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Biological systems, from cells to organisms, must respond to the ever changing environment in
order to survive and function. This is not a simple task given the often random nature of the signals
they receive, as well as the intrinsically stochastic, many body and often self-organized nature of
the processes that control their sensing and response and limited resources. Despite a wide range of
scales and functions that can be observed in the living world, some common principles that govern
the behavior of biological systems emerge. Here I review two examples of very different biological
problems: information transmission in gene regulatory networks and diversity of adaptive immune
receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws
impose on these systems and show that the optimal designs of both immune repertoires and gene
regulatory networks display similar discrete tiling structures. These solutions rely on locally non-
overlapping placements of the responding elements (genes and receptors) that, overall, cover space
nearly uniformly.

I. INTRODUCTION

A fascinating aspect of biological systems is the emer-
gence of large-scale reproducible function from the small-
scale molecular interactions between cellular elements
(proteins, genes). Living systems, both whole organisms
and molecular units, amaze us by the precision of their
performance. How is this precision achieved under the
physical constraints that biology must obey? One way
to approach this question is to note that many biological
systems display emergent behavior: macroscopic, stereo-
typed phenomena that cannot be explained merely by
composing the properties of the system’s underlying ele-
mentary, and intrinsically noisy, units. As we know from
physics, nontrivial emergent behavior often results from
interactions on different length, time, or energy scales.
These effects are also ubiquitous in biological systems, for
example in single cells expressing certain subsets of genes,
in highly orchestrated multi-cellular programs such as de-
velopment or the reliable response of the adaptive im-
mune system against attacking pathogens. Examples of
correlated phenomena have been extensively studied in
statistical physics for the past century, leading to increas-
ing our understanding of many-body interactions in con-
densed matter systems, as well as technological advances.

Concurrently, recent advances in experimental tech-
nologies give us great insight into the functioning of bio-
logical systems both at the molecular, inner-cellular level,
as well as the level of large scale functional systems in the
organism and the behavior of large scale groups of ani-
mals. These technical developments allow us to make
quantitative measurements of their constitutive elements
and link it to their function. Trying to understand the
functioning of these various systems, we see the emer-
gence of common principles governing their behavior, de-
spite the large biological differences, their functioning at
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different scales, and their fulfilling very different func-
tions. In recent years physicists have become more inter-
ested in how physical principles are realized in cells. In
the last decade, such an approach of taking inspiration
from different biological systems (such as vertebrate de-
velopment, chemotaxis, fly development, olfaction, visual
processing) has proven very fruitful in proposing poten-
tial design principles (e. g. error correction [1, 2], noise
minimization [3, 4], information transmission [5–11], ac-
quiring information [12], speed and accuracy of decision
making [13], minimax strategies [14], evolvability [15–18],
optimization of resources [19–21]) that govern how phys-
ical laws are realized in living organisms. The lessons
learned from these theoretical ideas have pushed the lim-
its of experiments in concrete systems and often ques-
tioned our understanding of basic physical and biological
processes.

Biological systems perform a function, limited both by
the physical laws they must obey, as well as limited re-
sources in the environment they find themselves in. Func-
tioning efficiently and reliably in a given environment re-
quires the matching of the statistical properties of the
system to those of the environment, as has been dis-
cussed in the context of neuroscience [22, 23]. If infinite
sensing elements were available, the environment could
be sensed up to the limits imposed by intrinsic physical
noise. Of course this is not the reality of any biological
system, where sensing and response must be fast and reli-
able and natural trade-offs appear in the design of these
systems. If we assume that the structure of biological
systems makes it possible for them to reliably interact
with their environment, we can attempt to understand
which elements of form are linked to certain functions.

Here I will discuss two very different systems that per-
form two very different functions: genes and their regu-
latory proteins, inspired by regulation in developmental
systems and the ensemble (called repertoire) of receptors
expressed on the surface of immune cells. Generally, the
goal when sensing is to cover the whole input space in
such a way that each part of this space is well covered,
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given the constraints of limited resources. The detailed
description and formulation of the goals of these two sys-
tems is very different, but similar trade-offs appear in
these two different contexts. As we shall see, the optimal
solutions that these two systems find are very similar,
although they are solutions to very different problems
that involve an adequate, yet different in their nature,
response to their environments. In short, they both in-
volve tiling the input space, be it the input concentration
of a developmental gradient or the current distribution of
antigens (elements of pathogens), with their sensory ele-
ments. I will concentrate on these two examples coming
from my own work. However the idea of tiling by sensory
systems has been wildly explored in neuroscience (where
it is termed ”lateral inhibition”) and comes about natu-
rally in information theory. I will mention briefly these
two cases in the discussion. I will start by explaining the
problem of interest in each of the systems and show how
tiling solutions emerge in both cases before discussing the
differences and similarities between them.

The work presented here is a review of work I did with
different collaborators, all of whom have been exploring
how sensory systems function. The gene regulatory sys-
tem inspired by fly development was done in collabo-
ration with Gašper Tkacik and William Bialek [7, 24–
26]. I considered the question of optimal immune reper-
toires with Andreas Mayer, Vijay Balasubramanian and
Thierry Mora [27]. In this review I chose to present only
one aspect of the results obtained for these two systems -
one that is common to both - tiling. The analysis in the
original papers has many different perspectives that I do
not discuss here.

