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We propose a Monte Carlo method for efficiently sampling trajectories with fixed initial and final conditions
in a system with discrete degrees of freedom. The method can be applied to any stochastic process with local
interactions, including systems that are out of equilibrium. We combine the proposed path sampling algorithm
with thermodynamic integration to calculate transition rates. We demonstrate our method on the well-studied
two-dimensional Ising model with periodic boundary conditions, and show agreement with other results for both
large and small system sizes. The method scales well with the system size, allowing one to simulate systems with
many degrees of freedom, and providing complementary information with respect to other algorithms.
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I. INTRODUCTION

A common feature of complex systems is the existence
of local attractors separated by high activation barriers [1,2].
When considering the dynamics on such landscapes, one
often finds the system trapped in these metastable states.
The long-term dynamics in these systems is then dominated
by long periods of local equilibration inside the metastable
states, separated by rare jumps from one state to another. The
simplest example is a continuous degree of freedom moving
in a potential with only two minima, which correspond to two
peaks of its steady-state probability distribution, separated by
an energy barrier. This problem can be tackled analytically, and
in some cases more complex problems can be mapped on it by
defining a one-dimensional reaction coordinate along which
the transition rates between the two metastable states can be
calculated. However, in most real systems, even those with
few degrees of freedom, the definition of a unique reaction
coordinate is often not possible, and one must attempt to
sample the reaction or transition paths from one metastable
state to another exhaustively. Yet the rarity of these transition
events makes the usual simulation techniques, which are
based on sampling of all possible trajectories, incredibly time
consuming. Naturally, the difficulty of sampling grows with the
number of degrees of freedom of the system. Many efficient
algorithms have been developed to calculate transition rates
efficiently, but often these techniques [3,4] are limited to
systems obeying detailed balance since they require knowing
the phase space density. Recently a number of methods
applicable to nonequilibrium systems has been developed
[2,5–12], which effectively calculate the flux of probability
between the steady states. In this paper, we present a Monte
Carlo technique for sampling transition paths with fixed initial
and final conditions in nonequilibrium systems. The technique
adapts the transition path sampling [5,6] method to discrete
systems, and is based on the local update of single-variable
paths [13]. We show how this method allows us to calculate
transition rates.

Metastable states appear in many natural systems, and the
problem of transitions from these states has been extensively
studied. For example, in magnetic systems below the critical
temperature, the system gets trapped in one of its low-energy
spin configurations and rarely explores the intermediate states

in between. In frustrated spin systems, the number of possible
metastable states increases rapidly with the system size,
leading to a very rugged landscape. On the contrary, in
ferromagnetic systems there are typically two low-energy
states—all spins up and all spins down. The simplest example
is the mean-field formulation of the Ising ferromagnet (the
so-called Curie-Weiss model), where transition rates can be
found exactly [14] by reducing the problem to one dimension.
Another well-studied example is the two-dimensional (2D)
Ising model, where the asymptotic large-size scaling for the
transition rate has been calculated rigorously thanks to a
detailed understanding of the thermodynamics [15–17] and
of the dynamics of the model [18].

A lot of progress in the development of methods aimed
at calculating transition rates between metastable states has
been made in the context of chemical reactions [1,5,19]. One
of these specific methods, which requires no prior knowledge
of the transition states, relies on the statistical sampling of
paths by means of a Monte Carlo simulation on the paths
themselves, which are treated as the microscopic states of the
system and whose action plays the role of an energy [5]: paths
are therefore sampled according to their action. The resulting
method is a finite-temperature generalization of the eikonal or
WKB method in which one finds the most probable (lowest
action) path, around which the contribution of all transition
paths is calculated within a quadratic approximation.

The string method [8] instead identifies the trajectories,
which carry most of the probability current, by constructing
a system of interfaces between the two metastable states in a
deterministic way. Other methods have considered the flux
of probability between states by constructing a system of
interfaces or benchmarks, and sampling trajectories between
them with a genetic algorithm (only the paths that pass the
benchmarks survive) to estimate the probability of survival
across all interfaces, from which the transition rate is calculated
[2,6]. In a similar spirit, cloning techniques have been used to
select, in a population of random walkers, those that correctly
sample the transition path [10–12].

It is worth mentioning that many of these nonequilibrium
methods have been developed with biological systems in mind.
For example, gene expression in cells can often lead to the
formation of multistable systems, corresponding to different
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expression levels of proteins which have been associated with
cell types [20]. Other applications include membrane pore
formation and conformation changes in polymers [2,9].

We generalized the transition path sampling technique of [5]
to discrete many-body systems, and obtained an algorithm
that should allow for the effective calculation of transition
rates between the metastable states of complex systems. The
method does not require the explicit forward Monte Carlo
simulation of the system, but instead performs a Monte Carlo
search directly on the paths, under the constraint of fixed initial
and final conditions. The method is quite general and can be
applied to a number of systems. It is most effective when
the system comprises many variables transitioning between
discrete states, and when the dependence of each variable on
the rest of the system only involves a small subset of the other
variables, or, said differently, when the graph representing
interactions between variables is sparse.

Throughout this paper, for ease of presentation, we describe
our method on the example of a ferromagnetic spin system, but
the method easily generalizes to any out-of-equilibrium system
with discrete variables. The method can be briefly described
as follows. It consists of a Monte Carlo Markov chain on
spin trajectories, where each move involves the update of the
path of one spin at a time. Consider a trajectory, or path, of
many interacting spins over a given duration, with fixed initial
and final conditions. The algorithm isolates the trajectory of
a single spin chosen at random, leaving the paths of all other
spins fixed or “frozen.” It then generates at random a new path
for this one spin, with a probability prescribed by the value
of the other spins with which it interacts, and with constraints
on its initial and final values. This conditional sampling of
a new single-spin path is performed using a transfer matrix
technique across time. The procedure is repeated many times
until the system of paths equilibrates, just like in a standard
Monte Carlo dynamics, with the difference that here paths play
the role of configurations. We combine this sampling method
with the technique of thermodynamic integration to calculate
transition rates in the two-dimensional (2D) Ising ferromagnet.

Our method shares similarities with the method of Dellago
et al. [5] and we discuss these similarities, as well as crucial
differences, in Sec. V. Our method can also be viewed as
an application to stochastic systems of ideas presented in
Krzakala et al. [13] in the context of quantum spins.

After defining the problem that we are setting out to
study (Sec. II), we recall some known results, in some cases
providing a more compact derivation, on transition rates in
the exactly solvable mean-field Ising model (Sec. II C). This
simpler case will help us build some intuition for subsequent
results. In Sec. III, we describe the method in the context
of the 2D Ising model. We then state the main results of
this paper in Sec. IV. These are best summarized in Fig. 1,
where we show a perfect agreement between our method and
exact matrix diagonalization of the master equation for small
systems. Section V contains our conclusions.

II. DEFINITION OF THE PROBLEM

In this section, we give our basic definitions and notations
about the class of models we study in this paper. We introduce
the Ising spin model with Glauber dynamics, and we write
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FIG. 1. (Color online) A summary plot of the main results of
this paper presented for the example of a 2D Ising ferromagnet with
periodic boundary conditions. The plot represents the energy gap
between the steady and first excited states, �, as a function of the
linear size of the system, L = √

N . The energy gap is equal to twice
the transition rate between the two macroscopic states of the system
(up and down). The results obtained from the path Monte Carlo
sampling method presented in this paper are shown as full black
circles; for small sizes, we also report results obtained from exact
diagonalization of the master equation (open red squares). Dashed
and dot-dashed lines represent asymptotic scalings (see Sec. IV B).

the explicit master equation describing its evolution. Recall
that although we choose this specific setting to illustrate our
method, the latter can be applied in a much more general
setting, namely, for generic discrete systems undergoing
a Markovian dynamics. In particular, the detailed balance
condition is not required.

A. Dynamics of an Ising spin system

Consider a system of N spins, interacting with each other
via the Ising Hamiltonian:

H = −
N∑

i=1

h̃iσi −
∑
i,j

Jij σiσj . (1)

Let us denote a given spin configuration by σ = {σi}. Under
the assumption that the dynamics is Markovian in continuous
time, it is entirely characterized by the instantaneous Poisson
rates wσ ;σ ′ of jumping from σ ′ to σ . The master equation
describing the evolution of the probability distribution of spin
configurations, pt (σ ), can then be written as

∂tpt (σ ) =
∑
σ ′

[wσ ;σ ′pt (σ
′) − wσ ′;σpt (σ )], (2)

∂tpt = Lpt , (3)

where the evolution operator L is defined as L(σ ; σ ′) =
wσ ;σ ′ − δσ ,σ ′

∑
σ ′′ wσ ′′;σ . We specialize to dynamics where

only one spin may flip at a time. We denote by σ \i the set
of “all spins but i,” and we denote by σ �i = {σ \i , − σi} the
configuration that differs from σ by a flip of spin i. The
variation of the Hamiltonian under one spin flip is

�E = H (σ ) − H (σ �i) = −2hiσi, (4)
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with

hi = h̃i +
∑
j (�=i)

Jijσj . (5)

We assume that wσ ;σ ′ vanishes unless σ ′ = σ �i for some i.
Transition rates are assumed to only depend on the energy
difference between the initial and final states. In this case, one
has wσ ;σ�i

= w(�E) = w(−2hiσi).
Therefore we can write the master equation as

∂tpt (σ ) =
∑

i

[w(−2hiσi)pt (σ �i) − w(2hiσi)pt (σ )]. (6)

The first term describes the probability of flipping spin i, so
that the system comes into the state σ from σ �i . The rate
w(�E) = w(−2hiσi) is the rate of flipping spin i from −σi to
σi , which depends on the value of the effective external field hi .
The second term is just a normalization condition accounting
for all events where the system leaves σ .

