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Extending the dynamic range of transcription factor action by translational regulation
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1Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
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A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory
sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival
of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the
optimization of information flow through regulatory networks indicates that the lower end of the dynamic range
of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of
homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in
which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory
proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging
over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify
conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role
of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the
regulation of gene expression.
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I. INTRODUCTION

Cells control the concentration of proteins in part by regu-
lating transcription, the process by which mRNA molecules are
synthesized from the DNA template. Central to the regulation
of transcription are the “transcription factor” (TF) proteins that
bind to specific sites along the DNA and enhance or repress
the expression of nearby genes. Perhaps surprisingly, many TF
molecules are present at very low concentration, and even at
low total copy number [1]. While it has been appreciated for
many years that low concentrations of biological signaling
molecules must lead to significant noise levels [2], direct
measurements of the fluctuations in gene expression have
become possible only in the past 15 years [3].

Pathways for the regulation of gene expression can be seen
as input-output devices, with information flowing from input
control signals (TF concentrations) to output behaviors (num-
ber of synthesized protein molecules). While “information”
usually is used colloquially in describing biological systems,
the mutual information between input and output provides
a unique, quantitative measure of the performance of these
systems [4,5]. In the context of embryonic development, for
example, the information (in bits) carried by gene expression
levels sets a limit on the complexity and reproducibility of the
body plans that can be encoded by these genes [6].

Decades of work on neural coding provides a model for
the use of information theory in exploring signaling processes
in biological systems [6,7]. To exploit this concept, as a first
step it is necessary to estimate the various information theoretic
quantities from data on real systems, and for genetic regulatory
networks that has been achieved only very recently. There are
estimates of the mutual information between the concentration
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of a TF and its target gene expression [8,9], the information that
expression levels of multiple genes carry about the position
of cells in the developing fruit fly embryo [10,11], and the
information that gene expression levels provide about external
signals in mammalian cells [12,13]. As a second step, we
need to understand theoretically how the various features
of the systems—the architecture of signal transmission, the
noise levels, the distribution of input signals—contribute to
determining information transmission. In qualitative terms,
the noise levels set a limit to information flow given a fixed
maximum signal level, and thus understanding information
transmission is intimately connected to the question of how
the cell can maximize the information conveyed by a limited
number of molecules produced and transported stochastically
[14–24]; completing the circle, this problem is directly
analogous to the “efficient coding” problem in neural systems
[25]. As emphasized in Ref. [5], information theoretic ideas
can thus be used as tools for the quantitative characterization of
biological systems, but there is also the more ambitious goal of
building a theory in which the behavior of real neural, genetic,
or biochemical networks could be derived, quantitatively, from
the optimization of information flow.

Transmitting maximum information with a limited number
of molecules requires regulatory networks to embody strate-
gies for minimizing the effects of noise. Importantly, there
are (at least) two contributions to the noise [26], and optimal
networks find a balance between these. In transcriptional
regulation, the most common gene regulatory mechanism,
a commonly appreciated component of noise comes from
the stochastic birth and death of the synthesized protein and
mRNA molecules [27], which we refer to as “output noise.”
But there is also noise at the input of the regulatory process,
from the random arrival of TF molecules at their binding sites.
We can think of transcriptional regulation as a mechanism for
sensing the concentration of TFs, connecting the analysis of
“input noise” to the broader problem of limits on biochemical
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signaling and sensing [28–37], first studied in the context of
bacterial chemotaxis [2]. Changing the shape of input-output
relations, both through cooperativity and through feedback,
changes the balance between input and output noise, thus
rendering the optimization of information flow a well-posed
problem even with very simple physical constraints on the total
mean number of molecules [16–18].

Central to any account of noise reduction is the effect of
averaging. Several averaging strategies that make transcrip-
tional regulation more reliable have been identified: there is
averaging over time as molecules accumulate [2,28,31–34],
averaging over expression levels of multiple genes that are
regulated by the same TF [16,17,38,39], and averaging over
space as molecules diffuse between neighboring cells or nuclei,
e.g., in a developing embryo [19,40–43] or organoid [44]. In
the (typical) case where one TF targets multiple genes, there
is a regime where information transmission is optimized by
complete redundancy in the response of these targets, and
another regime in which the concentrations for activation or
repression of the targets are staggered so as to “tile” the
dynamic range of inputs [16,17]. But, even as we consider
networks with increasing numbers of targets, the theoretically
optimal strategy is to insert the additional genes into the
high-concentration end of the input range and to avoid the
lower part of the dynamic range altogether. It is the high input
noise at low concentrations that renders this regime suboptimal
for reliable signaling.

Here we explore a distinct averaging strategy which allows
transcription factors to access the low end of their input range
in a robust manner. Since these regulatory proteins bind to
DNA, it is plausible that they could also bind to mRNA,
thereby regulating translation; this is known to happen in
the large class of homeodomain proteins [45–47] and for the
Argonaute family proteins [48,49], for several other proteins
that fulfill important functions in the Drosophila embryo and
oocyte [50–57], but also in other eukaryotic species [58–60]
and in prokaryotes [61–67]. Intuitively, each mRNA molecule
could act as an independent sensor of the input concentration,
and averaging over these multiple sensors could reduce the
input noise and thereby allow for more effective information
transmission at low input concentrations.

To develop this intuition, we first consider a model of the
“direct transcriptional regulation” (DTR) scheme, in which a
TF concentration is read out and averaged by M binding sites
on the same promoter (Sec. II); we subsequently generalize
the model to a more complicated “indirect translational
regulation” (ITR) scheme, in which the averaging function
is served by M cytoplasmic mRNA molecules (Sec. III).
We compare the two regulation mechanisms, DTR and ITR,
by computing the maximum information flow in each as a
function of the input noise magnitude and other determinants
of the information flow (Sec. IV). We conclude by discussing
a biologically relevant example from early Drosophila devel-
opment (Sec. V).

II. AVERAGING OVER NEIGHBORING REGULATORY
REGIONS IN DIRECT TRANSCRIPTIONAL REGULATION

The intuition behind the arguments of this work is that a cell
can extract more information from low concentrations of TFs
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FIG. 1. Schematic comparison of direct transcriptional regulation
(DTR) and indirect translational regulation (ITR) schemes. (a) In
direct transcriptional regulation (DTR), activator (or repressor) TFs,
depicted as green squares and present at concentration c, interact
with (potentially multiple, not necessarily identical) TF binding
regions to activate (repress) expression of the regulated gene g. (b) In
the indirect translational regulation (ITR) scenario, input molecules
(green squares) bind to mRNAs m of protein y (red chain) to make
the mRNA unaccessible for translation (gray oval). Translation can
proceed from unbound mRNA molecules, giving rise to proteins y

(red stars). These proteins act as repressors (or activators) for gene
g; the overall mapping from c to g is thus activating (repressing) in
both scenarios.

by averaging over multiple binding regions. We expect that
this will be realized by having the multiple binding regions on
different mRNA molecules. As a motivating exercise, however,
we can imagine that there are many regions for binding of
the TF at a single target near the gene being regulated, and
that the expression of this gene depends on the average of the
occupancies of these regions [see schematic in Fig. 1(a)]; there
are hints that such noncooperative regulation by a cluster of
binding regions may be realized in some cases [68]. We expect
that, with averaging over M binding regions, we should find a√

M reduction in noise levels, and our goal here is to exhibit
this explicitly, as well as to understand the conditions for this
reduction to be achieved. These results will provide a guide to
the more complex case of “indirect translational regulation”
(ITR), introduced in Sec. III. The calculational framework we
use here is based on our previous work [4,16–18].