II. GENE REGULATION

Differential expression of genes in cells is controlled
by gene regulatory networks that respond to changes in
protein concentrations indicative of internal and environ-
mental signals and accordingly modify the expression lev-
els of downstream genes. These regulatory elements thus
process the information about the current state of the
cell and its surroundings. The task of transmitting the
information about input concentrations is made more dif-
ficult by the fact that gene expression is a noisy process.
On the molecular level, the interactions between genes
and proteins occur by means of chemical reactions, which
are probabilistic in nature. Furthermore the scarcity of
the reaction products increases the intrinsic noise of the
cell, requiring a stochastic framework [7, 28–35]. There is
typically one active copy of the gene expressing DNA per
cell, a few copies of the short term template messanger
RNA (mRNA) and tens to hundreds copies of a protein
of a given species. The stochastic nature of gene expres-
sion has been confirmed experimentally [29, 31, 36–38].
Molecular noise thus imposes physical constraints on the
precision of gene expression.

Owing to the experimental and theoretical advances of

the last decade, we now have a good understanding of
the molecular details of the basic forms of gene regula-
tion. At the same time, our understanding of the basic
components of molecular noise has increased. We can
use this knowledge to go beyond the simple characteriza-
tion of gene regulatory networks and ask whether we can
identify the physical principles that govern the observed
behavior of circuits. Specifically, how do the specific reg-
ulatory elements come together in space and time, and
which parts of the regulatory process control the observed
features? How does molecular noise constrain regulation?

Not all gene regulatory systems must transmit infor-
mation efficiently, but experimental evidence [39] sug-
gests that in early fly development information transmis-
sion is close to optimal [5]. During development cells
differentiate and start expressing different sets of pro-
teins. The fruit fly (Drosophila melanogaster) is a model
organism to study early embryonic development and cell
differentiation [40, 41]. The fly mother produces bicoid
messanger RNAs (mRNAs), which are laid in the anterior
of the egg. As the proteins translated from these mRNAs
diffuse away they establish a decaying anterior-posterior
protein gradient, ∇c. Together with other maternal pro-
teins (e.g. Nanos), Bicoid proteins locally regulate the
expression of a set of downstream ”gap genes” (hunch-
back, kruppel, knirps and giant) to determine, among
other features, the anterior-posterior (head to abdomen)
axis. The gap genes control the expression of downstream
genes (called pair-rule genes) that form very well defined
stripes, which later lead to the formation of segments in
the fly’s body. The precise positioning and width of these
stripes is essential for correct development. One of the
puzzles of biology is how the position of the stripes can
be controlled so accurately. All the positional informa-
tion the fly embryo has is contained in the profiles of the
maternal proteins. This information must be transmit-
ted accurately in the different steps of gene expression,
or the developmental plan will fail.

In this initial stage of development, the continuous Bi-
coid concentration gradient gets translated into localized
expression patterns of the gap genes: hunchback is only
expressed in the first (anterior) part of the embryo, krup-
pel in the middle, giant and knirps in two sets of dis-
tinctly positioned stripes along the length of the embryo
[42]. Inspired by the regulation of the gap genes in early
fly developed, Tkacik, Bialek and myself were interested
in understanding the circumstances under which the ex-
pression of target genes becomes localized [7, 24, 26].
Even these early stages of fly development include a num-
ber of complicated interactions between the target genes,
so we started by studying a simplified system where one
continuous input (inspired by Bicoid) regulates L inde-
pendent downstream genes, inspired by the L = 4 gap
genes (see Fig. 1). We asked what are the regulatory in-
teractions between the one input and L output genes that
maximize the transmitted information between the input
and outputs, given the unavoidable, intrinsic molecular
noise. Since the Bicoid gradient has been shown to be
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FIG. 1: Gene regulatory networks respond to input signals
by producing output proteins. Regulatory functions that op-
timize the information between the input and output require
matching the statistics of the input distribution P (c) with the
properties of the network P ({g}|c). To do that we need to
specify the nature of the regulation, which we assume is well
described by the its mean regulatory function {g} and Gaus-
sian noise P ({g}|c) ∼ N ({g},Σc). The molecular biophysical
properties of network are summarized in the form of the in-
put/output function and the noise. For clarity of illustration
this is portrayed on the example of one gene, but the picture
generalizes to L genes. Optimizing information with respect
to the input distribution and the properties of the network
results in the optimal regulatory functions. The optimal func-
tions were obtained assuming Hill regulatory functions, and
are shown in Fig. 2.

stationary at the time gap genes are expressed [43], we
considered the simplified steady state formulation of the
problem and assumed all quantities are stationary. I note
that the results discussed in this review are inspired by
the question of precision in early fly development, how-
ever they are not a model of the gap gene system for
reasons presented in Section IV.

Information between the input and output is an in-
tuitive concept that is also formally defined as mutual
information, I(c, {g}), in terms of the difference of en-
tropies between the output distribution, S[P ({g})], and
the conditional distribution of the output given the in-
put, S[P ({g}|c)] [? ] [44, 45]:

I(c, {g}) =

∫
dcP (c) (S[P ({g})]− S[P ({g}|c)]) . (1)

Entropy measures the uncertainty of a given distribution,

S[P (x)] = −
∫
dxP (x) logP (x), where x is equal to {g}

and {g} conditioned on c in Eq. 1. Knowing the entropy
of the output distribution gives us a measure of our un-
certainty of the output. However knowing the value of
the output given a particular input further constrains
our uncertainty. And precisely that reduction of our un-
certainty about the output is the information we have
gained by measuring the input. Mutual information is
often written explicitly in terms of the probability distri-
butions as:

I(c, {g}) =

∫
dc P (c)

∫
dg P ({g}|c) log2

P ({g}|c)
P (g)

.(2)

(3)

The subject of information in gene regulation has previ-
ously been reviewed and the interested reader can refer
to [25] for more details.