There are many ways to define w(�E) so that it is consistent
with the detailed balance condition,

w(�E) = e−β�Ew(−�E). (7)

Here we choose

w(�E) = e−β�E/2. (8)

Note that changing the overall normalization of the rates just
amounts to a rescaling of time. We stress once again that we
choose these rates for convenience, but our method applies to
any choice of rates, even if they do not satisfy detailed balance.

B. Transitions between two states

Suppose now that the Hamiltonian in Eq. (1) has two deep
minima, which we call A and B (see Fig. 2). If we neglect the
structure of these minima, at low enough temperature we can

σA σB

Energy

σ

σA σB

FIG. 2. A schematic representation of a transition problem
between two wells. Above: lines of constant energy are represented,
as well as possible transition paths. Below: side view showing the
energy barrier between the two states.

write a reduced system with only two states:

∂t

(
pA(t)

pB(t)

)
=

(−kA→B kB→A

kA→B −kB→A

) (
pA(t)

pB(t)

)
. (9)

This is of course a gross simplification, but it will prove
useful for defining and relating the different quantities that
we will consider later. It is straightforward to check that the
evolution operator has one zero eigenvalue (corresponding to
the steady-state solution) and one nonzero eigenvalue given
by � = kA→B + kB→A, sometimes called “energy gap” by
analogy with quantum mechanics.

The probability to be in B at time t given that the system
was in A at time t = 0 is given by

ZAB(t) = kA→B

kA→B + kB→A

[1 − e−(kA→B+kB→A)t ]. (10)

As we will explain in the following, our method allows us to
evaluate ZAB(t) at short times, where ZAB(t) ≈ kA→Bt , which
we will use to extract the transition rate kA→B . It should be
noted, however, that once the internal structure of the states
A and B is taken into account, then ZAB(t) is only linear
for times larger than a (small) transient time τtrans: ZAB(t) ≈
kA→B × (t − τtrans). This transient time may be interpreted as
the minimal time necessary for the transition to occur. We will
further discuss this point in the next sections.

As we discussed in Sec. I, transition rates are usually
estimated using a variety of complex methods [2,5–12]. We
will discuss these at the end of the paper. For the moment,
in order to illustrate the basic difficulty of the problem, let
us discuss three “naive” methods that one might try to use to
compute kA→B .

The simplest way to estimate transition rates, as well as
the full function ZAB(t), is to recourse to a traditional Monte
Carlo algorithm, for instance the faster-than-the-clock Monte
Carlo algorithm described in details in Sec. 7.2.2 of Ref. [21].
In this case, one starts many Monte Carlo simulations in state
A, and for each given time t , computes ZAB(t) as the fraction
of the simulations that are in state B at time t . Clearly, this
requires a large enough number N of simulations such that
a sufficient number of trajectories (which is roughly given
by N kA→Bt) perform the jump to state B spontaneously,
a condition which is quite difficult to meet when kA→B is
very small. The computational complexity of this method is
therefore proportional to N t ∝ 1/(kA→B), so it scales with the
inverse of the transition rate, which is typically exponential in
(some power of) the size of the system. An example will be
given below; see Fig. 9.

Another way is to find the mean first-passage time (MFPT)
of transition from one state to the other, as this time is
simply the inverse transition rate. The MFPT can be calculated
numerically by solving an equation derived from the backward
master equation [22]. In our simplified two-state model, the
probability distribution for the transition time from A to B

may be calculated by adding an absorbing boundary condition
at B. The probability that the system has passed at least once
by B after a time t , given that it started in A, reads

Z∗
AB(t) = 1 − e−kA→B t . (11)

The probability distribution function for the time of first
passage is then given by dZ∗

AB/dt , and its mean value is simply
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the inverse of the transition rate, as expected:

MFPTA→B =
∫ ∞

0
dt t

dZ∗
AB

dt
= 1

kA→B

. (12)

Note that at short times, we have ZAB(t) ≈ Z∗
AB(t) ≈ kA→Bt .

Of course, in a generic problem, the computational complexity
needed for the solution of the backward master equations is
proportional to (some power of) the size of the configuration
space of the system, which is typically exponential in the
system size (e.g., 2N for a spin system).

The third possibility is to find the energy gap directly
by exact diagonalization of the evolution operator L, by
calculating its largest nonzero eigenvalue. The gap describes
the characteristic rate (inverse of the characteristic time scale)
for the equilibration of the system. When both states are
equiprobable, k = kA→B = kB→A, the gap is simply 2k, which
is twice the transition rate. Note that when the states are not
equiprobable, there is no simple way to infer the transition rates
from the gap. This approach also requires a computational
complexity which scales exponentially with the size of the
system.

Because each of these naive methods require a compu-
tational time which scales exponentially in the size of the
system, they have a limited span of applicability: Monte Carlo
methods may only sample events that are not too rare, and
mean first-passage time and gap calculations are most efficient
for systems with few degrees of freedom. This is, of course,
the motivation for the development of more sophisticated
algorithms [2,5–12].

C. A simple case: The mean-field model

Before proceeding to the description of the numerical
method, it is useful to discuss briefly the simplest case,
namely, the mean-field Curie-Weiss model. This simple,
exactly solvable model will help us to set up notations
and get a feeling for the results we should expect for the
two-dimensional system.

The mean-field model corresponds to Eq. (1) with Jij =
1/(2N ), and h̃i = 0. It follows from these choices that
the Hamiltonian depends only on the global magnetization
M = ∑

i σi . Therefore, one can reduce the master equation
acting on the 2N spin configurations to a simpler one that
acts only on the N + 1 possible values of the magnetization
M ∈ {−N, − N + 2, . . . ,N − 2,N}. This allows us to obtain
analytical expressions for the mean first-passage time.

Although these results are not new and have been discussed
several times in the literature, we will discuss them in some
detail in order to illustrate the problem. Moreover, we will
present a compact derivation that, to our knowledge, has not
been previously presented in the literature. Here we present
the main results, and refer to the Appendix for details.

We define a free energy at constant magnetization:

F (M) = − 1

β
ln

⎡
⎣ ∑

σ | ∑i σi=M

e−βH (σ )

⎤
⎦ , (13)

= − 1

β
ln

[(
N

(M + N )/2

)
eβM2/2

]
. (14)

In the thermodynamic limit, N → ∞, we define an inten-
sive free energy:

βf (m) ≡ lim
N→∞

β

N
F (mN )

= −β

2
m2 + 1 + m

2
ln

1 + m

2
+ 1 − m

2
ln

1 − m

2
.

(15)

Minimization with respect to m gives the thermodynamic free
energy. For β < 1, there is a single minimum at m = 0. For
β > 1, there are two minima at m = ±m∗, which correspond
to two long-lived states at negative and positive magnetization.
We will use those as our states A and B, respectively.

Because the Hamiltonian depends only on M , it follows that
at any time t , pt (σ ) depends only on M as well (provided that
this is true at t = 0). It is then straightforward to derive a master
equation for pt (M) (see the Appendix). Transition rates can
then be calculated using standard techniques for estimating
mean first-passage times in one-dimensional systems (see
Sec. 7.4 of [22]).

Specifically, one can compute the mean first-passage time
in Mend > 0 of a system that starts in Mstart < 0 at time t = 0.
In the thermodynamic limit, the result does not depend on the
start and end points, as long as they scale linearly with N .
This mean first-passage time, which is also the inverse of the
transition rate, reads, in this limit,

MFPTA→B

= π

β

√
1

{1 − β[1 − (m∗)2]}(β − 1)
eβN[f (0)−f (m∗)]. (16)

Besides the prefactor, we recognize the Arrhenius law, which
relates the reaction rate to the exponential of height of the free
energy barrier.

The function ZAB(t) may also be calculated by exact
diagonalization of the evolution operator (see the Appendix).
The shape of this function at short times is reported in
Fig. 3. Keeping only the first two eigenvalues of the evolution

0 2 4 6 8 10
t

0
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1

Z
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B
(t

)/
Z

A
B
(T

)

Increasing N

FIG. 3. (Color online) The function ZAB (t)/ZAB (T ) (see the
Appendix for details on its calculation) for the mean-field
model, with T = 10 and β = 1.5, and for the values of N =
20,40,60,80,100,120,140,160,200,240,280,340,and 400 (from left
to right).

036710-4



TRANSITION PATH SAMPLING ALGORITHM FOR . . . PHYSICAL REVIEW E 85, 036710 (2012)

00101
N

0

1

2

3

4

5

6

7
τ t
ra
ns

FIG. 4. The transient time τtrans, as determined by a linear fit
ZAB (t) ∼ kA→B × (t − τtrans) of the curves in Fig. 3, is represented
as a function of N . The asymptotic behavior is consistent with the
scaling ∼ln(N ).

operator, corresponding to the steady state and the gap, one
recovers Eq. (10) in the thermodynamic limit. However, many
other terms are present, which correspond to (much) larger
eigenvalues, and therefore correspond to much shorter time
scales. Due to these terms, the function ZAB(t) is nonlinear
at small t ; it only becomes linear for times larger than these
short time scales. This nonlinearity is seen in Fig. 3. The
scaling with N of this time scale is interesting. To determine
it, we fitted ZAB(t) ∼ kA→B × (t − τtrans) at large times (but
still much smaller that 1/kA→B). The fit also yields the rate
kA→B , which coincides with the one given by Eq. (16) at large
N .

