of just this sort is seen in the simplest self-
activating gene switch and is manifested in the exact analytical
solution of the statistical steady state for that system (13). The
exact solution yields a bimodal probability distribution for the
gene product concentration, whereas deterministic equations
(with additive noise) that average over DNA occupancy would
show only a single-peaked unimodal distribution for the protein
concentration. The extra peak at low protein number is an effect
that depends on the unique single-molecule nature of the gene.
The unexpected peak disappears when binding/unbinding events
are averaged over as in the macroscopic kinetic description.
Effects of this nature where binding/unbinding events are dis-
crete also occur when competition for a binding site is important,
as in the combinatorial logic of a gene switch (14). In this article,
we more closely examine the nature of the stochastic attractors
that arise from extinction events coming from the binding/
unbinding of proteins to the DNA. We argue they arise from a
breakdown of the Langevin noise description or equivalently the

diffusion approximation to the master equation that is com-
monly used (15, 16). Such a description does not correctly
describe the system near the boundaries of the allowed protein
concentration, i.e., when species can go extinct. This failure is
quite analogous to the breakdown of geometrical optics due to
diffraction from edges (17). Although we highlight the phenom-
enon in different versions of the so-called ‘‘toggle switch’’ (18),
a simple network that consists of a pair of mutually repressing
genes, these molecular discreteness effects also arise in much
more complex genetic networks. In our view, the role of extinc-
tion and resurrection in multigene networks is likely to be of
general importance.

The Toggle Switch
The Toggle Switch is a small network of 2 genes (A and B) in
which the 2 gene products mutually repress each other (18–20)
(Fig. 1). If A is on, B will be turned off and vice versa. Such simple
verbal reasoning would suggest that this system could always
show bistability. Deterministic mathematical analysis, on the
other hand, argues otherwise. For simplicity, consider the case
where both genes have the same binding characteristics and
production rates. The deterministic kinetic rate equations for the
concentration of proteins a and b are:

da
dt !

g1 " g0!bx/Xeq"

1 " bx/Xeq # ka [1]

db
dt !

g1 " g0!ax/Xeq"

1 " ax/Xeq # kb [2]

where g1 and g0 are the unrepressed and repressed protein
synthesis rates respectively, k is the protein degradation rate and
Xeq is the dissociation constant of the binding of proteins to
DNA. The exponent x is the degree of cooperativity in the
binding of the gene. x # 1 corresponds to a linear repression and
the uncooperative binding of monomers, whereas x # 2 means
that the transcription factors bind cooperatively as dimers. The
deterministic description suggests binding cooperativity is es-
sential for the switch to show bistability. For monomer binding
(x # 1) the kinetic rate equations allow only 1 fixed point: a #
b # $Xeq2/4 % g1Xeq/k & Xeq/2, when g0 # 0. The plots of
nullclines and flow field for the switches with similar parameters
(Fig. 2) show a single steady state for the binding of monomers.
But for binding of dimers (x # 2) the deterministic toggle switch
can have 2 fixed points when Xeq is small enough. To achieve this,
the repression must be strong enough to avoid a situation where
both proteins are expressed in large quantities. The bifurcation

Author contributions: D.S., A.M.W., J.N.O., and P.G.W. designed research; D.S. performed
research; D.S. contributed new reagents/analytic tools; D.S. and A.M.W. analyzed data; and
D.S., A.M.W., J.N.O., and P.G.W. wrote the paper.

The authors declare no conflict of interest.
1Present address: Princeton Center for Theoretical Science, Princeton University, Princeton,
NJ 08544.

2To whom correspondence should be addressed. E-mail: jonuchic@ucsd.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0810366105/DCSupplemental.

© 2008 by The National Academy of Sciences of the USA

www.pnas.org"cgi"doi"10.1073"pnas.0810366105 PNAS ! December 9, 2008 ! vol. 105 ! no. 49 ! 19165–19170

BI
O

PH
YS

IC
S

PH
YS

IC
S



point is Xeq ' (Xad)x, where Xad # (g1 % g0)/2k is the protein
concentration for half-repression.