To make progress, we also need to characterize the reg-
ulatory network. We can assume that the conditional dis-
tribution of the output given the input , P ({g}|c), that
describes the regulation process is well approximated as
a Gaussian with covariance Σ(c) around the determin-
istic regulatory function. In general for L interacting
output genes Σ(c) is the inverse covariance matrix of size
L × L of the fluctuations in the expression levels {g} at
fixed input c. However in the specific case discussed in
most of this review of L non-interacting genes, Σ(c) only
has diagonal entries coming from the variance in its own
output and the global input c, Σij(c) = σ2

i (c)δi,j . The
Gaussian assumption effectively reduces the problem of
describing the input and output probability distributions,
P ({g}) =

∫
dcP ({g}|c)P (c) to knowing the input distri-

bution and the parameters of the L dimensional Gaussian
distribution, i.e. its mean {ḡ(c)} and covariance matrix
Σ(c). Since this is rather repetitive to draw for L nonin-
teracting genes, Fig. 1 depicts the parametrization of the
network for one output gene.

Sensing and responding to external signals requires the
matching between the statistics of the environment en-
coded by the input distribution P (c) and the properties
of the network, P ({g}|c). In the case of gene regulatory
networks, one can imagine that the input signals that
are produced by biological regulatory networks have co-
evolved to achieve this matching. Following the example
of Laughlin [23], who asked what is the optimal input
distribution of photons that maximizes information flow
through a nonlinear channel with constant noise in the
fly visual system, we ask what is the optimal input dis-
tribution in the case of a Gaussian channel in which the
noise varies with the input concentration. Yet biological
systems must obey a number of constraints, including
paying a cost for producing molecules. We account for
the finite number of molecules in the cell by introducing a
maximum input concentration cmax. We thus optimize
mutual information with respect to the input distribu-
tion given this molecular constraint that we include by
limiting the range of input molecules (technically impos-
ing an upper integration bound for input concentrations)
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and using a Lagrange multiplier λ that demands the dis-
tribution is normalized:

1

δP (c)

[
I(c, {g})− λ

∫ cmax

0

dc P (c)
]

= 0, (4)

where I(c, {g}) is given by Eq. 3. The expression is eas-
ily maximized, because we have parametrized P ({g}|c)
as a Gaussian defined explicitly in terms of biophysical
rates of the problem. Using the result that the entropy of
a Gaussian distribution with variance σx is log2

√
2πeσ2

x,
the optimal input distribution P ∗(c) is found as a func-
tion of the uncertainty of the input c:

1

σ2
c ({gi})

=

L∑
i,j=1

[
dḡi(c)

dc
[Σ(c)−1]ij

dḡi(c)

dc

] ∣∣∣∣∣
c=c∗({gi})

(5)

=

L∑
i=1

[(
dḡi(c)

dc

)2
1

σ2
i (c)

] ∣∣∣∣∣
c=c∗({gi})

, (6)

to be

P ∗(c) ∝ 1

σc({ḡi(c)})
(7)

=
1

Z

 1

2πe

L∑
i,j=1

dḡi(c)

dc
[Σ(c)−1]ij(c)

dḡj(c)

dc

1/2

,(8)

with the normalization given by

Z =

∫ cmax

0

dc

 1

2πe

L∑
i,j=1

dḡi(c)

dc
[Σ(c)−1]ij

dḡj(c)

dc

1/2

.

(9)
The last line in Eq. 6 explicitly gives the expression for L
non-interacting genes, whereas the other expression keep
the general form for possibly interacting genes. Given the
optimal input distributions we can calculate the optimal
information of the system

I∗(c; {gi}) = log2 Z = (2πe)−1/2 log2

∫ cmax

0

dcσ−1c ({ḡi(c)}).

(10)
Eq. 10 explicitly shows that it is the irreducible noise

that controls the transmitted information between the
input and output and forbids the input (Eq. 8) and input-
output distributions from becoming delta functions.
Quantitative simultaneous measurements of the hunch-
back protein profile and Bicoid gradient [39] showed that
the mutually informative solutions (Eq. 8) combined with
experimentally measured noise profiles and input output
relations result in optimal output distributions that are
very similar to directly measured hunchback distributions
(see [5] and [25] for a discussion about the grounds for
optimizing information in gene regulatory networks).

We can now use our knowledge of the regulatory in-
teractions and noise properties in gene regulation and
account for all the biophysical constraints by parametriz-
ing the variance and the mean regulatory functions. We

chose a basic thermodynamic Hill model for regulation
(see below) and assumed that most of the noise comes
from the random production of proteins (Poisson noise -
first term in Eq. 11) and the diffusion limited switching
of the genes (second term in Eq. 11 following the work of
Berg and Purcell[46]):

σ2
i (c) =

1

Nmax

[
ḡi(c) + cc0

(
dḡi(c)

dc

)2
]
, (11)

where Nmax is the maximum number of independent
molecules that are made from gene i and c0 = Nmax/Daτ
is the characteristic concentration scale composed of the
characteristic length- and timescales for regulation (the
diffusion constant D, the size of the target binding site
a and the input integration time τ). For the purpose
of the present steady state calculation c0 and its com-
posite length and timescales are simply constants that
set a characteristic scale. See [47] for a detailed dis-
cussion of the Berg-Purcell noise term and its validity.
By identifying the relevant sources of noise we effectively
parametrize the variance by the mean input-output re-
lation, ḡi(c). The Hill functions that describe ḡi(c) are
sigmoidal smooth monotonic functions of the input con-
centration