The time scale τtrans is related to the time needed to enter the
linear regime of ZAB(t). It is reported in Fig. 4, and it scales
as τtrans ∝ ln N at large N . There is a simple explanation for
this. The transition rate is dominated by the time it takes to
climb the barrier up to M = 0. At the same time, even if the
system is prepared at M = 0, it takes a time ∼ln N to descend
the barrier down to either the positive or negative state. This
can be intuitively justified because, in the N → ∞ limit, one
can shown that the master equation is close to a Fokker-Planck
equation with a noise term that scales as 1/N . It is easy to
convince oneself that in the presence of a noise level ε, the
time it takes to leave an unstable fixed point is of the order of
− ln ε, hence, the above scaling follows. We refer the reader
to [23] for a rigorous derivation. Therefore, ln N is the minimal
time that is needed to cross the barrier, and it is reasonable to
expect ZAB(t) to be sublinear at these time scales. This result
will turn out to have practical consequences for our method:
in order to observe the linear regime of ZAB(t), and extract
the transition rate kA→B , one needs to be able to compute
ZAB(t) for times significantly larger than the transient time
τtrans, which grows with N .

III. DESCRIPTION OF THE METHOD

Our method relies on the general principles of path
sampling; see, e.g., [5,13]. The idea is to perform a Monte
Carlo sampling of time traces for the entire system. Each such

trajectory is like a configuration in traditional Monte Carlo
methods, and moves in trajectory space are picked randomly
in such a way that the stationary distribution on trajectories
coincides with the desired one [5]. We first lay down the
setup of the problem in the context of the spin system in
Sec. III A. Then a detailed calculation of the Monte Carlo
transition probabilities is presented in Sec. III B. At this point,
we are ready to implement the sampling algorithm. We do this
by keeping all spin trajectories fixed, except that of one spin,
which is updated as explained in Sec. III C. We then describe a
procedure for calculating the transition rate from the sampled
trajectories in Sec. III D. Following [5], this method relies on
the technique of thermodynamic integration, as described in
Sec. III D1.

A. General framework

Our goal is to construct an efficient technique for calculating
the escape rates between attractors in a spin system. We
consider all trajectories that start in one attractor A at
time t = 0, and end in another attractor B at time t = T ,
i.e., all trajectories with fixed boundaries, as depicted in
Fig. 2. We denote the initial configuration as σA and the
final configuration as σB . To calculate the escape rate, we
need to sum up the normalized probabilities of all possi-
ble paths that go between these two points. To do this,
we will propose a Monte Carlo procedure on trajectories
(paths) with fixed boundary conditions (see Sec. III B).
The results of the sampling can be then integrated numeri-
cally to give the transition probabilities between metastable
states.

Figure 5 summarizes the basic idea of our approach to
path sampling, which is analogous to the standard heat bath
Monte Carlo algorithm, and was already applied to a quantum
Monte Carlo algorithm in [13]. We consider a trajectory for N

spins between configurations A and B. We want to sample the
space of all possible trajectories. In each Monte Carlo step,
we fix all spins but one; let us call it i. The spins interact
with each other via the Ising Hamiltonian in Eq. (1). If we
freeze the trajectories for all spins but i, then spin i feels the
effect of all of the other spins via an effective time-dependent

+_ +_ +_ +_ +_

+_ +_ +_ +_ +_

+_ +_ +_ +_ +_

+_ +_ +_ +_ +_

(a) (b)
σA

σB

σA

σB

hi(t)

σold
i (t) σnew

i (t)

FIG. 5. (Color online) (a) A schematic representation of an
N -spin trajectory from σA to σB . (b) In the method, we choose a
spin, erase its trajectory σ old

i (t), and replace it by a new trajectory
σ new

i (t) randomly drawn in the effective field hi(t) created by the
other spins, while keeping the initial and final conditions fixed.
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field hi(t):

hi(t) = h̃i +
∑
j �=i

Ji,j σj (t). (17)

Then, we will redraw (resample) the trajectory for spin i, ac-
cording to the probability distribution for the spin trajectories
with fixed ends, which is described in Sec. III B. We repeat the
procedure by choosing another spin at random and redraw its
trajectory in the same fashion, until the system of trajectories
has reached equilibrium.

In Sec. IV, we show that we can sample the space of paths
well. Similarly to Dellago et al. [5], we use this sampling
to compute the overall normalization of the trajectories
which begin in A and end in B, i.e., ZAB(T ), by means of
thermodynamic integration, as described in Sec. III D1. Given
this quantity, we can extract the transition rate as discussed
above by means of a linear fit at large T .

B. Probability of a path

We now write the probability for a given path σ (t) of the
system of N spins. We assign a probability PA(σA) to the initial
state and a weight χB(σB) on the final state, which will be used
to constraint it. Then the probability of a path, in discrete time
over Ns steps (the total time being T = Nsdt), is

P (σ (t)) = PA(σA)
Nsdt∏
t=dt

[(
1 −

∑
σ ′

wσ ′;σ t
dt

)
δσ t ,σ t+dt

+wσ t+dt ;σ t
dt(1 − δσ t ,σ t+dt

)

]
χB(σB). (18)

The first term in the product describes the probability that no
spin flips in time dt , and the second term accounts for all
the possible spin flips that can occur, as described by the rate
matrix wσ t+dt ;σ t

.
To write the continuum limit of this expression, we

subdivide the trajectory into m = 1, . . . ,M intervals, such that
the configuration inside each interval is constant. The first
interval starts at t0 = 0 and σ = σ 1 = σA up to t1; the second
interval starts at t1 and ends at t2 and σ = σ 2; and so on, until
the last interval, which starts at tM−1 and ends at tM = T with
σ = σM = σB . In this case, the probability density of a whole
trajectory can be written as

dP (σ (t)) = PA(σA)

{
M∏

m=1

exp

[
−(tm − tm−1)

∑
σ

wσ ;σm

]

×
M−1∏
m=1

wσm+1,σmdtm

}
χB(σB). (19)

The first term describes the probability of nothing happening
(no flip) to any of the spins in a given time interval between
tm and tm−1, exp[−(tm − tm−1)

∑
σ wσ ;σm ]. The second term

describes the probability of a spin flip happening at the end
of that interval, wσm+1,σm . Then we take the product over all
intervals m = 1, . . . ,M , since the events in each interval are
independent. Note that there are M intervals, but M − 1 ends
of intervals, and that the density dP has to be interpreted,

for a given M , as a density over the continuous flip times,
dt1, . . . ,dtM−1.

With the choice of the rates we used when writing Eq. (6),
this expression simplifies greatly because the only kind of
event that can happen are single spin flips (only one spin can
flip at a time). We denote by im the spin that flips at time tm.
Therefore, σm+1

im
= −σm

im
. The rates can be rewritten as

wσm+1;σm = w
( − 2hm+1

im
σm+1

im

) = w
(
2hm

im
σm

im

)
(20)

(note that hm
im

= hm+1
im

, as only m flips between m and m + 1),
and ∑

σ

wσ ;σm =
∑

i

w
(
2hm

i σm
i

)
. (21)

Using Eqs. (20) and (21), we can rewrite the probability of the
whole trajectory in Eq. (19) as

dP (σ (t)) = PA(σA)

{
M∏

m=1

exp

[
−(tm − tm−1)

∑
i

w
(
2hm

i σm
i

)]

×
M−1∏
m=1

w
(
2hm

im
σm

im

)
dtm

}
χB(σB). (22)

+_ +_ +_ +_ +_

+_ +_ +_ +_ +_

+_ +_ +_ +_ +_

+_ +_ +_ +_ +_

(a) (b)

?

+_ +_ +_ +_ +_

+_ +_ +_ +_ +_

_

_

+

+_ +_ +_ +_ +_

+_ +_ +_ +_ +_

hi(t)

σA

σB

σA

σB

σA

σB

σA

σB

k = 1

k = 2

k = K

k = 3

_

_

+

+

+

+

+

σi(t)

k = 1

k = 2

k = 3

k = K

(c) (d)

FIG. 6. (Color online) Updating one spin path. (a) We fix all the
other spins and redraw the trajectory for spin i. (b) The probability
of a trajectory for spin i depends on the effective external field hi(t)
that comes from all the other frozen spins j , as well as the fields
h̄j that each of these spins feel in the absence of i. We divide the
trajectory into K time intervals, denoted by k, on which these fields
are constant. (c) We first draw a value of the spins at the boundaries
of the K interval, based on Eq. (27). (d) We then fill in the trajectory
between these boundaries for each of the intervals, according to
Eqs. (35)–(37).
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C. Updating one spin path

Now, as outlined in Sec. III A, we fix all spins but one,
σi , and redraw its trajectory [see Fig. 6(a)]. This spin now
evolves according to the effective external field hi(t), as
shown in Fig. 6(b), which varies according to the spins with
which i interacts. We define K time intervals, indexed by
k = 1, . . . ,K , delimited by the times t0 = 0, t1, . . . ,tK = T
at which the environment of i changes; that is, the times when
one of the other spins flips [see Fig. 6(b)]. Let us call jk the
spin that flips at time tk . In each interval k, the spin i sees a
constant effective field hk

i , as shown in Fig. 6.
The conditional probability distribution from which the

path for spin i is chosen, dP (σi(t)|σ \i(t)), can be derived from
the expression in Eq. (22). Let us consider each interval k in
which the environment of i is constant. Within each interval
(tk−1,tk), let us define lk subintervals, indexed by � = 1, . . . ,lk ,
and delimited by the times t�k , � = 1, . . . ,lk − 1, defined as

the times when spin i flips. We extend this definition with
the convention t0

k = tk−1 and t
lk
k = tk . The value of spin i in

subinterval (k,�) is constant and is denoted by σ
k,�
i . Naturally,

at t = tk , we have σ
k,lk
i = σ

k+1,1
i ≡ σ k

i . These notations for
intervals, subintervals, and spin values are schematically
depicted in Fig. 7.