We write the expression level of the single target gene as
g, and if expression is controlled by the average of multiple
nearby regulatory regions then the dynamics are of the form

dg

dt
= r

[
1

M

M∑
i=1

fi(c)

]
− 1

τ
g + ξ, (1)

where r is the maximal rate of synthesis, 1/τ is the rate at
which the gene products are degraded, and ξ is a Langevin
noise source (zero-mean white noise). In this model there is a
single TF species, at concentration c, that controls expression.
We assume τ to be the longest time scale in the problem, thus
setting the averaging time for all noise sources in the regulatory
pathway. As described more fully in Refs. [8,15–19], we can
think of the regulatory mechanism as propagating information
from c to g, and this information transmission is a measure of
the control power achieved by the system.

In the simplest case, each region harbors just one binding
site, and the contribution of that site to the activation of
gene expression is determined by its equilibrium occupancy
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n̄i ∈ [0,1]; then we have

fi(c) = n̄i(c) = c

c + Ki

, (2)

where Ki is the binding constant or affinity of site i for the
TF. Alternatively, each region, corresponding to a regulatory
sequence along the DNA, could be a tight cluster of binding
sites that act cooperatively, so that

fi(c) = cHi

cHi + K
Hi

i

, (3)

where Hi is the Hill coefficient describing the cooperativity.
Note that in this parametrization, we can describe activators
and repressors by the same equation, using positive and
negative Hi , respectively.

The noise term ξ should include many different microscopic
effects. There is noise in the synthesis and degradation of
the gene product (output noise), and there is noise in the
arrival of the TF at its target site (input noise). As in
Refs. [15–19], we describe the output noise as a birth-death
process, and subsume several complexities by assuming that
we are counting “independent events” without making a
detailed commitment about their nature (e.g., whether the
mRNA or protein molecules are independent, or if the truly
independent events are bursts of transcription [69]); we will,
however, consider these aspects in more detail in the ITR
model (Sec. III).

For the input noise, there is a minimum level set by the Berg-
Purcell limit [2,28,34,37], which is equivalent to a variance in
the TF concentration,

σ 2
c,(in) = c

Dc�cτ
�B[�n(c)], (4)

where Dc is the diffusion constant of the TF, �c is the effective
linear dimension of the binding region, τ is the integration
time over which noise is averaged, and the “occupancy
factor” �B[�n(c)] is a function of the average occupancy that
depends on molecular details, with B denoting the number
of binding sites per regulatory region. In particular, for a
single binding site with equilibrium occupancy n̄1, we expect
�1 = (1 − n̄1)−1 [34,35]; for a cluster of sites in the limit as
their number grows large, such that a single site is never fully
saturated, �B → �∞ ≡ 1 [28,70].

We can cast both input and output noise into the Langevin
form [cf. Eq. (1)], but we know from Refs. [15–19] that, so
long as they are not too large, these noise sources provide
additive contributions to the variance of g. We can find the
effect of the input noise by “propagating errors” through the
mean input-output relations, and then add to the output noise:

σ 2
g = ḡ +

M∑
i=1

(
∂ḡ

∂fi

)2(
∂fi

∂c

)2

σ 2
c,(in). (5)

The first term is the Poisson output noise, with the variance
equal to the stationary mean, which can be computed from
Eq. (1):

ḡ(c) = rτ

M

M∑
i=1

fi(c). (6)

Note that since fi ∈ [0,1], the maximum mean number of
output molecules is Nmax = rτ .

Let us now assume, for simplicity, that all regulation
functions fi are identical: all Hi = H , all Ki = K , and hence
all fi(c) ≡ f (c) = n̄(c). The total noise in gene expression in
a model with M identical binding regions then reads

σ 2
g = ḡ + M

(
rτ

M

)2(
∂f

∂c

)2
c

Dc�cτ
�B. (7)

Introducing, consistently with our previous work, a dimen-
sionless concentration unit c0 = Nmax/Dc�cτ , and measuring
expression levels g in units of maximal induction Nmax = rτ ,
we observe that the mean expression is simply ḡ = f (c), and
the noise can be written as

σ 2
g = 1

Nmax

[
ḡ + �B

M
c

(
∂ḡ

∂c

)2]
. (8)

If the input concentration c has a limited dynamic range,
i.e., c ∈ [0,C], where C = cmax/c0 is the maximal allowed
concentration of the input in units of c0, the relative importance
of the two noise terms is set by C. For C � 1, it is possible to
regulate the gene such that the input noise contribution [second
term of Eq. (8)] is negligible compared to the output noise [first
term of Eq. (8)]. For C 	 1, the input noise is dominant and
the output noise is negligible, unless M is large. The balancing
of these noise terms has been explored in detail in our previous
work [15–19].

Alternatively, the total noise at the output from Eq. (8) can
be mapped to an equivalent noise at the input through the slope
of the input-output relation ḡ′(c),

σ 2
c = 1

Nmax

[
ḡ

(
∂ḡ

∂c

)−2

+ �B

M
c

]
. (9)

Equations (8) and (9) contain two differences compared
to the single-input–single-output case reported in Ref. [16].
First, the “occupancy factor” �B is introduced by a refinement
of the expression for the input noise [34,35]; this change
will not qualitatively influence our conclusions. Moreover, as
mentioned above, the significance of this correction decreases
as the number of binding sites per region increases [34]. Sec-
ond, the factor 1/M multiplying the input noise contribution
suggests that the input noise can be decreased by averaging
over multiple binding regions for the TF.

If the transcriptional regulatory apparatus really were driven
to strongly suppress the input noise, e.g., by a factor of order
10, this would necessitate large M , and it is hard to imagine
how 102–103 binding regions could be packed into a linear
regulatory section on the DNA. One difficulty with this is that
there is no plausible molecular machinery which could read
out the average occupancy of so many regions. The other,
more fundamental difficulty is that, due to close packing on
the DNA, such regulatory regions would interact and thus fail
to provide independent concentration measurements, likely
negating the apparent benefits of input noise averaging. This
effect is well known since the original work of Berg and Purcell
in the context of chemoreception [2].

In the following section we will show that translational
regulation implements an input noise reduction mechanism
that is conceptually identical to that of M binding regions,
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while automatically removing the two associated problems
discussed above. We will compare the noise reduction in
the “indirect translational regulation” (ITR) mechanism to
the “direct transcriptional regulation” (DTR) case, which we
define as the simple scheme using M = 1 regulatory element
with noise given by Eqs. (8) and (9).

III. INDIRECT TRANSLATIONAL REGULATION

In the indirect translational regulation (ITR) scenario, the
gene g is not regulated directly, but through an intermediate
step. Let us assume that regulatory protein c translationally
represses the mRNA m of a protein whose copy number we will
denote by y; this protein acts as a repressing (or activating) TF
for the output protein g, as depicted in Fig. 1(b). As a result, the
end transformation of inputs c to outputs g is again activating
(or repressing), and can be compared to the respective direct
transcriptional regulation pathway (see Fig. 1).