ḡi(c) =
chi

Khi

i + chi

(12)

parametrized by the concentration which results in half-
maximal expression of the gene, Ki, called the dissoci-
ation constant, and the steepness hi of the regulatory
function ḡi(c), which is linked to the cooperativity of the
molecular reactions involved in regulation. The form of
this expression can be derived from thermodynamic ar-
guments with Ki = exp(−F/kBT ) where F is the Gibbs
free energy of binding per input molecule (see [48] for a
pedagogical thermodynamic derivation). The sign of the
cooperativity parameter hi differentiates between activa-
tion (hi > 0) and repression (hi < 0) of the target gene
by the input, and its value extrapolates between linear
regulation (hi = 1) and threshold switching (hi → ∞).
Each gene responds by producing a differentiable output
in a limited input concentration range ∼ Ki/hi set by
the cooperativity coefficient and measured in units of Ki

around the concentration midpoint given by the dissocia-
tion constant Ki. Below that range the gene is essentially
off, and above it has saturated its expression. More de-
tails of the parametrization can be found in [7, 24, 25].
In summary, this parametrization allows us to describe
the properties of the network in terms of two parame-
ters for each gene: the dissociation constant, Ki, which
describes the positioning of the gene in the input concen-
tration range and the cooperatively function which sets
the range of inputs the gene is responsive to. We can
now incorporate the parametrization of the regulatory
network in Eq. 12 and noise in Eq. 11 into the optimal
input distribution P ∗(c) in Eq. 8, which is explicitly ex-
pressed in terms of the uncertainty of the input c given
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the outputs {g}, given by the variance of the posterior
σ2
c ({g}). To find the optimal network we must find the

optimal values of the regulatory parameters.

The details of this calculation can be found in [7].
The optimization problem requires finding the optimal
parameters ({Ki, hi}i=1,..,L) of the regulatory functions
ḡi(c) that maximize logZ in Eq. 9, whose form is deter-
mined by the noise. The optimal solutions are a result of
the balance between the two sources of noise in Eq. 11:
the input noise coming from fluctuations in regulatory
protein concentrations (second term in Eq. 11), and the
output noise caused by the small number of produced
proteins gi (first term in Eq. 11). At small input con-
centrations the fluctuations from an unreliable readout
of c dominate and push the solutions to have higher val-
ues of Ki, whereas the need to distinguish different levels
of outputs reliably decrease the steepness of the regula-
tory functions and forces them to use also the smaller
concentration ranges, decreasing Ki and hi. The actual
parameters of the regulation function need to be opti-
mized numerically and for large concentration ranges of
input molecules we obtained the characteristic optimal
regulatory functions as shown in panels B–E of Fig. 2.
The different panels show the solutions for increasing in-
put concentration ranges. In these solutions each gene
is effectively regulated in a finite localized input concen-
tration regime. For small concentrations the first gene
is expressed and when it saturates, the second gene is
expressed. This trend continues and the gene expression
domains tile space.

The tiling solution is the most informative solu-
tion when the concentration range of input molecules,
[0, cmax], is large. When the concentration range of the
input molecules is small (see Fig. 2 A), the optimal solu-
tion consists of all genes making the same readout of the
input by having exactly the same regulatory function. In
this case the genes no longer tile space, but repeat the
same measurement to minimize the error coming from
reading out small concentrations. The transition from
one regime to another is continuous as a function of in-
put range concentration and information. This can be
explained in terms of the dissociation constants of each
gene, which give the concentration value at which a gene
is expressed at half maximum. Either there is enough
concentration range to use the discrete gene readout —
in this case the genes have different values of the dis-
sociation constants; or it is better to attempt a reliable
readout in one concentration regime, and the dissociation
constants collapse. The transition from the non-tiling to
tiling regimes in terms of the dissociation constants is
shown in Fig. 2 F. Figure 2 also shows that the tiling of
genes is gradual and the redundancy is lifted one gene at
a time as the input concentration range increases.
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FIG. 2: The most informative regulatory functions
{g1(c), . . . , g5(c)} (shown in different colors) for a gene reg-
ulatory network with one input c regulating L = 5 non-
interacting output genes, for increasing ranges of the max-
imum input concentrations cmax (A–E). At very small values
of cmax all L genes have the same regulatory function mak-
ing the readout completely redundant. For increasing values
of cmax the redundancy of the readout is lifted, as successive
genes individually cover particular subranges of the input con-
centration. (F) The emergence of the tiling solution in terms
of the gene dissociation constants K1, ...,K5 as a function of
cmax. We assumed Hill regulatory functions and Berg-Purcell
and birth-death noise coming from small molecule numbers
dominate protein fluctuations, as described in [7].

III. IMMUNE RECEPTORS

Let me now leave gene regulation and turn to a com-
pletely different system - the adaptive immune repertoire.
After this short presentation, I will return to the our in-
formation optimal gene regulatory network and compare
the characteristics of these two very different biological
systems.

The role of the immune system is to protect the or-
ganism from the many pathogenic threats it constantly
encounters. To fulfill this role, it must be prepared to
identify a great variety of unknown challenges, including
ones it has never been exposed to. It must thus maintain
a diversity of specialized cells, each specific to particu-
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FIG. 3: The simplified recognition problem in the adaptive
immune system: receptors from the repertoire distribution Pr

recognize antigens from the environment distribution Qa with
a cross-reactive recognition probability fr,a.

lar challenges, but which together cover the full array of
potential threats. These cells are called B and T-cells
and the particular receptors responsible for recognition
on each of these specialized cells are generated in an es-
sentially random manner [49]. Yet together these recep-
tors form a diverse repertoire that allows the immune
system to fulfill its function of recognizing pathogens ex-
ceptionally well. Since not all threats are equally likely,
the immune repertoire adapts to the changing pathogenic
environment, at the same time keeping a memory of past
infections. The diversity of the composition of the im-
mune repertoire emerges as a self- organized process,
stimulated by interactions with the environment.