The expression in Eq. (22) has to be broken up into the
terms that describe the flips of σi , and the terms that describe
the evolution of the other (frozen) spins, which depend also on
σi(t), through the effective field that they feel: hj (t) = h̃j +
Jjiσi(t) + ∑

p �={i,j} Jjpσp(t). Isolating the part that depends
on σi , we can rewrite hj (t) = h̄k

j + Jijσi(t), where h̄k
j is a

constant in each interval k.
Putting all this together, we can write the conditional

probability distributions from which the trajectories for spin i

are chosen, keeping the other spins j �= i fixed, as

dP (σi(t)|σ \i(t))

∝ PA(σA,i |σA,\i)
K∏

k=1

⎧⎨
⎩

lk∏
�=1

exp

⎡
⎣−(

t�k − t�−1
k

) ⎧⎨
⎩w

(
2hk

i σ
k,�
i

) +
∑
j �=i

w
[
2σ k

j

(
h̄k

j + Jjiσ
k,�
i

)]⎫⎬⎭
⎤
⎦ lk−1∏

�=1

w
(
2hk

i σ
k,�
i

)
dtk,�

⎫⎬
⎭

×
K−1∏
k=1

w
[
2σ k

jk

(
h̄k

jk
+ Jjkiσ

k
i

)]
χB(σB,i |σB,\i). (23)

The term in the outermost curly brackets describes the
evolution of σi in one of the intervals of constant environment,
which has two contributions:

(1) The product of exponentials comes from inside the
subintervals, where neither σi nor its environment change.
It has two contributions of its own: one is the probability of i

not flipping, and the other is the probability of all other spins
not flipping.

(2) The second product in the outermost curly brackets is
the probability of σi flipping, which happens between each
(k,�) subinterval.

hi(t)

==

t1 t2 tK−1 Tt = 0 t12 t22 t13 t23

k = 1 k = 2 k = 3

σ1
i σ2

i
σK−1

i

σA
i

σB
i

FIG. 7. (Color online) Schematic of notations used for drawing a
single-spin path. The times tk at which the environment changes are
denoted by red (dark) marks. The value of spin i at these times, σ k

i ,
is drawn from Eq. (27). Spin flips of i within each interval occur at
times t �

k , denoted by green (light) marks. At these times, spin i flips
from σ

k,�
i to σ

k,�+1
i .

The third line and last product over k is the probability
of spin jk flipping at time tk , which depends on σi through
the field hjk

. Note that the rate of flipping depends on
the value of σ

k,lk
i = σ k

i specifically at the end of the k

interval.
We now want to draw a single-spin trajectory σi(t) from the

probability distribution described by Eq. (23). Following [13],
we split this task in two parts. First, we draw the values σ k

i

of spin i at the boundary times tk (Sec. III C1). Second, we
draw the trajectory of σi(t) in each of the intervals (tk−1,tk)
with fixed initial and final conditions σ k−1

i and σ k
i , which just

amounts to drawing the times t k� (Sec. III C2).

1. Drawing the boundary values

Here we show how one can draw the values of spin i

between intervals of constant environment, denoted by σ k
i =

σ
k,lk
i = σ

k+1,1
i , together with the initial and final values, σ 0

i ≡
σA

i and σK
i ≡ σB

i . Having fixed the values at the boundaries
of the k intervals, we will then draw the trajectory for σi in
each interval k.

We therefore have to construct the joint probabilityP (σA
i =

σ 0
i ,σ 1

i ,σ 2
i , . . . ,σK

i = σB
i ) of the boundary values of σi . To

do this, we need to sum over all possible paths that are
consistent with the given boundary values. This is easily done
by considering the terms in the outermost curly brackets in
Eq. (23), and observing that its sum over paths going from
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σ k−1
i to σ k

i can be written as follows:

σ k−1
i →σ k

i∑
paths

⎧⎨
⎩

lk∏
�=1

exp

⎡
⎣−(

t�k − t�−1
k

) ⎧⎨
⎩w

(
2hk

i σ
k,�
i

) +
∑
j �=i

w
[
2σ k

j

(
h̄k

j + Jjiσ
k,�
i

)]⎫⎬⎭
⎤
⎦ lk∏

�=1

w
(
2hk

i σ
k,�
i

)
dtk,�

⎫⎬
⎭ = 〈

σ k
i

∣∣e(tk−tk−1)Lk
i )
∣∣σ k−1

i

〉
,

(24)

where the operator Lk
i is a 2 × 2 matrix defined by

〈σ ′|Lk
i |σ 〉 =

{
−w

(
2hk

i σ
) − ∑

j �=i w
[
2σ k

j

(
h̄k

j + Jjiσ
)]

for σ ′ = σ,

w
(
2hk

i σ
)

for σ ′ = −σ.
(25)

This relation is formally equivalent to a Suzuki-Trotter
representation [24], and may be obtained by discretizing in
small time steps dt and expanding the exponentials. For a
detailed derivation of a similar relation, see [13]. Note that
the matrix Lk

i differs from the transition rate matrix for a
spin evolving in a constant field: indeed, we note that having
fixed (frozen) all the other spins j , we interfered with the
natural dynamics of the system, and we cannot now derive the
probability of the trajectory for spin i directly from collapsing
the master equation. Still, we can interpret the result above as if
the spin i was evolving under the modified Markov dynamics,

∂tpt = Lk
i pt . (26)

However, this analogy might be misleading since∑
σ ′ 〈σ ′|Lk

i |σ 〉 �= 0, therefore, the dynamics does not conserve
the probability (the vector pt cannot be interpreted as a
probability).

In order to find the density distribution from which the
values of σ k

i are drawn (the values at the boundaries of the k

intervals), we use this result and we obtain

P
({

σ k
i

}|σ \i(t)
) ∝ ehA

i σA
i

K∏
k=1

〈
σ k

i

∣∣e(tk−tk−1)Lk
i )
∣∣σ k−1

i

〉

×
{

K−1∏
k=1

w
[
2σ k

jk

(
h̄k

jk
+ Jjkiσ

k
i

)]}
ehB

i σB
i .

(27)

The weight on the boundary states A and B are described by
effective fields hA

i and hB
i , which depend on the other spins

(this is possible because spins can take only two values). The
first product is the probability of transitioning from σ k−1

i to
σ k

i in interval (tk−1,tk), and the second product contains the
dependencies of the other spin flips on σi . In the form written
above in Eq. (27), P ({σ k

i }|σ \i(t)) is a one-dimensional Ising
chain, therefore the values of {σ k

i } can be easily drawn by
means of transfer matrices [13].

Now one needs to diagonalize the matrix L. In our specific
example, we can rewrite the matrix L in a more compact form:

〈σ ′|Lk
i |σ 〉 = eβhk

i σ
′/2〈σ ′|Mk

i |σ 〉e−βhk
i σ/2,

〈σ ′|Mk
i |σ 〉

=
{−w

(
2hk

i σ
) − ∑

j �=i w
[
2σ k

j

(
h̄k

j + Jjiσ
)]

for σ ′ = σ,

w
(
2hk

i σ
)
eβhk

i σ for σ ′ = −σ.
(28)

Thanks to the detailed balance condition, the diagonalization
task is simplified. The matrix M is symmetric and can be
written as [25]

Mk
i = Mk

i I + Bk
i σz + �k

i σx, (29)

where

�k
i = w

(
2hk

i

)
eβhk

i , (30)

and

Mk
i = 1

2

⎧⎨
⎩−w

(
2hk

i

) −
∑
j �=i

w
[
2σ k

j

(
h̄k

j + Jji

)]

−w
(−2hk

i

) −
∑
j �=i

w
[
2σ k

j

(
h̄k

j − Jji

)]⎫⎬⎭ , (31)

and

Bk
i = 1

2

⎧⎨
⎩−w

(
2hk

i

) −
∑
j �=i

w
[
2σ k

j

(
h̄k

j + Jji

)]

+w
(−2hk

i

) +
∑
j �=i

w
[
2σ k

j

(
h̄k

j − Jji

)]⎫⎬⎭ , (32)

where I is the identity and σx,σz are Pauli matrices. The
diagonalization of Bσz + �σx leads to

〈σ ′|eλ(M I+Bσz+�σx )|σ 〉 = eλM

×
{

cosh(λ�) + σ B
�

sinh(λ�) if σ = σ ′,
�
�

sinh(λ�) if σ = −σ ′,
(33)

with the shorthand � = √
B2 + �2. We arrive at the final

result,

〈σ ′|eλLk
i |σ 〉 = eβhk

i σ
′/2〈σ ′|eλMk

i |σ 〉e−βhk
i σ/2

= eβhk
i (σ ′−σ )/2〈σ ′|eλ(Mk

i I+Bk
i σ z+�k

i σ
x )|σ 〉

= eλMk
i cosh

(
λ�k

i

)
×

⎧⎨
⎩

1 + σ
Bk

i

�k
i

tanh
(
λ�k

i

)
if σ = σ ′,

e−βhk
i σ

�k
i

�k
i

tanh
(
λ�k

i

)
if σ = −σ ′.