Verbal arguments also suggest that another source of nonlin-
earity in which there are sterically conflicting DNA binding
scenarios for the gene products may also produce bistability. In
the exclusive-or switch, which is involved in $-phage regulation,
2 genes, A and B, have promoters overlapping in such a way that
the binding of one of the proteins prevents the other protein
from binding (4). The competition for binding to the same part
of the genome means that both sites cannot be simultaneously
accessed. The deterministic equations for the symmetric exclu-
sive repressor switch with monomer binding are:

da
dt !

g1!1 " a/Xeq" " g0!b/Xeq"

1 " b/Xeq " a/Xeq # ka [3]

db
dt !

g1!1 " b/Xeq" " g0!a/Xeq"

1 " b/Xeq " a/Xeq # kb [4]

We see again that these deterministic equations yield only 1
fixed point. In the case of a symmetric switch with g0 # 0, the
stable fixed point is a # b # ($(g1/k & Xeq)2 % 8Xeqg1/k % g1/k &
Xeq)/4. Nevertheless, the possibility of extinction of the protein
species does allow the existence of multimodal distributions even
when the deterministic description seems to yield unique be-
havior (10).

In keeping with the simple verbal arguments, the stochastic
description of a toggle switch allows up to 4 different attractors,
corresponding to the 4 different DNA binding states. A useful

bistable switch would show 2 attractors (bound/unbound and
unbound/bound binding states), and, when stable, spontaneous
switching times are much longer than the elementary processes
involved. Strength of repression and cooperativity play a major
role in the stochastic stability of the switch. The repression has
to be strong enough to prevent both proteins from being
expressed simultaneously at high levels, whereas cooperativity
can prevent a situation where both proteins are weakly expressed
(19). The nonlinear response obtained by cooperative binding is
necessary to prevent the genes from being repressed by too small
a concentration of repressors. In Fig. 2, we plot probability
distributions obtained from solving the zero eigenvector prob-
lem of the stochastic master equations in matrix form: dP/dt #
AP [see supporting information (SI)]. In systems where the
repression is too weak, there is no bistability, independent of the
binding scenario or type of toggle switch. Cooperative binding is
necessary for bistability in the case of the regular toggle switch
(21, 22). As an alternative to introducing cooperativity, the
exclusive switch prevents the simultaneous repression of both
genes by disallowing the bound/bound state. The probability
distribution of the exclusive switch can show 2 peaks even when
the deterministic analysis shows only 1 solution.

In the exclusive switch, the competition for the single binding
site couples the protein concentration degrees of freedom and
the gene occupancy degrees of freedom. In the regular toggle
switch, the binding site of each gene can change independently.
If the binding and unbinding of transcription factors are fast
enough to come to equilibrium rapidly, the effective occupancy
of each binding site will be an equilibrium average of the bound
and unbound state, regardless of the state of the other gene.

In the exclusive switch the gene states are coupled—the state
of 1 gene depends on the state of the other gene. Because the
binding rates to the mutual promoter depend on the concentra-
tion of the 2 proteins and the concentrations of the proteins
depend on the occupancy states of the gene, effectively, the
protein concentration and gene occupancy degrees of freedom
are coupled in a nontrivial way that makes stochastic events play
an important role. In this system with explicit molecular level
competition, only 1 gene can be repressed at a time. The
unrepressed gene will produce proteins at a high level, leading
to large imbalances between the concentrations of 1 protein and
the other. Despite the fast binding and unbinding of the repres-
sor from the binding site, the concentration of the protein
produced by the gene that is, on average, repressed is very small
(proportional to the production rate in the bound state). There-
fore, the probability of rebinding of a repressor protein produced
by the previously unrepressed gene is much higher than binding
of the repressor produced by the repressed gene. As a result, the
repressed gene remains stably repressed. In Fig. 2, we see that
the exclusive switch is able to have a 2-peak probability distri-

Fig. 1. The toggle switch. The protein produced by gene A represses gene B
and vice versa. Depending on the parameters used, this system can show
bistability.

Fig. 2. Nullclines, flow field, fixed points, and probability distributions. Plots of strong repression, for the cases of toggle switch with monomer binding, toggle
switch with dimer binding and the exclusive switch. Strong repression is necessary for bistability. The exclusive switch shows a bimodal distribution even for the
case of monomer binding, which has only one stable fixed point.

19166 ! www.pnas.org"cgi"doi"10.1073"pnas.0810366105 Schultz et al.



bution even when the deterministic analysis shows only 1 stable
fixed point. We will now explore the details of the repression
mechanism and the stability of the exclusive switch further.