Receptor proteins on the surfaces of these cells interact
with pathogens, recognize them through specific binding
and initiate the immune response. The interaction be-
tween pathogen proteins and receptors is based on the
binding of two polypeptides (one being part of the re-
ceptor, the other being part of the pathogenic protein)
and is specific, yet degenerate: a single receptor is able
to recognize more than one pathogen peptide (antigen)
and, conversely one antigen can bind to more than one re-
ceptor. How the highly dimensional space of pathogenic
peptides is covered by receptors is a particularly chal-
lenging example of a covering problem.

The immune response is controlled by many factors
on many scales, however it is initiated when a B or T-
cell receptor successful recognizes an element of a foreign
pathogen, called an antigen. In our approach, presented
in [27], we decided to focus on this part of the puzzle
and ask how should immune receptors be distributed in
order to minimize the harm from infections given a fixed,
static antigenic environment. Additionally, antigens and
receptors have a limited number of encounters, since it
takes time for a receptor and antigen to meet given the
finite concentrations of both and the size of the organism.
This imposes a constraint on the efficiency of recognition.
By formulating the problem in this way, we simplified it
to a static version of a covering problem with limited
resources. However even in this simple formulation the
exact meaning of most of the used terms needs to made
precise.

Since recognition is triggered by binding of receptors

and antigens, we can consider the problem in an effec-
tive recognition space. Both types of molecules (antigens
and receptors) live in this space and they recognize each
other if the distance between them in this space is small.
The idea of recognition space is similar to shape space
[50] which has been very useful for decades for describing
effective antigen-receptor interactions. We do not need
to further parametrize the space to describe this interac-
tion (for example as has been done using string models,
where both molecules are taken to be strings of effec-
tive amino acids with effective physical and biochemical
properties and their similarity is measured in terms of
a Hamming distance between the strings), however this
specific picture is a helpful concrete example of the type
of effective recognition space we have in mind. Since we
are thinking about a static picture, the receptor reper-
toire is described by a probability distribution Pr and the
fixed ensemble of antigens by Qa, as depicted in Fig. 3. A
receptor and antigen can meet and recognize each other
with a cross-reactive recognition probability fa,p. This
function accounts for the fact that one receptor can rec-
ognize many pathogens and, conversely, one antigen can
be recognized by many receptors. Given the recognition
probability, the probability of an immune response from
an encounter of a random receptor with a given antigen,
a, is P̃a =

∑
r fr,aPr.

Since we are interested only in the consequences (recog-
nition or not-recognition) of encounter events, we choose
to measure time in the mean number of encounters m.
The recognition events are random and Poisson dis-
tributed in m. The limitation on the number of encoun-
ters can also be understood in terms of finite sampling of
the receptors by the antigen. As the number of encoun-
ters increases while the antigen remains unrecognized,
the effective cost of the infection increases according to a
function Fa(m), due to the damage caused by the poten-
tially proliferating antigen to the tissues of the organism.
Therefore to obtain the total harm caused by a given
antigen we need to integrate the effective cost over the
number of encounters weighted by the distribution of suc-
cessful recognition encounters:

F̄a(Pr) =

∫ +∞

0

dmFa(m) P̃ae
−mP̃a . (13)

Finally, the overall cost to the organism needs to take
into account the costs from all the antigens:

Cost({Pr}) =
∑
a

QaF̄a(Pr). (14)

This cost accounts for the trade-off between a having to
distribute many receptors given a finite number of en-
counters in such a way that the total harm caused by
infections increases with time. Given a fixed antigen dis-
tribution, Qa we find the optimal distribution Pr of re-
ceptors that minimizes this cost.

The details of this optimization, as well as some an-
alytical intuition gained from limiting cases is discussed
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in detail in [27]. The interesting results for the purpose
of the current discussion are best seen in the numerical
results recounted in Fig. 4 A for a two dimensional ran-
dom antigen distribution. We see the optimal receptor
distribution tiles space in a random way: the distribu-
tion is discrete with receptors positioned as individual
non-overlapping peaks in recognition space. To quantify
this pattern in more detail we can look at the radial dis-
tribution function as a function of distance between the
receptor positions (Fig. 4 C). We see a strongly repelling
core at small distances, that forbids the placing recep-
tors too close to one another and characteristic regular
peaks at larger distances that indicate likely positions
of the receptors. Analyzing the structure function, con-
firms our intuition that the precise placement of the re-
ceptor is not important (Fig. 4 D). The structure factor
at long wavelengths corresponding to short inter-receptor
distances goes to 1, as it does in a liquid or disordered
glass. However at large scales the pattern is completely
reproducible, as quantified by the structure factor going
to zero at short wavelengths. Cross-reactivity allows one
receptor to cover all the antigens within a given range
and results in the hard core, whereas needing to protect
against even the rare but potentially dangerous antigens
requires a thorough coverage of the whole space.

A biological implication of this type of receptor distri-
bution is the fact that two individuals seeing roughly the
same antigen environment can have dramatically differ-
ent optimal repertoires aimed at targeting this specific
set of antigens, while both manage to attain complete
covering of the antigens, as illustrated by Fig. 4 B. Two
individuals can see two slightly different versions of the
same environment simply due to sampling different anti-
gens. Further discussion of the immunological implica-
tions can be found in the original paper [27].