(34)

Using this expression, the boundary values σ k
i are drawn

according to Eq. (27) using the transfer matrix technique. Note
that the constant term eλM cosh(λ�) does not depend on σ and
can be absorbed into the normalization of Eq. (27).
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2. Drawing the trajectory inside each interval

During each interval (tk−1,tk), the values of
M,B,�,�, and h are constant and we drop the indices
from now on. The trajectory of σi is built recursively. Suppose
that the trajectory has been built up to t , tk−1 � t < tk , and
ends at σi(t) = σ (at the start of the algorithm, t = tk−1). We
denote by λ = tk − t the duration of the remaining interval,
and σ ′ ≡ σ k . If σ = σ ′, then the probability of σi not flipping
at all in the remaining interval (t,tk) is

eλ〈σ |L|σ 〉

〈σ |eλL|σ 〉 = eλBσ

cosh(λ�) + σ B
�

sinh(λ�)
. (35)

If this is the case, then the whole trajectory between tk−1 and
tk is now completed and the routine is stopped. Otherwise, the
next flipping event occurs at time t + u, where u is drawn from
the cumulative distribution:

G(u; σ,σ ′) =
∫ u

0 dv ev〈σ |L|σ 〉〈σ ′|e(λ−v)L|−σ 〉w(2hσ )∫ λ

0 dv ev〈σ |L|σ 〉〈σ ′|e(λ−v)L|−σ 〉w(2hσ )

=
∫ u

0 dv evBσ 〈σ ′|e(λ−v)(Bσz+�σx )|−σ 〉∫ λ

0 dv evBσ 〈σ ′|e(λ−v)(Bσz+�σx )|−σ 〉
. (36)

This formula coincides exactly with that in [13], and a short
calculation gives

G(u; σ, − σ ) = 1 − eσBu sinh[(λ − u)�]

sinh(λ�)
,

G(u; σ,σ )

= cosh(λ�) + σB
�

sinh(λ�)

cosh(λ�) + σB
�

sinh(λ�) − eσBλ

−eσBu{cosh[(λ − u)�] + σB
�

sinh[(λ − u)�]}
cosh(λ�) + σB

�
sinh(λ�) − eσBλ

. (37)

Once u is drawn, we update t → t + u, σ → −σ , and we
repeat the procedure until the trajectory is completed over
(tk−1,tk). We implement this algorithm for each interval.

D. The calculation of the rates

We assume from now on that thanks to the algorithm
previously described, we are able to sample efficiently the
dynamical trajectories for the whole system generated by the
probability in Eq. (22), which we write in a compact form as

dP (σ (t)) = PA[σ (0)]P[σ (t)] χB[σ (T )]. (38)

The first term is the probability of the initial condition, the
second term describes the stochastic evolution of the system,
and the last term is a constraint on the final state. We also
indicated explicitly the time T at which the constraint on B is
imposed. We define the “partition function” as

ZAB(T ) =
∫

dP [σ (t)] =
∑
σ (t)

PA[σ (0)]P[σ (t)] χB[σ (T )],

(39)

which is the probability that the system, starting in A at time
t = 0 is found in state B at t = T ; this was introduced and
computed for the reduced two-state problem in Eq. (10) above.
This is the quantity we want to compute in order to extract the

transition rate kA→B . Note that in the absence of the constraint
at the final time, χB(σ ) = 1, we have

ZA(T ) =
∑
σ (t)

PA[σ (0)]P[σ (t)] = 1, (40)

as follows from the normalization of probability.

1. Thermodynamic integration

The estimation of the ZAB(T ) requires one to use the
technique of thermodynamic integration. In this technique,
one chooses a suitable parameter μ of the system (e.g., the
temperature or the magnetic field: we will give an example
below) and defines an interpolation path μ(s), s ∈ [0,1], such
that for s = 0, ZAB[T ,μ(0)] can be easily computed, and that
for s = 1, ZAB[T ,μ(1)] coincides with the actual partition
function one wants to estimate. Then one carries out the path
sampling procedure described in the previous sections along
the interpolation path. The partition function is then estimated
by

ZAB[T ,μ(1)] = ZAB[T ,μ(0)]e
∫ 1

0 ds UAB [T ,μ(s)] dμ

ds , (41)

where ZAB[T ,μ(0)] is assumed to be easily calculable, and
where

UAB(T ,μ) = ∂ ln ZAB(T ,μ)

∂μ
(42)

can be estimated as an average over the transition paths
generated at the value μ of the parameter.

As in the usual Monte Carlo methods, the choice of
the optimal interpolation path depends on the system under
investigation. Different choices can lead to very different
performances of the method, in particular because one must
avoid the presence of phase transitions along the interpolation
path. We will discuss this problem in more detail for our
specific example in the following.

This method may not seem very efficient because one is
required to perform a thermodynamic integration for each
value of the final time T . A large enough number of values of
ZAB(T ) are indeed required to identify the large-time linear
regime and extract kA→B , as we have already discussed. Luck-
ily enough, in some cases one can avoid performing these mul-
tiple thermodynamic integrations thanks to a trick introduced
by Dellago et al. [5], which we discuss in the next section.

2. An approximated method to compute
the time dependence of ZAB(T )

Following Dellago et al. [5], we notice that if T is much
shorter than the transition time 1/kA→B , and if τ < T , then
we can write

ZAB(τ )

=
∑
σ (t)

PA[σ (0)]P[σ (t)] χB[σ (τ )]

≈
∑
σ (t)

PA[σ (0)]P[σ (t)] χB[σ (τ )] χB[σ (T )]

= ZAB(T )

∑
σ (t) PA[σ (0)]P[σ (t)] χB[σ (τ )] χB[σ (T )]∑

σ (t) PA[σ (0)]P[σ (t)] χB[σ (T )]

= ZAB(T ) 〈χB[σ (τ )]〉AB,T , (43)
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where 〈·〉AB,T denotes an average over the path probability
measure in Eq. (38). The approximation made here is that the
system does not transition back to state A at time T if it has
reached state B at τ < T (in other words, the system may
transition only once in a short enough time).

Because we are able to sample efficiently from this
probability measure, computing 〈χB[σ (τ )]〉AB,T initially is
expected to be an easy task (but we will see in the following
that this is not always the case). Indeed, 〈χB[σ (τ )]〉AB,T is
the probability that the system is in state B at time τ given
that it was in state A initially and that it will reach state B

at time T . This probability can be estimated by examining
our sampled paths from A to B and asking what fraction has
already reached B at times τ < T .

In this way, one can perform a single thermodynamic
integration to measure ZAB(T ) for a large enough time T ,
and then use the trick described above to obtain ZAB(τ ) for all
τ � T from a single path Monte Carlo simulation at the target
value of the parameters.

IV. APPLICATION TO THE 2D FERROMAGNETIC
ISING MODEL

In this section, we apply the path sampling Monte Carlo
algorithm described above to a specific example—the two-
dimensional ferromagnetic Ising model. We start by presenting
a few technical checkpoints that ensure that our sampling
algorithm is working well, and we then present the results
for the transition rate. We then discuss them in the light of
known results on the surface tension and theoretical arguments
[16,18]. Note that nucleation problems in this model have been
already studied by a number of methods [26,27].

The 2D Ising model is defined by Eq. (1) with Jij =
J = 1 (without loss of generality) for neighboring spins
on a square lattice containing N = L2 sites with periodic
boundary conditions, and Jij = 0 otherwise. Note that an
important simplification of our method is made possible by
the sparseness of interactions between spins. In general, the
intervals k = 1, . . . ,K are delimited by events where any other
spin than i is flipped. Here we can restrict this definition to the
nearest- and second-nearest-neighbor spins because neither
hi(t) nor h̄k

j are affected by more distant spins being flipped.
In the absence of an external field, h̃i = 0, this model has

two deep energy minima where all spins are up or down, and
below some critical temperature Tc = 1/βc, i.e., for β > βc =
ln(1 + √

2)/2 ≈ 0.4407, the system at equilibrium is typically
found close to one of these two minima, called A and B [15,16].
The free energy barrier separating the two minima is expected
to be of the order of L [15,16,18], as we will discuss in more
detail below. Due to the symmetry of the model, kA→B =
kB→A and the energy gap is equal to twice the escape rate
from state A to state B, which is expected to be of the order of
exp(−L). We impose the initial and final states by setting

PA(σA) = exp (hAMA)

(2 cosh hA)N
=

N∏
i=1

ehAσA
i

2 cosh hA

,

(44)
χB(σB) = exp[−hB(M∗ − MB)θ (M∗ − MB)],

where, as usual, M = ∑N
i=1 σi , and θ (x) is the Heaviside

function.

All the simulations we report below have been performed
at a temperature β = 1, which is well below the critical
temperature, and correspond to an equilibrium magnetization
per spin meq = 0.999275 . . . according to the Onsager formula
[15]. Therefore, the two states A and B are very concentrated
around the configurations with all spin up or all spin down.

We have chosen hA = −3 and hB = 1, M∗ = [0.56N ] so
that the system starts in the down state (which we call A from
now on) and finishes in the up state (B). We have checked that
the precise values of these parameters are irrelevant for the
determination of the transition rate.