Life and Death on the Boundaries
Why does the stochastic description of the system show apparent
attractors under the same conditions where the deterministic
description shows no fixed points? Adding linear Gaussian noise
to the corresponding deterministic equations would not change
the attractor structure. The corresponding diffusion approxima-
tion to the master equation does not take into account the
discrete nature of both protein concentration and gene occu-
pancy. The discrete nature of the gene is especially important
around the boundaries of the possible protein concentrations,
where proteins can become extinct. Let us consider the situation
around the attractor represented by one of the peaks in the
probability distribution of the exclusive switch around the
boundaries of the system, where protein a is present at very small
numbers, and the repressing protein b is abundant. When the
binding (h) and unbinding ( f ) reactions are fast enough (% #
f/k ( 1), and the repression strong enough (Xeq/b )) 1), the
average synthesis rate will be gav # (hbg0 % fg1)/(hb % f) ' g0 %
(Xeq/b)g1. For strong enough repression, gav ' g0, and the ability
of the system to escape from extinction at the boundary will
depend on the ratio of the basal rate of expression g0 and the
degradation rate k. Even a small basal rate of repression,
comparable with the degradation rate of a single molecule,
greatly modifies the attractor behavior near the unstable point
of zero protein concentration. Strongly repressed systems with a
very low basal synthesis rate will display an apparent attractor on
the boundary that is not predicted by deterministic analysis. If
the basal rate of expression becomes large enough so that the
boundary peak in the probability distribution, located at a # g0/k,
would instead be located '1 unit away from the boundary (g0 '
k), the dynamics begins to obey the deterministic equations with

noise. This situation is analogous to diffraction in optics, where
the classical geometrical optics approximation fails within a
wavelength of the boundary.

Fig. 3 shows that increasing the basal rate of protein produc-
tion from zero to a number comparable to the degradation rate
(1 unit of synthesis/degradation) causes the boundary peak in the
probability distribution to disappear. Analyzing the determinis-
tic and stochastic f low fields, we see how the stability around the
border makes sense only within the stochastic description of
the system. The arrows in the deterministic f low fields illustrate
the direction and value of the gradient of protein concentration
at a given point in space: v!d(a, b) # da

dt
â % db

dt
b̂. The arrows point

toward the stable attractors. In a similar way, we can follow the
evolution of the change in the probability distributions at given
concentrations calculated for the stochastic system. The arrows
in the flow field represent the sum of the vectors representing the
probabilities of transitions to neighboring states: v!s(a, b) #
[P(a 3 a % 1) & P(a 3 a & 1)] â % [P(b 3 b % 1) & P(b 3
b & 1)] b̂. By analyzing the stochastic f low fields, we see that for
g0 ' 0, there is significant flow of probability to the apparent
attractor at low concentrations and very little flow out from that
attractor (Fig. 3). As a result, we see accumulation of probability
in the bound/unbound situation of gene occupancy. As g0
increases, the number of proteins produced by the repressed
protein increases and so does the flow out of the bound/unbound
occupation state, which can clearly be seen in Fig. 3. In the case
of relatively large production in the bound state, the stochastic
solution no longer shows peaks at the boundaries. However, the
solution still does not show a defined peak at the deterministic
fixed point. The proximity of the nullclines makes a large region
in the vicinity of the fixed point near-stable, spreading the peak.
When both binding and unbinding from the promoter are fast,
as g0 increases, binding of both repressors becomes competitive,
and the states with small number of proteins are stabilized. In
this limit, the proteins effectively lose their repressor character-

Fig. 3. Exclusive Switch: Probability distributions, deterministic flow (with nullclines) and stochastic flow for different values of g0. For lower values of gav

probability accumulates at the boundary, because the probability of a degradation event is larger than the probability of a synthesis event.
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istics, and many concentration substates are equally likely. In the
unlikely parameter regime where the synthesis rate g0 of the gene
when repressed becomes comparable with the rate g1 when the
gene is unrepressed, the stochastic solution tends toward the
deterministic solution weakly modified by noise.