The appearance of the tiling pattern in the optimal
solution depends on the value of cross reactivity. This is
most easily seen in the limiting case of taking both the
antigenic environments and cross-reactivity to be Gaus-
sian functions [27] - the localized peaked receptor distri-
bution is optimal only when the variance of the cross-
reactivity σ is more than

√
2 times larger than the vari-

ance of the pathogen distribution σ >
√

2σQ. The tran-
sition is continuous: the variance of the receptor distri-
bution decreases until it becomes a delta function.

IV. CONNECTION TO REAL SYSTEMS

The reasoning presented above finds the form of ide-
alized optimal regulatory networks and repertoires. The
role of such an approach is not necessarily to explain the
detailed form of a given biological design. In fact in both
cases, as is especially clear in the case of the immune
repertoire, we have greatly simplified the problem and
not taken into account important signaling and spatial
dependencies of the system. Our goal in both case was
to learn some general properties and understand which

FIG. 4: Optimal receptor distribution P ∗
r for two-dimensional

random environments (A). The antigenic landscape Qa is
generated randomly from a log-normal distribution with co-
efficient of variation κ = 1. (B) A cartoon representation
of the main characteristics of the optimal receptor distribu-
tion: locally the receptors are placed randomly and are non-
overlapping, whereas at large distances they uniformly tile
space in a way that two locally distinct patterns are indistin-
guishable on large scales. The lines guide the eye to compare
the two patterns. These properties are well quantified by an-
alyzing the tiling patterns using correlation functions (C-D).
(C) The radial distribution function of P ∗

r , g(R), has an ex-
clusion zone at small distances around each peak, with a pe-
riodic pattern at large distances characteristic of a local tiling
pattern. (D) The normalized power spectral density S(q) of
P ∗
r for different values of the coefficient of variation of the

distribution function of the environmental, κ, quantifies the
heterogeneity of the antigenic landscape at different scales.
Fluctuations average out at large scales (small q) to uniformly
cover space, whereas locally (large q) there are many possible
placements for the receptors (non-zero Sq).

ingredients lead to what type of characteristics. However
despite this great simplification, we do reproduce cer-
tain broad features of both gene regulation and immune
repertoires. In the first case, the separation of the input
space into domains of specific genes resembles the set-up
of gap genes in early fruit development. As we discussed
in detail in [7] adding interactions between the output
genes, such as exist between certain gap genes, allows us
to reproduce similar domains of expression bounded from
low and high concentration values by domains where the
gene does not produce proteins.

The work on optimal gene regulatory solutions re-
viewed here is a small part of an larger effort that an-
alyzes different important aspects of regulation in gap
gene expression [7, 24–26, 51]. My goal here is not to
discuss the regulatory elements important in gap gene
expression, but to use the precision of expression in de-
velopment to motivate the search for physical principles
that constrain the functioning of biological systems and
lead to localized solutions. As noted above, to fully
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understand the functioning and precision of gap genes,
one must consider mutual repression, self-regulation (dis-
cussed in [7] and [26], respectively), translational regula-
tion ([51]) and the role of the other maternal gradients
nanos, caudal and torso [52]. A qualitative agreement
between the informationally optimal solution and exper-
imentally observed regulatory functions of the partial in-
teracting regulatory network between the Bicoid gradient
and hunchback and krüppel was presented in [7] and dis-
cussed also in [25]. Specifically, including interactions be-
tween output genes modifies the tiling solution by down
regulating the expression of certain genes at high input
concentrations and produces patterns of localized expres-
sion for each of the genes, closer to the experimentally
observed expression patterns of real gap genes [53]. How-
ever a full quantitative comparison requires incorporating
all the elements mentioned above.

Direct comparison to experiments is harder in the case
of immune repertoires since our predictions are in the ef-
fective recognition space that has not yet been mapped
out experimentally, whereas experiments give us recep-
tor sequences. However, as noted above, this approach
results in certain concrete predictions. Specifically, based
on the optimization calculation we expect the repertoire
of two individuals to be different even if they are exposed
to the same environment. This prediction follows directly
from the results presented in Fig. 4 and depicted by the
cartoon in Fig. 4B. The optimal repertoires globally cover
antigenic space, but the local positioning of the receptors
is random, meaning that two individuals in the same en-
vironment can have very different placement of receptors
and thus different repertoire distributions. Controlling
the environment for humans is impossible, but detailed
studies of shared sequences between individuals show no
more overlap than expected by chance [54–57]. Zebrafish
B-cell repertoire studies also showed no correlation be-
tween the environment and repertoire [58, 59]. Another
corollary of our predictions is that receptors should form
well separated clusters. Analysis of the amino acid se-
quences of CDR3 regions in zebrafish B-cell repertoires
showed that the sequences cluster into a relatively small
number of attractors that are mostly different from the
genetic templates [58]. This hints that a tiling solution in
effective recognition space is not incompatible with the
data.