A. Numerical results

1. Thermodynamic integration

As previously discussed, to compute ZAB(T ) we must use
thermodynamic integration over a parameter μ. We have at
least two possibilities:

(i) We choose μ = hB . We start at hB = 0, where the system
has no constraint on the final state: there, ZAB(T ) = 1. Then
we change hB from 0 to the final value, hB = 1.

(ii) We choose μ = β. We start at β = 0, i.e., at infinite
temperature where the dynamics of the spin is decoupled. Then
we change the temperature from β = 0 to the final temperature
β = 1.

Although for small sizes we can use both strategies (and
get fully compatible results), the first strategy is not efficient
at large sizes. The reason is that at hB = 0, the system has no
constraint on the final state, and therefore for small T it will be
typically in state A. On the contrary, at hB = 1, the constraint is
strong and the system will be typically in state B. We found that
the system of paths undergoes a first-order phase transition as a
function of hB along the integration path from hB = 0 to hB =
1, which is somehow similar to the first-order transition that the
standard spin system undergoes as a function of the external
field below Tc. Around this transition, hysteresis is observed
and equilibrating the path system becomes extremely difficult,
thus spoiling the efficiency of the algorithm. Therefore, in the
following, we abandon the first strategy and only focus on the
second one, for which this problem is absent.

Before discussing the second strategy, we wish to stress that
the first strategy is the one that was used in the original paper of
Dellago et al. [5]; and it worked only because the investigated
system was extremely small. In general, we speculate that
doing the thermodynamic integration on the constraint on
the final state χB will always produce this problem for large
enough systems.

We therefore now discuss in more detail the thermodynamic
integration in temperature. At infinite temperature β = 0,
the spins are decoupled and undergo independent Glauber
dynamics in the absence of any external field. Therefore, it
is easy to show that for a single spin,

pup(t) = 1
2 {1 + [2pup(0) − 1]e−2t }, (45)

with pup(0) = ehA/[2 cosh(hA)]. The probability that the sys-
tem has magnetization M at time t is

Pt (M) =
(

N
N+M

2

)
pup(t)(N+M)/2[1 − pup(t)](N−M)/2, (46)
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and the partition function at β = 0 is therefore

ZAB(T ,β = 0) =
∑
M

PT (M)e−hB (M∗−M)θ(M∗−M), (47)

which can be numerically computed very easily for any N .
Next, we need the derivative of ZAB(T ,β) with respect

to β. A straightforward calculation starting from Eq. (22)
gives

UAB(T ,β) = ∂ ln ZAB(T ,β)

∂β
= 1

ZAB(T ,β)

∫
dP (σ (t))

{
L∑

k=1

(tk − tk−1)
∑

i

w
(
2hk

i σ
k
i

)
hk

i σ
k
i −

L−1∑
k=1

hk
ik
σ k

ik

}

=
〈

L∑
k=1

(tk − tk−1)
∑

i

w
(
2hk

i σ
k
i

)
hk

i σ
k
i −

L−1∑
k=1

hk
ik
σ k

ik

〉
AB,T ,β

, (48)

which can be computed as a function of temperature by means
of the path sampling algorithm. A numerical interpolation
yields the final result,

ZAB(T ,β) = ZAB(T ,β = 0)e
∫ β

0 dβ ′ UAB (T ,β ′), (49)

which we want to compute for β = 1. In Fig. 8, we explicitly
show an example of the thermodynamic integration procedure.
Specifically, we plot UAB(T ,β) as a function of β. This is the
quantity that has to be integrated, as in Eq. (49), to obtain
ZAB(T ,β = 1).

Note that for T = ∞, the function ZAB(T ) must converge
to the equilibrium probability of B,

ZAB(T → ∞,β) = 〈χB(σ )〉eq =
∑

σ e−βH (σ )χB(σ )∑
σ e−βH (σ )

, (50)

where 〈·〉eq denotes the standard equilibrium thermodynamic
average. Then it is easy to show that

UAB(T → ∞,β) = −〈H 〉B + 〈H 〉eq, (51)

where

〈H (σ )〉B =
∑

σ H (σ )e−βH (σ )χB(σ )∑
σ e−βH (σ )χB(σ )

(52)
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FIG. 8. (Color online) An example of the thermodynamic inte-
gration procedure. The quantity UAB (T ,β) defined in Eq. (48) is
reported as a function of the inverse temperature β for several values
of T , for N = 81 (here, hA = −3, hB = 1, M∗ = 45).

is the average energy in the constrained Gibbs measure on
state B. Both 〈H 〉B and 〈H 〉eq can be quickly computed by a
standard Monte Carlo simulation. The results obtained from
this simulation are reported as a dashed line in Fig. 8.

We see that for small enough β and a fixed T , the equilibra-
tion time is smaller than T so that the path Monte Carlo sim-
ulation result for UAB(T ,β) coincides with UAB(T → ∞,β).
This is a crucial observation because it allows one to avoid the
path Monte Carlo simulation at small β and large T , which is
a difficult simulation since in this regime the trajectories have
a lot of jumps and the algorithm becomes very slow.

2. The full ZAB(t) curves

Using thermodynamic integration, we can obtain ZAB(T )
at β = 1 for some values of T . For each of these values of T ,
we can also estimate for free the function ZAB(t) for all t � T ,
as discussed in Sec. III D2. Namely, we compute 〈χB(t)〉AB,T
in the path simulation at β = 1 and the chosen value of T , and
we use Eq. (43).

Figure 9 shows the full function ZAB(t), as calculated by
this method, for N = 16 and N = 100. Each panel of the figure
shows a superimposition of two curves, each corresponding to
a different T (red and blue lines). In addition, the values of
ZAB(T ) obtained by thermodynamic integration are plotted as
full black dots for the available T .

For N = 16, the transition rate is large enough (kA→B ∼
10−7) so that we can obtain a reliable result for the function
ZAB(t) just by the naive Monte Carlo approach, i.e., by running
many standard faster-than-the-clock Monte Carlo simulations
[21] starting from the A state and counting the fraction of them
that is in state B after a time t . For t = 10, a fraction of 10−6

of such simulations is in state B, which means that in order
to have good statistics, we only need to run ∼109 independent
simulations for N = 16 and t = 10. The result is reported with
green full squares and show perfect agreement with the path
Monte Carlo simulations. On the other hand, for N = 100 the
rate is so small (kA→B ∼ 10−17) that obtaining a reliable result
by traditional Monte Carlo is completely impossible.

Some minimum time is required for the transition to occur
(of the order of the time necessary to relax to state A or
B), and thus the curve ZAB(t) does not behave linearly
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FIG. 9. (Color online) Probability of transition ZAB (t) vs time in
the 2D Ising model (here with β = 1, hA = −3, hB = 1). Black dots
represent the result of thermodynamic integration; the red and blue
full lines represent the result obtained using Eq. (43) for two values
of T . After a transient time, the function becomes linear, and straight
dashed lines show the linear fit ZAB (t) = kA→B × (t − τtrans). Upper
panel: a small system with N = 16 and M∗ = 16. For N = 16, a
direct comparison between our method and a traditional Monte Carlo
simulation shows a perfect agreement. Lower panel: a large system
with N = 100 and M∗ = 56.

with t at very short times. After this initial transition time,
however, the function becomes linear and can be fitted as
ZAB(t) = kA→B × (t − τtrans) (dashed lines in Fig. 9), where
kA→B is the transition rate, and τtrans is interpreted as the
“transient time.” In Fig. 1, we plot the logarithm of kA→B

as a function of the system’s linear dimension, L = √
N .

In the same figure, we show the rates obtained from exact
diagonalization at small sizes, when applicable. The transition
rate appears as an exponentially decaying function of

√
N .

Figure 10 suggests that τtrans depends quadratically on N . A
crossover in the slope of the plots is observed around L = 8;
we will discuss this point below.

Our method allows us to inspect actual transition paths
in detail. In Fig. 11, we show two examples of snapshots
transition paths at small (N = 16) and large (N = 100)
sizes. The films of the full transition paths are available as
Supplemental Material [28]. These examples show how the
system first creates a stripe of up spins in a background of
down spins. This stripe then progressively invades the lattice.

0 2000 4000 6000 8000 10000
N

2

0

20

40

60

80

τ tr
an

s

Path MC
0.525+0.00799 N

2

12.81+0.00519 N
2

FIG. 10. (Color online) Transient time τtrans needed to reach the
linear scaling regime of ZAB (t), as a function of the square of the
system’s size N 2, for β = 1.

3. Computer time

To conclude this section, we want to give an order of
magnitude of the computer time that was needed to obtain the
above results. We want to stress, however, that our code was
not particularly optimized for the model we investigated, but
simply corresponds to a plain implementation of the algorithm
described above. We believe that its performance might be
improved by some smart optimizations, which are beyond the
scope of this work.

The simulations were conducted on standard workstations,
equipped with Intel Core i7 CPUs running at 2.80 GHz.
For the smallest systems, e.g., at N = 16 and T = 10, the
calculation requires of the order of one day of CPU time
to obtain very accurate results. For the largest system that
we simulated (N = 100 and T = 150, corresponding to the
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FIG. 11. (Color online) Sample snapshots of transition paths in
the 2D Ising model, for (a) N = 16 and T = 10, and (b) N = 100
and T = 150, at temperature β = 1. White squares are down spins,
and black squares are up spins.
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right-most black point in the lower panel of Fig. 9), a single
point of thermodynamic integration required a computational
time of the order of one month. The thermodynamic integration
required running 12 independent values of temperature, there-
fore obtaining ZAB(T ) for N = 100 and T = 150, required a
total of almost one year of CPU time (which, of course, was
possible in a much shorter time by using a small cluster of 48
cores). The computational time for a given system scales as
NT , which is the “system size.” Overall, we believe that this is
a good performance because the value of the rate at N = 100 is
extremely small (kA→B ∼ 10−17), so we are looking at really
rare events.