To test the analogy to diffraction, we must change the
analogue of wavelength for this problem—the number of pro-
teins synthesized in a single event. In fact, because of the
intervention of mRNA, synthesis of proteins actually does occur
in bursts when many copies are translated from a single mes-
senger (23). One DNA transcription event yields 1 copy of RNA,
but the translation of this copy of RNA in turn produces,
generally, many copies of the encoded protein. Proteins are
therefore not produced at a steady rate but in bursts with sizes
corresponding to the protein yield of 1 RNA molecule. Increas-
ing the size of protein synthesis bursts would correspond, in the
optical analogy, to increasing the wavelength of the diffracted
wave. Allowing synthesis to be ‘‘bursty’’ while keeping the
average production rate fixed is expected to extend the range of
the boundary effects. In Fig. 4, we see this extension of the
boundary effect. When bursting occurs, the peak of the proba-
bility distribution at the boundary is maintained to much higher
basal synthesis rates g0 and disappears only when g0 corresponds
to a single burst size per unit time. Synthesis of protein in bursts
therefore acts to stabilize the stochastic attractors resulting from
extinction of proteins. Instead of the synthesis of a single protein
molecule, a more infrequent mRNA synthesis event leading to
a burst is necessary to escape the boundary. The smaller
frequency at which production occurs decreases the escape rates
and stabilizes the boundary states. When bursting is prominent,
very stable attractors can exist at the boundaries that are
completely unexpected from the deterministic description.

It is fairly straightforward to obtain an estimate of the extent
of the boundary effects, even for complex problems, from a
simplified version of the given problem valid near the boundary.
Consider the 1-dimensional case where protein a is on the verge
of extinction when protein b is abundant. Considering the
production of a in bursts of size x, we define a normalized
average burst rate for a which is g # gav/kx, such that the master
equation describing the number of proteins a at the boundary is:

dP!a"

dt ! g*P!a # x" # P!a"+ " *!a " 1"P!a " 1" # aP!a"+ [5]

If production occurs without bursts (x # 1), this equation has a
solution P(a) # gae&g/a!, a Poissonian distribution. When synthesis does
take place in bursts, the distribution is P(a) # [(g % a & 1)a/a!] P(0) for
a & x and decays rapidly after that. P(0) can be found by normalizing
the distribution. Fig. 5 shows the probability distributions that result
from this 1-dimensional simplification for different values of g and x.
Smaller values of g increase the probability of total extinction of the
protein. Production in bursts extends the boundary effects until n # x.
In reality, bursts are not of fixed size, but follow a geometric distribution
(24, 25). This spread in burst size smoothes out the kink in the
distribution around burst size, which would no longer be observed.

To get a quantitative idea about how significant boundary effects
may be, it is worth finding about the well-studied genetic switch
involved in $-phage lifestyle choice (1). In the $-switch decision
(lysis/lysogeny), 2 protein species, the repressor cI (b) and cro (a),
compete for binding 3 shared operators. Abundance of cI repressor
leads to the repression of cro and ensures the persistence of
lysogeny, where the virus simply stays incorporated in its host’s
DNA. Stress signals deactivate the repressor and flip the switch.
Low levels of cI repressor increase the abundance of cro, taking the
virus to the lytic state, at which time the virus reproduces and kills
the host, leading to the infection of other cells. The modeling of
Aurell and Sneppen (26) describes the binding affinities of the 2
transcription factors to the 3 operators on the DNA and can be used
to calculate the probabilities of the different promoter occupancy
states (SI). The $-phage case corresponds reasonably well to the
toggle switches we have concentrated on but has a more compli-
cated binding scenario. Averaged synthesis rates for the $-switch are
not simple functions of the number of protein species, but can still
be evaluated for any configuration of the system from the proba-
bility distribution of promoter occupancy states. The deterministic
differential equations da

dt
# ga(a, b) & ka and db

dt
# gb(a, b) & kb can

be evaluated at different points to generate nullclines and flow
fields, by using the same parameters as ref. 26. Fig. 6 shows that a
fixed point exists for the lytic scenario, but no fixed point is observed
corresponding to lysogeny in the deterministic mode of description.
Extinction boundary effects can be evaluated by using Eq. 5 with a
protein number-dependent synthesis rate: dP(a)

dt
# [g(a & x) P(a &

x) & g(a)P(a)] % [(a % 1)P(a % 1) & aP(a)]. The probability
distribution for the number of cro molecules is shown in Fig. 6 for
several different levels of regulation by repressor cI. We see that for
the levels encountered in the cell during lysogeny (b # 300),
boundary effects can ensure stability. For lower cI repressor
concentrations, lysogeny is no longer stable, and the virus goes into
the lytic state.