One possible reaction scheme for indirect translational
regulation consists of the following system of equations:

dm

dt
= rm − 1

τm

m − k+c m + k−b, (10)

db

dt
= k+c m − k−b − 1

τm

b, (11)

dy

dt
= rym − 1

τy

y, (12)

dg

dt
= rf (y/�) − 1

τ
g. (13)

Here, the mRNA of the intermediary gene y is produced at
rate rm and degraded at rate τ−1

m . It can be bound by the input
translational regulator at rate k+c, and unbound at rate k−. The
variable m tracks the number of unbound mRNAs from which
translation can proceed; b tracks the repressed (bound) mRNA
number. Translation of the unbound mRNA occurs at rate ry

and the protein is degraded with rate τ−1
y . Finally, y controls

the expression of g, as the input c does in the DTR scenario,
through a regulatory function f : g proteins are expressed with
maximal rate r , and degraded with rate 1/τ , by assumption
the slowest time scale in the problem. Here m, b, and y are
given as absolute molecule counts, c is given in concentration
units. The function f (·) is defined to take concentration as
input to parallel the DTR scenario; the expression level of the
intermediary gene y therefore must be divided by the relevant
reaction volume, �, when inserted into f . Equations (10)–(13)
still have to be supplemented by the associated Langevin noise
terms; we analyze the noise in detail below.

By solving Eqs. (10)–(13) in the steady state, we obtain the
average levels of signaling molecules:

m̄ = rmτm

1 + c
Kc

,

ȳ = ryτym̄, (14)

ḡ = rτf (ȳ/�).

Here, Kc = 1+k−τm

k+τm
, and in the limit of fast binding and

unbinding (k−τm � 1) this reduces to Kc ≈ k−/k+, which
is akin to the familiar form for the dissociation constant. As

before, we define Nmax = rτ to be the maximum number of
molecules at the output. Analogously, let M = rmτm be the
steady state number of mRNA, either active (unbound by c) or
repressed (bound by c), i.e., M = m̄ + b̄.

To compute the noise in gene expression at steady state,
we consider the following noise sources: (i) shot noise due
to the production and degradation of g; (ii) shot noise due
to the production and degradation of the protein y; (iii) shot
noise due to production and degradation of the mRNA m;
(iv) diffusion noise due to random arrival of y molecules at the
promoter of g; and (v), diffusion noise due to random arrival
of c molecules at the mRNA of y. Only two of these noise
sources [(i) and (v)] arise from directly analogous processes in
the DTR scheme. The additional sources reflect the increased
complexity of the ITR scheme, suggesting that ITR will only
be beneficial over DTR when the reduction in the input noise
of c (v) is large enough to compensate for the effect of the new
noise sources.

As in previous work (Refs. [15–19], but see also [20]),
this analysis neglects switching noise, i.e., the noise due to
stochastic transitions between different occupancy states of
the promoter [28,71–75]. One reason for this is that such
noise contributions depend on the exact molecular mechanisms
operational at the promoter, which we do not know in detail.
The other reason is that the noise contributions analyzed
here represent the physical bounds due to a finite number of
molecules. At sufficiently low concentrations, which are the
focus of interest here, these noise contributions will overwhelm
the switching noise; more generally we can imagine that
cells have evolved mechanisms that minimize these adjustable
sources of noise, leaving the physically inevitable noise
sources to dominate. We will now analyze the effect of the
different noise contributions on the steady state variance of
the output g in detail.

Birth-death noise sources (i)–(iii). To correctly compute the
birth-death (shot) noise contributions to the total noise at the
output, it is instructive to consider the propagation of arbitrary
shot noise sources in a generic signaling cascade of the form

dx1

dt
= r1 − 1

τ1
x1 + ξ1,

dx2

dt
= r2f2(x1) − 1

τ2
x2 + ξ2,

...
dxn

dt
= rnfn(xn−1) − 1

τn

xn + ξn, (15)

where the shot noise spectra are

〈ξj (t)ξk(t ′)〉 = 2τ−1
j x̄j δjkδ(t − t ′) (16)

in the steady state, with x̄j = 〈xj 〉 the stationary mean. Assum-
ing that τn � τj for all j �= n, it can be shown by linearizing
and Fourier transforming Eqs. (15) (see Appendix A) that
the total variance in xn, to a good approximation, is σ 2

n =∑n−1
j=1 σ 2

n←j + x̄n, where

σ 2
n←j =

⎡
⎣ n∏

q=j+1

rqτqf
′
q

⎤
⎦2

×
(

τj

τn

)
× x̄j . (17)

022404-4



EXTENDING THE DYNAMIC RANGE OF TRANSCRIPTION . . . PHYSICAL REVIEW E 93, 022404 (2016)

Equation (17) is intuitive to interpret: shot noise entering the
cascade at step j has variance equal to the mean, x̄j , which
gets filtered by the temporal averaging, τj /τn, over what is
ultimately the slowest time scale in the problem, τn = τ , and
is finally propagated through all subsequent stages of the
signaling pathway, given by the gain factors and slopes of
the input-output relations [76].

Diffusion noise sources (iv) and (v). Here we first note that
the contribution of diffusion noise sources to the variance in
the output can be generically written as

σ 2
g←x =

(
∂ḡ

∂x

)2
x

Dx�xτ
�x, (18)

where x is the concentration of the diffusing species, �x is a
function of the internal state of the regulatory region to which
x is binding, �x is its linear extent, and the derivative acts on
the steady-state transformation between x and the mean output
ḡ, given by Eqs. (14).

For noise source (iv), the diffusive species is y, and the
target is the TF binding site controlling the expression of g.
The relevant input-output relation through which the noise is
propagated is ∂ḡ

∂(y/�) = rτf ′(y/�). This yields

σ 2
g←y = r2τ 2[f ′(ȳ/�)]2 (ȳ/�)�y

Dy�yτ
. (19)

To allow for flexible regulation that can implement differ-
ent input-output curves f (y/�), we will later assume that
the expression is effected by many binding sites, resulting
in �y � 1.

For noise source (v), the diffusive species is c, and the
targets are mRNAs m. Since each mRNA molecule acts as an
autonomous “detector” for the concentration c, the relevant
“receptor occupancy” is the probability of a single mRNA
to be bound and thus repressed by c; denoting the average
single-mRNA occupancy as m̄1 ≡ m̄/M , we can write the
diffusion noise for each single mRNA as

σ 2
m1

=
(

∂m̄1

∂c

)2
c�c

Dcm�cτ
=

(
1

M

∂m̄

∂c

)2
c�c

Dcm�cτ
, (20)

where Dcm = Dc + Dm, accounting for the fact that in the
ITR scenario also the detectors can be mobile; usually we can
expect Dc � Dm, such that Dcm � Dc, and in the following
we thus set Dcm = Dc. As in the direct regulation model, we
can add up the diffusion noise for the identical but independent
c detectors to obtain the diffusion noise in the total mRNA
population: σ 2

m = Mσ 2
m1

. Propagating this noise through the
downstream input-output relations finally yields the expression
for noise source (v):

σ 2
g←c =

(
∂ḡ

∂m̄

)2

M

(
1

M

∂m̄

∂c

)2
c�c

Dc�cτ
. (21)

Assuming a single TF binding site per mRNA, we can expect
�c = (1 − b̄/M)−1 [34], which we use in our subsequent
calculations.

Assembling all noise sources together. Applying the above
considerations to the ITR regulation scheme defined by
Eqs. (10)–(13), we can write down the steady state variance in

the output as

σ 2
g = ḡ︸︷︷︸

(i)

+
(

rf ′

�

)2

ττyȳ︸ ︷︷ ︸
(ii)

+
(

rf ′τ
�

)2

(ryτy)2

(
τm

τ

)
m̄︸ ︷︷ ︸

(iii)

+ ȳ

Dy�yτ�
�yr

2τ 2f ′2

︸ ︷︷ ︸
(iv)

+ c

D�cτ
M�c

(
1

M

∂m̄

∂c

)2(
∂ḡ

∂m̄

)2

︸ ︷︷ ︸
(v)

.