V. DISCUSSION

In the case of the two systems considered here, the ini-
tial formulation of the problem is very different. In both
cases we looked for optimal solutions, however they are
optimized for very different quantities. The gene regu-
latory network is optimized for information transmission
between the input and output - a common assumption in
many sensing systems [12, 23, 60, 61]. By contrast, the
immune repertoire is optimized to guarantee the least
costly response - to allow the immune system to respond

FIG. 5: The tiling of space by sensory elements emerges as
the optimal design in two biologically different settings: gene
regulatory networks and immune repertoires. The precise po-
sition of the tiling elements varies and is not uniform. It is
dictated by the matching between the properties of the envi-
ronment and the response elements. Yet the whole space is
fully covered (middle cartoon). The solution that maximizes
information transmission between the input and outputs of
gene regulatory networks tiles the concentration range (top)
and the cost to the organism is minimized when the repertoire
tiles the recognition space between receptors and antigens
(bottom). The details of the gene regulatory optimization are
discussed in the caption to Fig. 2. The optimal receptor dis-
tribution P ∗

r (green line) in one dimension is shown for a ran-
dom environment with an antigenic landscape Qa (blue line)
generated randomly from a log-normal distribution with co-
efficient of variation κ = 1. The optimal repertoire is peaked,
however the coverage of antigenic space P̃ ∗

a =
∑

r fr,aP
∗
r is

close to uniform.

to a diversity of antigens with the smallest delay weighted
by the potential harm of not responding. Nevertheless in
both problems there is a trade-off given by the limita-
tions of the system. In gene regulation the cell does not
have infinite input molecules at its disposal, forcing it
to distribute its response genes. In the immune system
the number of encounters between antigens and recep-
tors is finite, limiting the number of potential recognition
events. These two trade-offs lead to similar types of solu-
tions that show the same kind of characteristic features
on short and large scales.

Naturally the biological nature of the gene regulatory
and repertoire problem is very different. Additionally
even in terms of their formal theoretical description the
systems are very different. The gene regulatory prob-
lem includes placing discrete genes in a continuous space,
making the problem discrete from the beginning. In the
case of the repertoire the space is continuous and the
discrete distribution emerges by itself.

Despite these differences the gene regulatory and im-
mune repertoire show very similar tiling structures at dif-
ferent scales (see Fig. 5 for a direct comparison). Locally
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we observe clustering in both cases. The optimal reper-
toire has the structure of discrete peaks although the
probability of having the receptors at a given position
in recognition space is a priori continuous. The recep-
tors are discrete non-overlapping entities. Similarly the
range of input concentrations in which a given gene is
expressed, and in which we can discriminate the input
concentration by measuring the output, is locally lim-
ited. Reducing that input concentration range results in
the clustering of the regulatory properties of the output
genes, and the overall range of inputs they respond to. In
both systems we see this clustering of function on small
scales: some areas of recognition space or input concen-
tration are directly covered by a receptor or a given gene,
whereas nearby areas are not. Yet on the large scale in
both cases the whole space is nearly uniformly covered
by genes or receptors, as seen explicitly from the close to
uniform coverage of the antigens by the receptor distri-
bution, P̃a =

∑
r fr,aPr [27]. So at large scales we observe

the characteristic tiling of all of space by the total dis-
tribution of receptors, which leaves no part of effective
space uncovered.

The analogy depicted in Fig. 5 is made more explicit in
terms of the parameters of the two problems. The spe-
cific placement of the receptor corresponds to the con-
centration at half maximum expression of the gene (Ki)
- the placement of the gene in input concentration space.
But just as cross-reactivity ensures that areas of recogni-
tion space where there are no receptors remain covered,
∼ Ki/hi sets the range of input for which a given gene
differentially responds to input concentrations.

This structure of local clustering and global tiling of
space depends on the ratio of cross-reactivity to the
size of the space for immune receptors and the value
of the maximum input concentration scaled in natural
units of concentration for gene regulation. Natural units
of concentration result from the characteristic physical
timescales of regulation (diffusion constant D, signal pro-
tein integration time τ , the maximum number of inde-
pendent molecules of the output Nmax and typical size of
binding site a), c0 = Nmax/Daτ . If we consider a rela-
tively large effective space (whether it is the input con-
centration range or recognition space) the optimal solu-
tion will consist of L > 1 genes and L > 1 receptors that
use cross-reactivity to cover the whole pathogenic space.
If we now decrease this effective space, the optimal ge-
netic solutions will reduce to one gene and similarly the
whole recognition space can easily be covered by one re-
ceptor. The discrete structure of the optimal immune
repertoire distribution depends on the small scale noise.
If there was no intrinsic variability at small scales the
optimal distributions would be continuous since nothing
would differentiate between particular points in space.
This effect can be seen in the limiting case of Gaussian
antigen distributions where there is no small-scale noise
at all and the optimal receptor distribution is also Gaus-
sian (given a Gaussian cross-reactivity function).

The fact that solutions that optimize information in

a finite space result in discrete solutions that tile space
has been known for a long time [62, 63] and studied in
a number of systems from neuroscience [64] to ecology
[65]. The only way to obtain a continuous optimal dis-
tribution when optimizing information is to consider an
unbounded space. However the tiling solution discussed
here in terms of gene regulation is slightly different. The
genes are already discrete, imposing the discrete struc-
ture on the problem. The input concentration range adds
an additional layer of potential discreteness (clustering)
that is different from the discreteness of the information
optimal distributions discussed in other contexts. The
discrete number of genes is separated in concentration
space, which they tile, building a discrete structure from
already discrete units. This type of solution is analogous
to optimal tiling of the visual receptive range by retinal
ganglion cells [66, 67] and linked to the hypothesis of effi-
cient coding [22]. The pattern of repressing neurons that
process visual stimuli in the retina (”lateral inhibition”)
has been proposed as a way to remove redundancy in
the encoding of the signal that comes from correlations
in the environment (visual stimulus) and the response
(receptive field).