Escape Mechanisms
A 2-peaked probability distribution does not guarantee that a
system is kinetically bistable in the sense of there being a large
time-scale separation. The extinction peak is transient. We may
discuss a switch’s stability by comparing the average spontaneous

Fig. 4. Exclusive switch: Probability distributions for different values of g0

and different sizes of synthesis burst. Larger sizes of synthesis burst increase
the probability of extinction of the proteins.

Fig. 5. Probability distributions for the unidimensional case of stochastic
genetic regulation. Smaller values of g (synthesis) cause more pronounced
effects at the boundary. Larger values of x (burst size) extend the boundary
effects to larger number of proteins.
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switching time between the 2 attractors to the intrinsic molecular
timescales. Time scales of stochastic rare events of complete
switching are not trivially obvious from inspection of the system
input parameters. Direct simulations of such rare events are
computationally expensive, because the system manifests long
uninteresting waiting times in which the dynamics is essentially
consistent with the expected deterministic behavior. An analyt-
ical framework and numerical methods exist for treating switch-
ing times in stochastic genetic networks (11, 12, 15, 16, 19, 27).
It is interesting to devise a transition state or stochastic separatrix
specifying conditions from which there is equal probability of
reaching both attractors of the system. This delimits a natural
border between the 2 attractors and helps in the definition of
order parameters. We can define the mean first passage time
(MFPT) as the average time that it takes to reach the transition
state ensemble starting from a set of initial conditions taken
from the statistical steady state. In the case of the toggle switch,
these initial conditions correspond to those representative of one
of the attractors. The transition state ensemble consists of those
states lying on the stochastic separatrix, which is the curve
specifying those states from which there is equal probability of
first reaching either attractor (27). In a switch having equal
parameters for both genes, symmetry dictates that the separatrix
is the diagonal containing the states where na # nb. To compute
mean first-passage times, we may consider a master equation
where the boundary conditions reflect the fact that when a
trajectory reaches the separatrix, the trajectory is terminated
while the rest of the boundaries are still reflecting. In the matrix
representation of the master equation, the transition matrix A
that acts on the state vector P(na, nb, t) no longer conserves
probability for the mean first-passage time problem. This ‘‘lost’’
probability corresponds to the probability that the system al-
ready has crossed the separatrix. The probability that the system
is still unreacted at time t can now be calculated by

'!t" ! #
na#0

N #
nb#0

N

P!na, nb, t".

The mean first-passage time is calculated from this probability as

( ! $
0

,

'!t"dt.

Combining these 2 expressions and inverting the order of
integration yields

( ! #
na#0

N #
nb#0

N $
0

,

P!na, nb, t"dt.

Because -0
, P(na, nb, t)dt # &A&1 P(na, nb, 0), we see that the

mean first-passage time can be calculated by using the inverse of
the transition matrix:

( ! # #
na#0

N #
nb#0

N

A&1P!na, nb, 0".

Because unreacted probability is not conserved, the transition
matrix with absorbing boundary conditions at the separatrix does
not have a zero eigenvalue. Therefore det(A) . 0, so the
transition matrix is invertible.

This method was used to calculate the switching times for
different binding scenarios in Fig. 7. We plot the results as a
function of the adiabaticity parameter % # f/k, which measures
how fast the binding/unbinding processes are in comparison with
protein synthesis and degradation while other parameters were
kept constant. The results from the matrix inversion agree with
the switching times obtained by averaging many stochastic
simulations. These calculations indicate that the nature of the
escape routes for the regular toggle switch and the exclusive
toggle switch are very different. For the regular toggle switch, in
the limit of fast binding and unbinding, the escape mechanism
consists of a gradual diffusion of protein numbers due to
frequent binding and unbinding events on an effective deter-
ministic potential, which reflects the effective production rates
as a function of concentrations. The deterministic bistability of
the toggle switch relies on the cooperative nature of repressor
binding. We have determined that the bistability of the exclusive
switch, on the other hand, is a result of coupling between the
protein concentrations and the gene occupancy states. In the
limit of strong repression, the effective gene-expression state is
not well approximated by the equilibrium average of the bound
and unbound states, and nonadiabatic effects play a role (13, 19,
28, 29). One of the gene occupancy states, (bound/unbound or
unbound/bound), is stabilized by the proteomic atmosphere, and
the effective gene expression state changes on slower time scales
than would be predicted from binding and unbinding rates alone.
In Fig. 7, a comparison of the switching times of the regular and