(22)

Let us now choose a set of units that is natural for the ITR
scheme and consistent with the DTR scenario. As before, we
measure the output ḡ in units of Nmax = rτ such that it falls
into [0,1], and we measure the concentration c in units of c0,

c0 = Nmax

Dc�cτ
. (23)

In direct analogy, we choose a concentration unit for
proteins y:

y0 = Nmax

Dy�yτ
. (24)

Since the binding sites and diffusion constants for TFs y and
c are in principle different, these units could be different, but
we will later assume them to be similar. Let us also define

ymax = ryτy

�y0
(25)

as the maximum (dimensionless) concentration of proteins y

expressed from a single mRNA.
Binding and unbinding of c to mRNA defines the first

nonlinearity of the problem; denoting the average occupancy
of a single mRNA molecule by h(c), we have

h(c) = Kc

Kc + c
, (26)

where c and Kc = (1 + k−τm)/(k+τmc0) are both dimension-
less. Note that h(c) = m̄/M . The second nonlinear function is
f (y), determining the output expression level of g (as in the
DTR scenario); its argument is a dimensionless concentration
of y, measured in units of y0. We will explore the space of
functions with a Hill form

f (y) = KH

yH + KH
, (27)

where K is also measured in units of y0, and the Hill coefficient
H roughly corresponds to the number of y binding sites on the
promoter of g. Here again the sign of H determines whether
y is an activator or repressor to g. In this work, we will focus
on the case H < 0 (meaning that y activates g, while itself
being repressed by the upstream input c, resulting in overall
negative regulation of g by c), and compare to the DTR model
in which g is repressed by c as well [H < 0 in Eq. (3)].

We can rewrite the noise in Eq. (22) as the effective noise
at the input,

σ 2
g =

(
∂f

∂(ȳ/�y0)

)2(
∂(ȳ/�y0)

∂m̄

)2(
∂m̄

∂c

)2

σ 2
c

= y2
maxM

2f ′2h′2σ 2
c . (28)
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After rearranging terms and writing all copy numbers and
concentrations in the new units defined above, we obtain

σ 2
c = 1

Nmax

⎡
⎢⎢⎢⎣ 1

M2

f

f ′2
1

h′2
1

y2
max︸ ︷︷ ︸

(i)

+ F

M

h

h′2︸ ︷︷ ︸
(ii) + (iii)

+ 1

M

h

h′2
�y

ymax︸ ︷︷ ︸
(iv)

+ �c

M
c︸︷︷︸

(v)

⎤
⎥⎥⎥⎦,

(29)

where

F = r

ry

(1 + ryτm), (30)

and f and its derivative are evaluated at ȳ/�y0 = ymaxm̄ =
ymaxMh(c). As before, the input concentrations can vary across
the range c ∈ [0,C], where C = cmax/c0 is the dimensionless
maximal concentration of the input. If gene expression rates for
the target and intermediary proteins were similar, r ∼ ry , then
F ≈ 1 + ryτm, which is reminiscent of the Fano factor due to
the “burst size” ryτm, the number of proteins of y expressed
on average from one mRNA; we will therefore refer to F by
“Fano factor” in the following. In a modified variant of the
ITR model where mRNAs are not continuously created and
degraded to maintain an average of M copies, but are present
at a fixed total number of M copies, F = r/ry ≈ 1.

It is useful to remind ourselves of the corresponding result
in the DTR case, which is Eq. (9) with M = 1,

σ 2
c = 1

Nmax

⎡
⎢⎢⎢⎣ḡ

(
∂ḡ

∂c

)−2

︸ ︷︷ ︸
(i′)

+ �Bc︸︷︷︸
(v′)

⎤
⎥⎥⎥⎦. (31)

We see that term (i) of the ITR case is equal to term (i′) in the
DTR case, although this identification requires us to propagate
the inputs through more layers of response in the ITR, hence
a more complex expression. Similarly, term (v) of the ITR
case, representing diffusive noise for c-molecules binding to
mRNA m, is directly analogous to the diffusion noise term
(v′) in the DTR case, but ITR reduces the input noise variance
by a factor of M . While Eq. (29) appears complicated, we
can nevertheless estimate the relative magnitudes of different
noise sources and assess their relevance.

Let us first compare the relative magnitude of the two input-
type noise sources. The scale of the ITR noise component due
to finite number of y molecules (iv) relative to the input noise
in c (v) is

(v)

(iv)
= ymax

h′2

h

�c

�y

c ∼ ymax

C
. (32)

We expect that � and regulatory functions h are of order unity,
and that the natural scale of the concentration c is given by C,
the maximal dimensionless input concentration; then the scale
of the derivative of h is h′ ∼ C−1, leading to the final result.
The importance of this term thus depends on the comparison
of the maximal concentration of the intermediary y proteins
and the input proteins c. Clearly, if the intermediary proteins of
y are present at very low copy numbers, their diffusion noise
will become limiting, and the ITR scheme will be ineffectual.

The scale of input noise (v) relative to the components of
the ITR noise due to birth-death processes, (ii) + (iii), is given
by

(v)

(ii) + (iii)
= h′2

h
�c

c

F
∼ 1

FC
. (33)

As we argue above, we should expect values of F � 1.
The importance of noise sources (ii) + (iii) thus depends
on the scale of F relative to C, and in the regime of low
input concentration, C 	 1, noise sources (ii) + (iii) will be
negligible for models with small transcriptional bursting for y

proteins, i.e., when F ∼ 1.
Finally, we can assess the relative scale of the input noise

(v) with respect to the output noise (i):

(v)

(i)
= M

h′2 f ′2

f
y2

max�c c ∼ H 2

MC
. (34)

Here, the regulation functions f and h are again of order
unity, but the derivative of f has a scale of H/(Mymaxh), H

being the Hill coefficient of f . As a result, the dependence
of the noise term (i) on ymax exactly cancels out; similarly,
the M dependence of term (i) cancels out exactly. This is
to be expected: by increasing M , one can average away the
input noise, but the magnitude of the output noise cannot be
reduced. The same is true for Eq. (9), where the output noise
contribution is not divided by M . This term is thus important as
it must become limiting when M grows large, with the relevant
scale being set by H 2/MC ∼ 1. The quadratic scaling with H

shows that steep regulation curves strongly amplify the noise
on the input side.