More generally, the appearance of discretized solu-
tions in continuous systems, similar to the tiling pat-
terns described here has been described in many differ-
ent contexts. Many of these analogies, pointed out to me
by Oliviere Rivoire and Thierry Mora, are often linked
to bet-hedging strategies [68] with applications ranging
from phenotypic stability [69], competition of individuals
for resources [70], ecology models of population regula-
tion [71–73], neural coding [64] to portfolio risk manage-
ment [74]. Of course discrete designs of components of
naturally occurring biological systems are very common.
For example, in neuroscience both the visual system [75]
and the olfactory system [76] use discrete receptors to re-
spond to continuous or quasi-continuous inputs, whereas
the existence of species is responsible for the interest of
ecologists in this topic. The retina system has been char-
acterized in great detail experimentally [77] and theoret-
ical detailed predictions have been put forward based on
the idea of efficient coding, which hypothesizes that sig-
nal processing has evolved to optimally encode natural
stimulus while minimizing resources, to the extent that
it is becoming possible to test these predictions against
existing the neural circuitry [78–81].

Lastly, we can ask what is the link between these op-
timal solutions, which are obtained in a static setting, to
real dynamical biological systems. How is the structure of
non-overlapping genes and well separated receptors that
nevertheless manage to completely cover space achieved
in terms of the natural dynamics of the systems? As was
explicitly shown in [27] a simple birth-death dynamics of
receptor clones where receptors compete for interactions
with antigens results in exactly the same optimal reper-
toire distributions as discussed above. There, mutual
competitive exclusion is responsible for the characteris-
tic tiling structure. In genes, the concentration ranges in
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which genes function are also mutually exclusive, as evi-
denced by their distinct dissociation constants. In our in-
formation optimization setup, the genes do not interact.
Yet the system achieved this solution by means of long
term evolution, which favored this non-overlapping state.
In fact, allowing two output genes to interact results in
an optimal network where the gene with a higher dissoci-
ation constant represses the expression of the gene with a
smaller dissociation constant. This further restricts the
range of activity of the gene with a lower dissociation
constant, since it gets turned completely off beyond a cer-
tain concentration. In this interacting gene example the
exclusion is encoded both in the dissociation constants
and the direct negative regulation. In general evolution
can use either one of these methods to arrive at non-
overlapping concentration ranges where these genes func-
tion, hence tiling solutions. Negative feedback or compe-
tition is essential for the dynamics to reach these locally
clustered, globally tiled solutions also in other systems.
Such behavior has been termed competitive exclusion in
ecology [82] and evoked as a reason for the emergence of
species, as well as lateral inhibition in neuroscience [83].

It is also worth noting that the optimal solutions
should be used as a guide for understanding and inter-
preting the complexity of biological systems. Real cells,

organisms or pathways need not be, and are probably
not optimal at all, or at least not for one quantity. Yet
by composing our optimal expectations with quantita-
tive experimental measurements, we can see which prop-
erties of the optimal solutions are reproduced in nature
and which differ. The differences give us important clues
about the constraints we have not considered in our ide-
alized calculation. Thus a certain level of abstraction
offers a theoretical tool for dissecting biological interac-
tions and their functional implications. As these two ex-
amples show it can also give general predictions about
the details of biological design.
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[7] Walczak AM, Tkačik G, Bialek W (2010) Optimizing in-
formation flow in small genetic networks. II. Feed-forward
interactions. Physical Review E 81:041905.

[8] Dubuis JO, Tkacik G, Wieschaus EF, Gregor T, Bialek
W (2013) Positional information, in bits. Proceedings of
the National Academy of Sciences of the United States of
America 110:16301–8.

[9] Tostevin F, ten Wolde PR (2009) Mutual Information
between Input and Output Trajectories of Biochemical
Networks. Physical Review Letters 102:218101.

[10] Tostevin F, ten Wolde PR (2010) Mutual information

in time-varying biochemical systems. Physical Review E
81:061917.

[11] de Ronde WH, Tostevin F, ten Wolde PR (2010) Effect
of feedback on the fidelity of information transmission of
time-varying signals. Physical Review E 82:031914.

[12] Vergassola M, Villermaux E, Shraiman BI (2007) ’Info-
taxis’ as a strategy for searching without gradients. Na-
ture 445:406–9.

[13] Siggia ED, Vergassola M (2013) Decisions on the fly
in cellular sensory systems. Proceedings of the National
Academy of Sciences of the United States of America
110:E3704–12.

[14] Celani A, Vergassola M (2010) Bacterial strategies
for chemotaxis response. Proceedings of the National
Academy of Sciences of the United States of America
107:1391–6.

[15] François P, Hakim V (2004) Design of genetic networks
with specified functions by evolution in silico. . . . of the
National Academy of Sciences . . . 101:580–584.

[16] François P, Hakim V, Siggia ED (2007) Deriving struc-
ture from evolution: metazoan segmentation. Molecular
systems biology 3:154.

[17] François P, Siggia ED (2010) Predicting embryonic pat-
terning using mutual entropy fitness and in silico evolu-
tion. Development (Cambridge, England) 137:2385–95.

[18] Gerland U, Hwa T (2009) Evolutionary selection be-
tween alternative modes of gene regulation. Proceedings
of the National Academy of Sciences of the United States
of America 106:8841–6.

[19] Savageau MA (1977) Design of molecular control mech-
anisms and the demand for gene expression. Proceedings
of the National Academy of Sciences 74:5647–5651.



11

[20] Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa
T (2010) Interdependence of cell growth and gene ex-
pression: origins and consequences. Science (New York,
N.Y.) 330:1099–102.

[21] Klumpp S, Hwa T (2008) Growth-rate-dependent parti-
tioning of RNA polymerases in bacteria. Proceedings of
the National Academy of Sciences of the United States of
America 105:20245–50.

[22] Barlow H (1961) in Sensory Communication p 217.
[23] Laughlin S (1981) A simple coding procedure enhances

a neuron’s information capacity. Z. Naturforsch 36:910–
912.
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