Fig. 6. Boundary effects in the $-phage. (Left) Nullclines and flow field in the
phase diagram of the $-switch. There is a fixed point corresponding to the lytic
phase, but no clear fixed point corresponding to lysogeny. (Right) Probability
distributions of cro around extinction, showing that border effects can guar-
antee stability of lysogeny at high concentrations of repressor. At lower
concentrations of repressor, lysogeny is no longer stable.

Fig. 7. Switching times for different binding scenarios. Stochasticity coming
from binding and unbinding events increases the stability of the stochastic
attractor of the exclusive switch while decreasing the stability of the deter-
ministic attractor of the regular switch with binding of dimers.
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exclusive switch is plotted. The figure indicates the nonadiabatic
nature of the escape mechanism of the exclusive switch. The
regular toggle switch behaves much like in the adiabatic case.
Even when binding occurs from monomers, except in the strictly
nonadiabatic limit, the spontaneous switching times of the
exclusive switch are significantly longer then the binding/
unbinding times, which shows the stabilization of the effective
gene expression state by the proteomic atmosphere. Many
attempts at unbinding and rebinding of the same type of
repressor protein are needed in order for a production event in
the unbound state to occur that will increase the number of
proteins produced by the repressed gene and thus allow for an
escape. In the strongly nonadiabatic limit, the rate of unbinding
and unbinding becomes so small that the protein number
equilibrates before the gene expression state can change and the
unbound/unbound state becomes occupied. In this limit, the
probability distribution has 3 peaks, and the steady states are
different from the ones we have discussed above.

For all values of adiabaticity, the toggle switch with dimer
binding has spontaneous switching times much larger than the
molecular binding times themselves. The switching times of the
dimer switch increase in the adiabatic limit of fast binding/
unbinding. The regular toggle switch with dimer binding has
much larger switching times in the adiabatic limit. The stability
of this switch follows from rare excursions away from the
deterministic fixed points. In contrast, the spontaneous switch-
ing times for the exclusive switch are smaller in the adiabatic
limit. This decrease of switching times with more rapid binding
shows that the stability of the exclusive switch indeed comes from
the extinction/resurrection effects. As the number of unbinding
events increases with the decrease of 1/f, the number of attempts
at escape also increases. When escaping from the bound/
unbound occupancy state, the system first finds itself in the
unbound/unbound or unbound/bound state but with a small

number of proteins produced by the gene that had previously
been repressed. In these states, the number of proteins has an
opportunity to increase, allowing the escape to become successful.

A reasonable estimate of the adiabaticity parameter in natural
systems can be obtained by using recent measurements that show
that a single transcription factor takes '65–360 s to find its target
inside the cell (30). In the case of the $-phage, where 150 dimers
of repressor keep the promoter occupied 99.9% of the time, and
the lifetime of the proteins is '3,000 s, the effective adiabaticity
parameter would thus be in the range of % ' 1 & 10.

Discussion
The stochastic attractors of gene networks arise from the way in
which the discrete nature of protein concentrations and DNA
occupancy dominate the dynamics around the limits of molec-
ular populations in the system. Near those borders, the diffusion
approximation to the master equations used in the small f luc-
tuation analysis is not valid. Production of proteins in bursts, a
discretization effect, further enhances these boundary effects.
Extinction and resurrection of protein species, as well as pro-
duction of proteins in bursts, are all very common scenarios in
genetic networks, so such stable stochastic attractors are prob-
ably quite widespread. The importance of discreteness around
the boundaries of a system finds parallels in other areas of
physics, such as in the diffraction of waves, where classical optics
also fails to describe light propagation within 1 wavelength of an
edge. Similar effects of molecular discreteness have been shown
to be involved in the propagation of instabilities at the interface
of a reaction front, controlling pattern formation in nonequi-
librium systems (31) and the statistics of epidemics.
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