IV. COMPARING OPTIMAL INFORMATION FLOW
IN THE TWO SCHEMES

To compare the regulatory power of direct transcriptional
regulation (DTR) and indirect translational regulation (ITR),
we ask how much information can be transmitted through
each scheme. If noise in gene expression is Gaussian, as we
assumed here, then the response of the regulatory pathway
is fully characterized at steady state by the distribution
P (g|c) = G(g; ḡ(c),σg(c)), where G is a normal distribution
with the mean and standard deviation that can be computed
from the Langevin equations (1) and (10)–(13). The mutual
information, I (c; g), between the regulator concentration c

and the downstream expression level g is then given by

I (g; c) =
∫

dc Pc(c)
∫

dg P (g|c) log2

[
P (g|c)

Pg(g)

]
, (35)

where Pg(g) = ∫
dc Pc(c)P (g|c). Mutual information, a non-

negative number measured in bits, tells us how precisely
the input c determines the output g, given that the noise
places limits to the fidelity of this control. This quantity still
depends on the distribution of input protein levels, Pc(c),
experienced by the regulatory pathway. It is possible to find
the optimal distribution P ∗

c (c) that maximizes the information,
and the maximum achievable information is then referred to
as the (channel) capacity [4,8]. P ∗

c (c) is tuned to the noise
properties of the regulation process, favoring the use of input
concentrations at which the regulatory element responds with
smaller noise over those inputs where noise is higher.
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While finding the optimal input distribution and the corre-
sponding maximal information I is difficult in general, in the
case of small noise, σg 	 1, we previously derived a simple
formula for the capacity [8]:

I (c; g) = log2
Z√
2πe

≡ log2 Z̃ + 1

2
log2 Nmax, (36)

where

Z =
∫ C

0

dc

σc(c)
, (37)

Z̃ = Z(Nmax = 1)/
√

2πe, (38)

and σc is given either by Eq. (9) for the case of direct
transcriptional regulation, or by Eq. (29) for the case of indirect
translational regulation. Z plays the role of the normalization
constant in the distribution over inputs that maximizes I (c; g);
the optimal distribution is P ∗

c (c) = Z−1σ−1
c (c). The simple

dependence of capacity on Nmax in Eq. (36) follows because
Nmax only enters the expression as a multiplicative prefactor
to σc.

The capacity given by Eqs. (36) and (37) still depends on the
regulatory parameters. We view the maximum concentration
of input molecules C not as a parameter but as a constraint;
in the ITR case there is also a constraint on the number of
mRNA molecules M and, less importantly, on the statistics
of translation, captured by F . In the DTR scheme, the
parameters that we can adjust in order to optimize information
transmission are the dissociation constant (K) and the Hill
coefficient (H ) of the regulatory function f in Eq. (1). For
ITR, we have the same two parameters determining the
properties of the regulatory function f in Eq. (13), plus an
extra parameter Kc, the dissociation constant for the repression

function h(c). Since our focus is on the regime where input
noise is limiting, C 	 1, we fix ymax and F such that “ITR
noise” sources, relating to intermediary compounds, i.e., the
mRNA and protein of y, are not dominant. The analysis of
noise terms from the preceding section suggests that choosing
F = 1 and ymax = 10 will ensure that noise in the ITR scenario
is dominated by the input noise in c [(v)] and the output noise
due to production and degradation of g [(i)]. In this regime,
the performance of the complex ITR regulatory scheme should
approach the direct regulation using M regulatory elements,
Eq. (9).

A. Optimal solutions

We mapped the optimal capacity as a function of C for
the DTR and ITR scenarios at various values for M , with the
results shown in Fig. 2. For each point on the capacity curves,
information was maximized with respect to the regulatory
parameters ({K,H } in the case of DTR, {K,H,Kc} in the
case of ITR). As expected, increasing M clearly enhances the
capacity by additionally suppressing dominant input noise at
C < 1 relative to direct regulation. For C > 1, the performance
of ITR vs DTR depends on the choice of ymax and F , which
determine when additional noise sources specific to the ITR
scheme become important.

At very small C ∼ 10−2, the input noise clearly limits
capacity in the DTR scenario. As we switch over to the
ITR scenario with M = 10, we expect the (dominant) input
noise variance to drop by a factor of 10, leading to an
increase in I (c; g) of log2

√
10 ≈ 1.7 bits, roughly equal to

the observed difference between the DTR curve and the ITR
curve for M = 10. As M is increased, this scaling breaks
down because the reduced input noise stops being the sole
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FIG. 2. Optimal capacity of direct transcriptional regulation (DTR, black), compared to indirect translational regulation (ITR, red), as a
function of the maximal input concentration C. (a) Optimal capacity log2 Z̃ vs C for various total amounts of translationally targeted mRNAs,
M . Here and in subsequent panels we fix Nmax, the maximal output copy number, to a reference value Nmax = 1 and show the resulting
capacity; larger values of Nmax simply shift all capacities upwards by an additive amount, as in Eq. (36). The strength of “ITR noise” sources,
(ii) + (iii) + (iv) of Eq. (29), is set by (Fano factor) F = 1 and (maximal concentration of the intermediary protein) ymax = 10. For M > 1,
ITR outperforms DTR at low C, but at high C DTR can still reach higher capacities if M is not sufficiently large (e.g., dashed red line for
M = 10). At M = 1 (dotted red line), the ITR scheme cannot benefit from input noise averaging, yet the intermediary regulatory steps still
contribute the “ITR noise” absent in DTR, causing DTR to be superior to ITR at all C. (b) Capacity curves for different values of M in (a)
collapse when plotted against the product of maximal input concentration and the number of mRNA targets, MC, as predicted by the scaling
relation in Eq. (34). Increasing input noise by lowering C thus can be compensated for by increasing M . The collapse is not perfect at high MC

and curves for different M saturate at different capacity values because the strength of “ITR noise” is not negligible and its effect on capacity
depends on M .
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FIG. 3. Scaling of the optimal capacity with “ITR noise” parameters ymax and 1/F . The optimal capacity log2 Z̃ for different fixed values
of the mRNA number M in the ITR model is plotted against “ITR noise” parameters properly rescaled by M , to observe the compensation
between translational noise components and the input noise. (a) For the diffusion noise due to the intermediary protein y, the relevant parameter
is M × ymax, where ymax is the maximal concentration of y. (b) For the shot noise due to the expression of intermediary mRNA and protein y,
the relevant parameter is M × (1/F ), where 1/F is the inverse Fano factor. In both cases, we set the remaining noise sources to be as small as
possible: C = 1000 and F = 1 for (a), C = 1000 and ymax = 1000 for (b). A perfect collapse in (a), comparable to that in (b), could only be
achieved for Fano factors F 	 1, which are biologically unrealistic.

factor limiting information transmission, and the capacity
curves flatten as a function of C, saturating towards the limit
where the transmission is limited only by output and ITR
noise. We draw attention to the magnitude of these effects: the
capacity of real regulatory elements is in the range of one to
several bits [8], so that differences on the order of one bit are
huge.

The value of C where the capacity begins to saturate de-
pends on M , because increasing M is equivalent to increasing
C as predicted by the scaling relation of Eq. (34). To make
this explicit we plotted the same capacity data against MC

instead of C, as shown in Fig. 2(b). As expected, the curves
collapse in the low-MC regime, where input noise is dominant,
and start to saturate at similar MC values. However, they do
not reach the same plateau at saturation, because the ITR noise
contributions, (ii) + (iii) + (iv), are non-negligible. To see that
these contributions can be traded off against the decrease in
input noise set by M as well, we varied parameters F and ymax

at fixed C = 1000 in Fig. 3, such that only one noise source
remained non-negligible compared to the others. When the
resulting capacity is plotted against the appropriately rescaled
versions of the parameters, Mymax and M/F , respectively, we
again see a collapse of the capacity curves for different M ,
as predicted in Sec. III. In Fig. 3(b) the collapse is almost
perfect, because y-input noise (iv) dominates whereas the
respective other two noise sources are negligible, and the
plateau thus is purely set by output noise. In Fig. 3(a) this
is not possible because under realistic conditions the Fano
factor F � 1, meaning that the ITR noise cannot be completely
eliminated; however, we verified that a perfect collapse can
also be achieved here by setting F to unrealistically low values
F 	 1.