Of course, as for any Monte Carlo simulation, the compu-
tational time depends crucially on the desired statistics. Given
the complexity of the procedure, we were unable to estimate
error bars in a reliable way; however, we roughly estimate
them to be of the order of symbol sizes in Fig. 9, which we
believe to be sufficient for the present purposes.

A final remark is that the computation of UAB(T ,β) turns
out to be much easier than that of 〈χB(t)〉AB,T on the same state
point. This is related to the following observation. Typical
configurations of the paths are given in Fig. 11, and they
are characterized by periods of inactivity (in which all spins
are up or down) separated by the barrier crossing period,
where the energy is above the ground state. The position of the
latter period fluctuates uniformly and slowly during the path
Monte Carlo simulation. Remarkably, the value of UAB(T ,β)
is independent of the time location of the barrier crossing,
therefore one does not need to accumulate much statistics on
the slow fluctuations of the latter to have a reliable result on
this quantity. On the contrary, the calculation of 〈χB(t)〉AB,T
clearly requires a perfect sampling of the fluctuations of the
barrier crossing point. The achievement of this seems much
more difficult and for this reason this quantity is typically
much more noisy. For this reason, we found that the results of
thermodynamic integration (black dots in Fig. 9) were typically
much more reliable that the ones obtained through 〈χB(t)〉AB,T
(red and blue lines in Fig. 9).

B. Interpretation

1. Transition state and surface tension

In the limit of large system sizes, simple arguments allow
us to write the scaling of the transition rate in terms of the
surface tension �. If we imagine starting from a homogenous
system in which all spins are aligned, then the transition time
depends on the probability of the initial nucleation event of the
first stripe of spins of opposite sign. The escape time is then
simply proportional to the exponential of surface tension � of
that stripe, times its surface 2

√
N (

√
N is the length or linear

dimension of the system, and the stripe has two interfaces)
[18]:

kA→B ∼ exp(−2�
√

N ). (53)

The surface tension in a 2D Ising model has been calculated
exactly in the thermodynamic limit by Onsager, and its value
is � = 2βJ + ln tanh βJ [15–18]. However, a simple model
[29] allows one to obtain an approximate expression for the
surface tension also at finite size. In this simplified model,

h

h0

h1 h2

h3

h4

h5

boundary
condition

boundary
condition

FIG. 12. (Color online) In the approximated description of [29],
the height of the interface is assumed to be a single-value function,
or, in other words, the overhangs are ignored.

illustrated in Fig. 12, an interface between a plus and minus
region is described by a single-valued function hi , neglecting
overhangs. At the left and right boundary, the interface is
supposed to be in h0 = hL+1 = 0. The energy associated with
the interface is

HI = 2L + 2
L+1∑
i=1

|hi − hi−1|, (54)

and its partition function is therefore

ZI = e−2βL
∑

h1,...,hL

e−2β
∑L+1

i=1 |hi−hi−1|, (55)

which is easily computed by Fourier transform,

ZI = e−2βL

∫ π

−π

dk

2π

[
e4β − 1

e4β + 1 − 2e2β cos(k)

]L+1

. (56)

The corresponding surface tension is � = −L−1 ln ZI .
The result is that at small L and large enough β, the partition

function is dominated by the configuration hi = 0 and tends
to be rectilinear, thereby losing the benefit of the entropic
contribution to the surface tension. Such a rectilinear boundary
leads to � = 2βJ . On the contrary, for large L, the integral in
Eq. (56) can be evaluated by a saddle point and gives the exact
result of Onsager, including the entropic contribution. The
crossover between these two regimes happens at a length scale
that is extremely small close to βc, and grows with decreasing
temperature, diverging at β → ∞. From Eq. (56), we find that
at β = 1, the crossover indeed happens around L = 10.

These results are consistent with the data we reported in
Fig. 1. Indeed, the slope at small L is consistent with a higher
surface tension � = 2 (in units of J , and for β = 1). As
L increases, the slope asymptotically approaches the correct
value � = 1.7276 given by the Onsager formula.

2. Transient time

We find that the transient time grows linearly with N2.
Let us try to interpret this result. The transient time may be
interpreted as the minimum time for the transition to occur.
This time is at least as long as the time the system takes to
relax to state B after starting at the top the barrier between
A and B. In our case, the top of the barrier corresponds to
configurations where a stripe of up spins has nucleated across
the system’s length in a background of down spins. Let us
reason at low enough temperature, where the stripe is almost
perfectly rectilinear and where defects are extremely rare. We
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expect our reasoning to hold for arbitrary temperatures. In
order to invade the lattice entirely, the stripe needs to thicken by
adding new layers of up spins on either of its sides. Likewise,
the stripe may thin out through the removal of spin layers.
The thickness of the stripe therefore undergoes an unbiased
random walk [Fig. 13(a)]. If the rate of adding or removing
layers to the stripe is klayer, then the expected time for the
stripe to invade the system is the time it takes for the random
walk to reach the system’s length,

√
N . This time scales as

∼ k−1
layer(

√
N )2 = klayerN . The rate klayer itself can be estimated

in a similar manner [Fig. 13(b)]. A new layer can be added
when an up spin appears sticking out from one of the two
stripe’s boundaries, incurring a 4J energy cost. Once such
a defect has been created, adding or removing up spins on
the same layer contiguously to the defect—to make it bigger
or smaller—has no energy cost. The length of the defect is
therefore governed by a random walk, which ends when the
defect disappears or creates a new layer of up spins by reaching
the system’s length

√
N . Layer removal occurs is the exact

same way, and therefore k−1
layer ∼ (

√
N )2 = N . In summary,

we expect the transient time to scale with N as k−1
layerN ∼ N2,

in agreement with our results. It seems that the prefactor of
this scaling depends on the surface tension, since we observe
that it changes around the same length scale as in Fig. 1.

V. CONCLUSIONS

We have presented a method for efficiently sampling
transition trajectories of discrete systems. The method is
general and applicable to systems in and out of equilibrium.
The method scales well with system size and we are able to
effectively sample trajectories in systems for which asymptotic
scaling holds. We emphasize two main advantages of the
method presented in this paper. First, the method does not
require detailed balance to hold and is therefore applicable
to all nonequilibrium systems. Second, the method scales

klayer klayer

adding layer removing layer

klayer

adding layer

creating
defect

adding spin
to defect

removing spin
from defect

√
N

(b)

(a)

FIG. 13. Zero-temperature relaxation from a stripe to the final
state, viewed as a double random walk. Black boxes are up spins,
and white boxes are down spins. (a) Adding and removing layers
to the stripe can be described by a random walk with stepping rate
klayer. The total time for the stripe invading the system scales as
k−1

layer(
√

N )2. (b) A new layer is added or removed by first creating
a defect on the boundary, then propagating it across the system’s
length. This propagation is also governed by random walk and takes
time k−1

layer ∼ (
√

N )2.

reasonably with the number of variables in the system,
allowing one to calculate the escape rates for otherwise pro-
hibitively large problems. Combined with a thermodynamic
integration procedure, it gives detailed information on the
typical transition paths, the full time-dependent transition
probability ZAB(t), the transition rate kA→B , and the transient
time τtrans, which is related to the minimal barrier crossing
time. We tested our method on the equilibrium example of
a 2D Ising model with periodic boundary conditions, where
we achieved excellent agreement between the results of the
path sampling method to exact matrix diagonalization and
predictions for asymptotic scaling.

Our method is based on the classical path sampling method
of Dellago et al. for continuous variables [5], which is based
on the idea of avoiding performing a detailed Monte Carlo
simulation on the variables of the system, but instead proposes
a Monte Carlo algorithm on the paths themselves, and on the
use of thermodynamic integration to compute the transition
rate.

Our alternative implementation of the path sampling takes
advantage of the discrete and many-body nature of the system.
It allows us to consider the trajectories for each variable
separately and modify them while keeping the rest of the
system fixed. As a result, we can draw a whole new trajectory
for the chosen spin, instead of just modifying it locally. We
expect this procedure to be more efficient in sampling the space
of paths. We also solved a technical issue that is specific to
many-body systems, namely, the fact that the thermodynamic
integration on the final state proposed in [5] fails because
a first-order phase transition is met on the integration path.
We performed instead a thermodynamic integration in tem-
perature; thermodynamic quantities are smooth on this path,
allowing for an accurate computation. We expect this to be a
generic phenomenon for many-body systems.

A direct comparison with the performances of other
methods is not straightforward. Some of these methods have
been applied on the 2D Ising model [26,27] but the nucleation
problem studied there was different (i.e., nucleation in the
presence of an external magnetic field). Also, all of these
methods are complex enough that the actual performances
highly depend on the implementation and the details of the
problem under investigation. We believe that the important
point is that the present method scales linearly with the
“size” of the path system NT (note, however, that the
time T typically grows polynomially with system size, e.g.,
T ∝ N2 in this case, meaning that the overall computational
time is expected to scale polynomially in N with some
exponent larger than 1). Thanks to this, we believe that the
method gives an interesting way to study discrete many-body
problems and obtain complementary information to other
techniques.