What do the optimal regulatory curves look like?
Figure 4(a) shows that at low C = 0.1, where capacity
enhancement by translational regulation is largest, the lowered

input noise in the ITR model allows for markedly steeper
effective input-output curves ḡ(c), especially for M � 1. At
larger C, the difference in capacity between ITR and DTR
decreases, as expected from Fig. 2, and the input-output curves
converge towards similar effective Hill coefficients in both
models, but ITR has a significantly lower midpoint input
concentration than DTR. These observations are confirmed by
a more systematic analysis, presented in Figs. 4(b) and 4(c),
where we plot the optimal (effective) transition point K∗

eff and
the optimal Hill coefficient H ∗, respectively, as functions of C.

B. Comparison at equal resources

In the previous section we compared the optimal oper-
ating points for the two regulation scenarios independently,
neglecting the resource cost associated with reaching the cor-
responding optima. However, indirect translational regulation
evidently consumes more resources than direct regulation. The
extra resource cost is set by M , which determines the cost of
the mRNA for the intermediary protein y, as well as ymax,
which determines the cost of the y protein itself. While it is
difficult to convert the cost of mRNA and cost of protein into
the same “currency,” we can nonetheless compare the costs
of the ITR and DTR schemes in terms of the total number of
mRNA molecules M alone.

In the DTR scheme, a good estimate for this cost is
M = Nmax〈g〉, where 〈g〉 = ∫

g(c)P ∗(c)dc is the expected
number of independent output molecules in response to the
optimal distribution of inputs, P ∗

c (c). In the ITR scheme,
this cost is increased by the number of mRNA molecules
needed to implement translational regulation, M , such that
M = Nmax〈g〉 + M . In this case, 〈g〉 is implicitly a function
of M , because different values of M lead to different noise
levels and consequently different optimal input distributions
P ∗(c).
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FIG. 4. Optimal regulatory curves. (a) Optimal regulatory curves, ḡ(c), for C = 0.1 (left), C = 1 (middle), and C = 10 (right), and different
values of M in the indirect translational regulation (ITR) model (colored curves): M = 10 (top), M = 100 (middle), M = 1000 (bottom). The
direct transcriptional regulation (DTR) model is plotted in black for reference. Colors correspond to the vertical lines in Fig. 2. Here, F = 1
and ymax = 10. �I , the difference in capacity between ITR and DTR in bits, is shown in each panel. (b) and (c) Optimal regulation threshold,
K∗

eff , and the optimal Hill coefficient, H ∗, that characterize the regulatory curves in (a), shown as a function of C. Since the overall regulation
is repressive in either scheme, Hill coefficients are negative. In the DTR model, Keff ≡ K; for ITR, Keff = (Kc/K)Mymax − Kc.

When we fix the total resource cost M in both scenarios,
the information in the direct scenario is given by

I (c; g) = log2 Z̃ + 1

2
log2 Nmax = log2 Z̃ + 1

2
log2

M
〈g〉 .

(39)

For translational repression, the (optimized) information reads

I (c; g) = log2 Z̃(M∗) + 1

2
log2

M − M∗

〈g〉 , (40)

where M∗ is the value of M ∈ [0,M] that optimizes the ca-
pacity, reflecting the optimal allocation of available resources,
M, between the translational mechanism that reduces input
noise (favoring large M) vs the reduction of the output noise
(favoring large Nmax, i.e., smaller M). M∗ can be found by first
optimizing log2 Z̃(M) for fixed M and then optimizing I (c; g)
over M in the second step.

Figure 5 compares the information capacities of the ITR
(red lines) and DTR (black lines) scenarios for three fixed
values of the total mRNA number (“cost”) M (10,100,1000).
Two effects can be observed: First, in both scenarios the
capacities increase markedly withM; this is expected, because
increasing M reduces the overall noise in both scenarios.
Note, however, that the gain in capacity upon increasing M
is larger in the ITR scenario (compare red curves) than in the

DTR scenario (compare black curves), in particular at low
C. This is also expected because the ITR scheme is more
efficient in suppressing input noise; in accordance, optimal
mRNA values M∗ at low C are higher than at high C (data not
shown). Second, due to the additional resource requirements
of the ITR scheme, it stops being beneficial over the DTR
scheme already at lower C, compared to the situation where
constrained resources are not taken into account in Fig. 2.

We mapped, systematically, the conditions under which
ITR becomes beneficial over DTR. Figure 5(b) shows the
capacity difference IITR − IDTR as a function of the two
main factors that influence capacity, C and M. The thick
red line marks the combinations (C,M) that lead to equal
capacity in both models, i.e., it summarizes the crossing points
between ITR and DTR curves in Fig. 5(a) (thick red points);
above the line ITR is superior to DTR, below DTR yields
higher capacities. ITR is beneficial at low C (i.e., high input
noise), and as C increases, ITR remains beneficial only for
resource-intensive regulatory schemes whose cost M grows
sufficiently quickly with C. We note, once again, the large size
of these information differences, in bits.

V. DISCUSSION

An efficient regulatory pathway will respond to variation
in its signal across the full input dynamic range. But what
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FIG. 5. Direct transcriptional regulation (DTR) vs indirect translational regulation (ITR) at equal resources. (a) Comparison of the maximal
capacity as a function of C between indirect translational regulation (ITR, red curves) and direct transcriptional regulation (DTR, black curves)
scenarios, for three values of total resource cost (total mRNA number), M. Here, ymax = 10, F = 1. Compared to Fig. 2, ITR stops being
beneficial over DTR at lower C. (b) Capacity difference between the ITR and DTR models as a function of C and M. The thick red line marks
the (C,M) values that lead to equal capacities; in the regime above the red line ITR, in spite of intermediary regulatory steps, is beneficial
over DTR.

if a part of this dynamic range is associated with very high
input noise, as is the case for regulatory molecules present
at low concentration? Then, the pathway can either avoid
responding to those signals completely, thereby sacrificing
some of the bandwidth, or it can utilize reaction schemes
that are able to reduce the impact of high input noise. In
this paper we showed that indirect translational regulation
(ITR) is one such regulatory scheme. The intuitive reason for
the advantage of translational regulation is that every single
one of the M mRNA molecules that is being translationally
regulated by the input signal effectively acts as a “receptor”
for the input concentration; this results in an M-fold more
efficient averaging of input noise compared to the case of
direct transcriptional regulation (DTR), where a single DNA
binding site is acting alone as a receptor. Consistent with this
intuition, our results show that when input noise is dominant
(C 	 1), translational repression with high M can provide
large increases in channel capacity relative to direct regulation.

Increases in capacity, however, do not come for free.
First, the ITR scheme involves additional reaction steps and
intermediary regulatory molecules; as a consequence, new
noise sources, which we call “ITR noise,” are introduced.
Only when these sources are sufficiently small relative to
the input noise set by C, does the translational scheme yield
measurable benefits. Second, lowering ITR noise sources also
incurs metabolic costs associated with producing the required
intermediary molecules; this means that a realistic comparison
between the direct scheme and the translational repression
scheme is relevant only when carried out at comparable
resources. We explored these effects in detail to show when
translational repression is beneficial over direct regulation.

In this work we have analyzed only one particular reaction
scheme for translational regulation, but clearly many variations
on the same idea are possible. We examined several of
these possibilities, and found consistent results. First, the
transformation of the input c into the gene expression level
g in the DTR as well as the ITR model can be either repressive

or activating. We find no qualitative differences between the
two regulation schemes, and thus present only the repressive
scheme. The channel capacities of the two schemes, separately
optimized, differ by ∼0.1 bits, with activation performing
slightly better at C � 1, and vice versa. While the shapes
of the regulatory curves must be different by construction, the
general trends—sharper regulatory curves already for low C

in the ITR model, lower dissociation constants for high C in
the ITR model—for the activators are identical to those of the
repressors. Second, we examined how the precise description
of the input noise form [�B in Eq. (4)] influences our results.
In one limit, we can set �B = �1, corresponding to a single
binding site, while in the opposite limits we can set �B = �∞,
corresponding to a large number of binding sites [28,34,35].
Tracing through the full numerical analysis in both cases, all
differences are small, and largely confined to the regime in
which both C and M are small.

Our analytical model is made tractable by several technical
assumptions: The input noise depends on diffusion constants,
and we assumed equal diffusion constants for the input and
the intermediary molecules, and further that translationally
regulated mRNAs are immobile. Relaxing these assumptions
changes the effective diffusion rates in the diffusion noise
terms; in particular, highly mobile mRNAs might further
contribute to input noise reduction in the ITR model, Eq. (20).
We also had to make assumptions about how the translationally
regulated mRNAs are produced and how they interact with
the inputs. Apart from a change in ITR noise magnitude, the
model where translationally regulated mRNAs are present at
a fixed molecule count behaves identically to the model we
studied, where mRNAs are continuously made and degraded.
We have, however, not analyzed more complicated interaction
schemes between the input and the mRNA, e.g., one in which
the mRNA would sequester the input regulatory proteins. Last,
we have assumed that the noise in the system is Gaussian and
not overly large. This is supported by experimental evidence
for the paradigmatic case of Drosophila embryogenesis, where

022404-10



EXTENDING THE DYNAMIC RANGE OF TRANSCRIPTION . . . PHYSICAL REVIEW E 93, 022404 (2016)

crucial protein signals appear to be tightly controlled both at
the input and output side, with typical coefficients of variation
�10% [40,77–79]. Extending the applicability of our model to
systems in which the noise is non-Gaussian and/or large would
require a separate major computational effort (to numerically
compute the channel properties, find its capacity, and then
optimize it over parameters), which is beyond the scope of this
work.

We focused exclusively on intrinsic noise arising from
intracellular gene production and diffusion and have neglected
the effects of extrinsic noise. A recent study explored the
combined impact of intrinsic and extrinsic noise within the
framework of information theory, using stochastic simulations,
and found that extrinsic noise can cause overestimation of
the channel capacity and other nontrivial effects [80]. While
studying extrinsic noise with similar detail in our model
would require a completely new effort, we briefly assessed
the influence of extrinsic noise in the mRNA number M in an
approximate calculation (see Appendix B); our results indicate
that for a typical magnitude of the variance in M , the capacity
loss due to extrinsic noise in the input-noise dominated regime
(C < 1) is small.

What are the limits to noise reduction using translational
regulation? We started with a pedagogical example where
the input concentration is detected by M regulatory sites.
This scenario can be realized as a consequence of gene
amplification, which is commonplace in bacteria, but the
number of gene duplications (i.e., M) typically stays below 10
[81]. While gene amplification also occurs in some strongly
specialized eukaryotic cells, it is generally seen as a strategy to
massively increase the protein production rate [82–84], or as a
hallmark of cancer [85,86]. Alternatively, a high multiplicity
of M regulatory sites could occur in a single promotor or
enhancer region. Consequently, the sites would be packed
very closely on the DNA and thus the molecule “detected”
by one site would have a high likelihood of rebinding to a
nearby site, providing a statistically correlated, rather than
independent, sample of the concentration in the bulk. In this
regime, the decrease in input noise variance would be slower
than 1/M , and as M → ∞, the input noise would saturate to
a bound determined by the linear dimension of the cluster of
regulatory sites [2,28,70]. The same argument will ultimately
apply to M mRNA molecules of the ITR scenario. There, each
mRNA harbors a binding site of size �c ∼ 1–10 nm, but the
mRNAs typically are separated by distances d ∼ 1–10 μm.
Roughly, we can expect that input readouts will be independent
and the ITR mechanism effective so long as M � d/�c ∼
102–104, putting M in the range that we examined and where
it appears biologically plausible; recent experiments in the
Drosophila and zebrafish embryos and in mammalian cells
reported mRNA counts in the range 50–1200 per typical cell
volume [79,87–91]. For such values of M , we find significant
increases in capacity of 0.8–1.8 bits at C ∼ 0.1–1, with opti-
mal regulatory curves using high Hill coefficients |H ∗| � 4,
thereby accessing the full output dynamic range. Moreover,
the molecular mechanism for integrating the readout over M

such “receptors” is simple diffusion of the intermediary protein
y, unlike in the pedagogical example of M regulatory sites on
the DNA where we know of no plausible molecular integration
mechanism.

Are there biological examples of such indirect translational
regulation scheme? During early Drosophila morphogenesis,
one of the primary transcription factors that drive the anterior-
posterior (AP) patterning of the embryo is Bicoid, which
is established in a graded, exponentially decaying profile
along the AP axis [92–96]. Bicoid activates a number of
downstream genes directly in the anterior and the middle
region of the embryo where its concentration is highest.
Absolute concentrations of Bicoid are estimated to be ∼55 nM
at a maximum, falling to ∼8 nM at the midpoint of the
embryo [40,77]). At the posterior end of the embryo, where
its concentration is low and hard to detect quantitatively
using the imaging methods available, Bicoid translationally
represses caudal mRNA [46,47,97,98]. The caudal mRNA
molecules are produced by the mother, who deposits them
into the egg with a uniform distribution along the AP axis.
As they are bound and repressed by Bicoid, while the free
ones get translated into caudal protein, the embryo develops
a new gradient of caudal protein with high concentration at
the posterior and low in the anterior. Caudal acts much like
the intermediary protein y in our model, becoming a regulator
of patterning genes in the posterior. While such a scheme
involving an intermediary maternal mRNA and protein appears
wasteful at first glance, here we have shown that it may provide
a substantial benefit for information transmission at low
input concentration, i.e., in posterior regions of the embryo.
Although we are not familiar with any direct measurement of
caudal mRNA copy numbers, the copy numbers for the gap
genes [79] (and also bicoid [88]) are consistent with the range
M ∼ 102–103 mRNA per nuclear volume.

More generally, it is interesting to note that Bicoid is just
one member of a larger homeodomain protein family whose
members have the ability to act both as a transcriptional as
well as translational regulators [45–47]. Several other proteins
acting as translational regulators have been reported in the fly
embryo and oocyte [50–57], and in other eukaryotic species
[58–60], oftentimes in a developmental context. These findings
hint at the possibility that the regulatory principle implemented
by bicoid protein and caudal mRNA in Drosophila may be at
work also in other developmental systems. While translational
regulation has also been reported in bacteria [61–67], here
typical mRNA numbers are of order ∼1 [99], such that in
prokaryotes translational regulation may serve a different
purpose than averaging the input to enhance information
transmission. In summary, our results suggest that the dual role
of proteins as both transcriptional and translational regulators
is not just an accident of history, but a solution to a fundamental
physics problem faced by the cell.
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APPENDIX A: SHOT-NOISE PROPAGATION
IN A GENERIC SIGNALING CASCADE

Let us assume the following signaling cascade, described
by a system of Langevin equations for the signaling species xj ,
in which shot noise is generated at each level j ∈ [1, . . . ,n]
and (for j < n) propagated into the copy number of species
xj+1 via a regulatory function fj+1(xj ):

dx1

dt
= r1 − 1

τ1
x1 + ξ1

...
dxn

dt
= rnfn(xn−1) − 1

τn

xn + ξn. (A1)

In the steady state, for the noise powers of the Langevin noise
sources ξj we have

〈ξj (t)ξk(t ′)〉 =
(

Rj + x̄j

τj

)
δjkδ(t − t ′) = 2x̄j

τj

δjkδ(t − t ′),

(A2)

where R1 ≡ r1 and Rj>1 ≡ rjfj (xj−1), and x̄j = 〈xj 〉 denotes
the stationary mean. For our purposes we want to compute the
overall variance in the last component σ 2

n = 〈δx2
n〉.