The method can be straightforwardly applied to study the
dynamics of disordered spin systems, chemical reactions, and
gene regulatory systems. In these last two classes of problems,
one needs to consider the numbers of molecules that take
part in the reactions—a number that is in principle infinite,
but usually bounded in practice. The method presented here
is still applicable to such problems. Although the purpose of
the present paper is to introduce the method in a clear way
and convincingly show agreement with well-known results
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on an equilibrium example, future work should focus on
nonequilibrium applications.

A very interesting property of this method is that it allows us
to examine typical sample trajectories and get a detailed picture
of the transition with, e.g., the detailed shape and dynamics
of the critical nucleus in the 2D Ising model. In particular,
we get complete access to the time-dependent cumulative
transition probability ZAB(t), which tells us the probability
that the system undergoes a transition, even for very short
times, when the process is not yet Poissonian—i.e., for times
shorter than the typical relaxation time. In the 2D Ising model,
we estimated this transient time and discussed its scaling
with the system’s size. The estimation of ZAB(t) at short
times might also be important for some biological applications
where one deals with large microbial populations. In such
problems, the rarity of transition events in gene-regulatory or
biochemical networks is compensated by very large size of
populations, which makes nominally rare events occur quite
often at the population level. In this context, ZAB(t) may, for
example, be interpreted as the fraction of individuals that make
a potentially life-saving transition within some finite time t

after the introduction of a stress. Our method provides the
tools to estimate such tiny fractions in models of biochemical
networks [30,31].
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APPENDIX: DETAILED CALCULATIONS
FOR THE MEAN-FIELD MODEL

1. Master equation

Because the Hamiltonian depends only on M , it follows
that at any time t , pt (σ ) depends only on M too (provided this
is true at t = 0). Therefore, we can write

pt (σ ) = pt (M)

(
N

(N + M)/2

)−1

. (A1)

Injecting the above equation into Eq. (6), and using the relation

N + Mσ

2

(
N

(N+M)/2

)
(

N

(N+M−2σ )/2

) = N − (M − 2σ )σ

2
, (A2)

it is easy to show that

∂tpt (M) = w+(M − 2)pt (M − 2) + w−(M + 2)pt (M + 2)

−[w−(M) + w+(M)]pt (M) = Lpt , (A3)

with

w+(M) = N − M

2
w

[
−2

M + 1

N

]
= N − M

2
eβ(M+1)/N ,

w−(M) = N + M

2
w

[
2
M − 1

N

]
= N + M

2
e−β(M−1)/N ,

(A4)

which has the form of a one-dimensional birth-death process
(see Sec. 7.1 in Ref. [22]).

2. Mean first-passage time

We then use the results of Sec. 7.4 in Ref. [22] for discrete,
one-dimensional birth-death processes in order to compute
the mean first-passage time in Mend of a system that starts in
Mstart < Mend at time t = 0 (hence we are taking the negative
M state as the initial state, and the positive M state as the final
state). Obviously, the system is confined by a reflecting barrier
in M = −N . By using this and Eq. (7.4.12) in Ref. [22], we
get (in the following sums, capital letters K,L, and M denote
magnetizations and therefore increase in steps of 2 units)

T (Mstart → Mend) =
Mend∑

K=Mstart

φ(K)
K∑

L=−N

1

φ(L)w+(L)
, (A5)

with

φ(M) =
M∏

K=−N+2

w−(K)

w+(K)
. (A6)

The latter expression can be computed numerically for finite
N , in a time growing only polynomially in N .

3. Large N limit

We want to study the large N asymptotic behav-
ior of Eq. (A5). We note that using Eq. (8), we have
w−(M)/w+(M) = exp[2βf ′(M/N)], where f ′(m) = (1/2)
{ln[(1 + m)/(1 − m)] − 2βm} is the derivative of the free
energy in Eq. (15). Therefore,

φ(mN ) = exp

[
M∑

K=−N+2

2βf (K/N)

]

= exp {Nβ[f (m) − f (−1)] + �(m)} , (A7)

with

�(m) = β

M∑
K=−N+2

[
2f ′

(
K

N

)
− Nf

(
K

N

)

+ Nf

(
K − 2

N

)]
. (A8)

To estimate the correction �(m), we need to separate the free
energy in Eq. (15) in two terms,

βf (m) = βfreg(m) + 1 + m

2
ln

1 + m

2
, (A9)

where the second term is singular at m = −1. Likewise,
we separate �(m) = �reg(m) + �sing(m) into a regular and
a singular term. For the first term, we can use that 2

N
f ′

reg(K
N

) −
freg(K

N
) + freg(K−2

N
) ∼ 1

2 ( 2
N

)2f ′′
reg(K

N
), and therefore

�reg(m) ∼ β

M∑
K=−N+2

2

N
f ′′

reg

(
K

N

)
∼ β

∫ m

−1
dkf ′′

reg(k)

= β[f ′
reg(m) − f ′

reg(−1)]. (A10)
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For the singular term, we can use the explicit form of the
second term in (A9) to write

�sing(m) =
M∑

K=−N+2

(
1 + K + N − 2

2
ln

K + N − 2

K + N

)

=
M+N−2∑

K=0

(
1 − K

2
ln

K + 2

K

)

∼ 1

2
ln[πN (m + 1)] + O(1/N), (A11)

where the last line can be obtained by recognizing that the
sum can be written as a convergent part plus a divergent sum
which is the harmonic number, and then using the asymptotic
expression of the latter. We get the final result,

φ(mN ) =
√

πN (m + 1)eβN[f (m)−f (−1)]+�reg(m). (A12)

Next, we evaluate the sum

φ(M)
M∑

K=−N

1

φ(K)w+(K)

∼ √
m + 1eβNf (m)+�reg(m)

∫ m

−1
dk

e−βNf (k)−�reg(k)

√
k + 1(1 − k)eβk

∼
√

2π

Nβf ′′(m∗)

√
1 + m

1 − m∗
eβN[f (m)−f (m∗)]+�reg(m)−�reg(−m∗)

(1 − m∗)e−βm∗ ,

(A13)

where the second line is obtained via the saddle-point method.
The saddle point is at k = −m∗, and we assume that m > −m∗,
which is the case that will be relevant in the following. We also
use the symmetry f (m) = f (−m).

Finally, recalling Eq. (A5),

T (Mstart → Mend) ∼ N

2

∫ mend

mstart

dk

√
2π

Nβf ′′(m∗)

√
1 + k

1 − m∗

× eβN[f (k)−f (m∗)]+�reg(k)−�reg(−m∗)

(1 − m∗)e−βm∗ .

(A14)

Assuming that mend > 0 and mstart ∈ [−m∗,0], we can again
evaluate the integral by a saddle point, the saddle point being
in k = 0 in this case,

T (Mstart → Mend) ∼ N

2

2π

Nβ

√
1

f ′′(m∗)|f ′′(0)|

√
1 + k

1 − m∗

× eβN[f (0)−f (m∗)]+�reg(0)−�reg(−m∗)

(1 − m∗)e−βm∗ .

(A15)

Simplifying this expression leads to the final result,

MFPTA→B = π

β

√
1

{1 − β[1 − (m∗)2]}(β − 1)
eβN[f (0)−f (m∗)],

(A16)

as reported in Eq. (16).

We notice that the above result is independent of Mstart,Mend

provided they scale proportionally to N . Alternatively, one can
consider a scaling regime where Mend = √

Ny and Mstart =√
Nx, in which case

T (
√

Nx → √
Ny)

T (−∞ → √
Ny)

=
∫ y

√
N

x
√

N
dkeβNf ′′(0)k2

∫ y
√

N

−∞ dkeβNf ′′(0)k2

= erf(κy) − erf(κx)

erf(κy) − 1
, (A17)

with κ = √−βf ′′(0). This scaling regime is the one where the
mean first-passage time depends on the initial and final points.

4. Calculation of ZAB(t)

For the mean-field model, the function ZAB(t) can be
defined as follows:

ZAB(t) =
∑
M,M ′

χB(M)(eLt )M,M ′pA(M ′), (A18)

where the operator L is defined in Eq. (A3), pA(M) is an
initial probability distribution which is assumed to be centered
on state A, and χB(M) is the indicator function of state B, i.e.,
it is one when the system is in state B, and zero otherwise.

This quantity can be easily computed. Recalling that the
invariant distribution is

peq(M) =
(

N
N+M

2

)
e−β M2

2N , (A19)

we can define a symmetric matrix

HM,M ′ =
√

peq(M ′)
peq(M)

LM,M ′

= 1

2

√
(N − M + 2)(N + M) δM ′,M−2

+ 1

2

√
(N + M + 2)(N − M) δM ′,M+2

−eβ/N [N cosh(βM/N) − M sinh(βM/N)]δM ′,M,

(A20)

which can be easily diagonalized having eigenvalues vn(M)
and (negative) eigenvectors λn, and

ZAB(t) =
∑

n

eλnt

[∑
M

χB(M)
√

peq(M)vn(M)

]

×
[∑

M

vn(M)√
peq(M)

pA(M)

]
. (A21)

To produce the plots of Fig. 3, we chose as a definition of the
states A and B the following functions:

pA(M) = ehAM/[2 cosh(hA)]N,

χB(M) = e−hB (M∗−M)θ(M∗−M), (A22)

with hA = −3, hB = 1, and M∗ = 2N/3. However, the shape
of ZAB(t) is largely independent of the details of these
definitions.
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