Linearizing around the means x̄j via xj = x̄j + δxj and
fj (xj−1) � fj (x̄j−1) + f ′

j (x̄j−1)δxj−1 and Fourier transform-
ing for t → ω allows us to convert Eqs. (A1) into the following
equation system for the Fourier-transformed fluctuations δx̃j :

− iωδx̃1 = − 1

τ1
δx̃1 + ξ̃1

...

−iωδx̃n = rnf
′
n(x̄n−1)δx̃n−1 − 1

τn

δx̃n + ξ̃n. (A3)

For the Fourier-transformed noise powers ξ̃j we get

〈ξ̃j (ω)ξ̃ ∗
k (ω)〉 = 2τ−1

j x̄j δjk. (A4)

The system defined by Eqs. (A3) can be solved algebraically
by successively inserting the solution for δx̃j into the equation
for δx̃j+1:

δx̃1 = ξ̃1

τ−1
1 − iω

...

δx̃n =
n∑

j=1

ξ̃j

τ−1
j − iω

n∏
q=j+1

rqf
′
q

τ−1
q − iω

, (A5)

where we abbreviate f ′
q ≡ f ′

q(x̄q−1).
We can now obtain the variance σ 2

n by integrating over the
noise power spectrum Sn(ω) = 〈δx̃nδx̃

∗
n〉 of the fluctuations in

component n:

σ 2
n =

∫
dω

2π
Sn(ω) =

∫
dω

2π
〈δx̃nδx̃

∗
n〉

=
∫

dω

2π

n∑
j=1

2x̄j τ
−1
j

τ−2
j + ω2

n∏
q=j+1

(rqf
′
q)2

τ−2
q + ω2

, (A6)

where we recall that for mixed indices 〈ξ̃j (ω)ξ̃ ∗
k (ω)〉 = 0.

Isolating the n term of the sum, and introducing the
dimensionless integration variable w ≡ τnω, we can further
write

σ 2
n = x̄n

∫
dw

π

1

1 + w2︸ ︷︷ ︸
=1

+
n−1∑
j=1

∫
dw

π

x̄j

( τj

τn

)
1 + [ τj

τn
w

]2

n∏
q=j+1

(rqτqf
′
q)2

1 + [ τq

τn
w

]2 . (A7)

The integrand of the second integral can be written as

n∏
k=j

(
1 +

[
τk

τn

w

]2)−1

= 1

1 + w2

n−1∏
k=j

(
1 +

[
τk

τn

w

]2)−1

.

(A8)

The leading factor (1 + w2)−1 only has significant contribu-
tions when |w| � 1, and will be suppressed (together with the
whole integrand) for |w| � 1. Assuming that τn is the longest
time scale of the problem, i.e., ∀k : τn � τk , in the relevant
regime |w| � 1 all factors except for the leading one will be
�1. Thus, to a good approximation

σ 2
n � x̄n +

n−1∑
j=1

x̄j

(
τj

τn

) n∏
q=j+1

(rqτqf
′
q)2

∫
dw

π

1

1 + w2

= x̄n +
n−1∑
j=1

⎡
⎣ n∏

q=j+1

rqτqf
′
q

⎤
⎦2(

τj

τn

)
x̄j

︸ ︷︷ ︸
≡σ 2

n←j

. (A9)

APPENDIX B: INFLUENCE OF EXTRINSIC NOISE
IN THE mRNA NUMBER M

Here we briefly explore the impact of extrinsic noise in
the mRNA copy number M , the most important parameter of
our ITR model. In the original model mRNA is constantly
produced and degraded at finite rates, generating an intrinsic
contribution to the overall noise. Here, in contrast, we assume
that mRNAs are present at a fixed copy number M in each
system, but that across systems, the value of M is normally
distributed with a mean M̄ and a variance σ 2

M . Note that this
scenario corresponds to the limit of infinitely fast mRNA
production and degradation in our original model, implying
that the Fano factor F � 1. If the typical deviations of M from
the mean M̄ are small, to a first approximation we can expand
[dropping the subscript P (M) for brevity]〈

σ 2
c (M)

〉 = 〈
σ 2

c (M̄)
〉 + 〈(

σ 2
c

)′
M̄

(M − M̄)
〉︸ ︷︷ ︸

=0

+ 〈(
σ 2

c

)′′
M̄

(M − M̄)2
〉 + · · ·

� σ 2
c (M̄) + (

σ 2
c

)′′
M̄

σ 2
M, (B1)

where angular brackets denote averaging over the extrinsic
noise distribution and the uneven terms vanish because this
distribution is assumed to be Gaussian. The effective variance
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at the input, σ 2
c (M), has the form [Eq. (29)]

σ 2
c (M) = 1

Nmax

(
N + 1

M
R

)
, (B2)

where N corresponds to the output noise [term (i) in Eq. (29)]
which is independent of M (note that f ′ ∼ 1/M), and R
collects all the remaining terms after isolating their common
prefactor 1/M [note that the per-mRNA occupancy function
h(c) and its derivative do not depend on M]. It follows that

(
σ 2

c

)′′
M̄

= 1

Nmax

2

M̄3
R = 2

M̄2

(
σ 2

c (M̄) − 1

Nmax
N

)
, (B3)

and hence

〈
σ 2

c (M)
〉 � σ 2

c (M̄) + 2σ 2
M

M̄2

(
σ 2

c (M̄) − 1

Nmax
N

)
. (B4)

Let us now assume σ 2
M = β2M̄α , which we can use to study

two relevant example regimes: the case in which extrinsic noise

has a fixed coefficient of variation (CV), σM/M̄ = β (α = 2),
and the case in which the extrinsic noise is purely Poissonian,
σ 2

M = M̄ (α = 1,β = 1). We can then write

〈
σ 2

c (M)
〉 � σ 2

c (M̄) + 2β2

M̄2−α

(
σ 2

c (M̄) − 1

Nmax
N

)

� σ 2
c (M̄)

(
1 + 2β2

M̄2−α

)
. (B5)

As expected, fluctuations in M thus increase the effective
variance in our model, but this increase is bounded by a
factor ψ = (1 + 2β2/M̄2−α); the corresponding (maximal)
loss in capacity is given by an additive term �I = − 1

2 log2 ψ .
For a typical fixed CV of 10%, ψ ≡ (1 + 2β2) = 1.02. In
the Poissonian noise case, ψ ≡ (1 + 2/M̄), which quickly
approaches 1 as M̄ grows large; specifically, for M̄ � 100 we
have ψ � 1.02. For ψ = 1.02 the expected loss in capacity
is below 0.02 bits, small compared to the expected capacity
increase in the input-noise dominated regime (C < 1) for
M̄ � 10.
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[10] J. O. Dubuis, G. Tkačik, E. F. Wieschaus, T. Gregor, and

W. Bialek, Proc. Natl. Acad. Sci. USA 110, 16301 (2013).
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