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Many biological regulatory systems respond with a physiological delay when processing signals. A
simple model of regulation which respects these features shows how the ability of a delayed output
to transmit information is limited: at short times by the timescale of the dynamic input, at long
times by that of the dynamic output. We find that topologies of maximally informative networks
correspond to commonly occurring biological circuits linked to stress response and that circuits
functioning out of steady state may exploit absorbing states to transmit information optimally.

PACS numbers:

I. INTRODUCTION

To respond to environmental changes, regulatory bio-
chemical networks need to transform the molecular sig-
nals they receive as input into concentrations of response
molecules. These processes are inherently stochastic, as
both input and output molecules are often present in
small numbers. This observation has motivated a number
of recent works which pose the search for design princi-
ples as an optimization problem over the network topol-
ogy and reaction rates. Not all designs of biochemical
networks are equally represented in cells [1], which raises
the question of whether the prevalence of particular net-
work motifs arises because they are best suited for spe-
cific tasks the cell has to fulfill. In order to attempt to
answer this question, and to explore the functions and
limitations of given network architectures, one can con-
sider a well defined objective function, such as rapidity
of response [1, 2], minimization of noise [3, 4] or infor-
mation transmission between the input and output [5–8],
and compare the performance of particular circuits under
a set of constraints (e.g. molecular cost, noise). Phrasing
the problem as an optimization over the parameters and
probability distributions of these networks allows one to
find the optimal circuit that best fits this one specific
function. The optimal architecture corresponds to how
one would “design” or “build” a circuit if the objective
was to satisfy a known function.

In this paper, we shall focus on optimal information
transmission between an input and an output as a pos-
sible objective function. The idea of information opti-
mization in biomolecular networks was tested in early
fruit fly development, by maximizing the transmitted in-
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formation over the input distribution and predicting the
probability distribution of the hunchback protein that
is regulated by the bicoid morphogen, using experimen-
tally measured input-output relations and noise profiles
[9]. More recently, the information transmission mea-
sured in an inflammatory cytokine signaling pathway of
murine fibroblasts [10] was used to find a tree-like net-
work topology, thus allowing to identify the bottlenecks
that limit signal integration. This combined theoretical
and experimental approach singled out the conditions un-
der which feedback, time integration and collective cell
response can increase information transmission.

Theoretical studies based on the optimization of infor-
mation transmission in regulatory circuits have demon-
strated that, within a network that functions at steady
state, the system can exploit the molecular details of the
network to transmit information while paying a molecu-
lar cost [5, 11]. Positive feedback was shown to increase
the effective integration time and average out input fluc-
tuations, thus allowing for reliable information transmis-
sion at low input concentrations [7]. On the contrary,
negative feedback reduces noise at high input concentra-
tions by reducing the effective nonlinearity of the input-
output relation. Molecular strategies, such as using feed-
forward loops [6] and slow binding/unbinding dynamics
[12], also increase information transmission, because they
lead to a quasi-binary readout and multimodal output
distributions.

In many situations biochemical signals change with
time, which has led to an interest in the information-
optimal response to pulses in signaling cycles [13] and to
oscillatory driving [14]. Similarly to what was found for
stationary signals, circuits that produce bimodal output
states [14] transmit more information. Tostevin and ten
Wolde looked at time dependent Gaussian processes in
a linearized regulatory circuit and found that those net-
work properties that are important for transmitting in-
formation about instantaneous signals may not be those
that are relevant for information transmission of entire
trajectories [15, 16]. Within the same framework de
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Ronde and colleagues focused on understanding the role
of regulation and found that positive feedback increases
the fidelity of low frequency signals, whereas negative
feedback proves better at high frequencies [17]. In feed-
forward circuits, they showed that topologies alone are
not sufficient to characterize network properties, but that
interaction strength also plays an important role [18].

In this paper we focus on a similar set of issues but
we take into account that regulatory response is often at
a delay relative to input signaling, because of e.g. tran-
scription and translation processes, cellular compartmen-
talization, etc [19]. Examples include the chemotactic
response of bacteria [20] or amoeba [21] to nutrients or
conversely to antibiotics [22]. This delay is intrinsic and
unavoidable in a biological circuit - mRNAs and proteins
are not produced instantaneously and interpreting the
initial signal takes time. Optimal design therefore en-
tails maximizing information transmission between the
input at a given time and the output at a later time.
Nemenman [23] has shown that, in simple regulatory cir-
cuits, there is an optimal time lag for which the mutual
information between the input and the delayed output is
maximized.

In this paper we ask a different question. Given a
fixed unavoidable delay in the response, we ask what is
the optimal way to design a regulatory system to op-
timally transmit information between the input at an
initial time and an output at a later time. In our ap-
proach the delay is an intrinsic property of the system,
which we cannot control, but rather treat as an addi-
tional constraint. Given this constraint, we ask about
the optimal parameters and architecture of the system
that maximally transmits information between the input
and the output. A system that transmits information op-
timally matches the properties of the input and output
distributions with the regulatory relation of the network.
To find this optimal system [24, 25], we optimize over
both the initial distribution and the elements of the net-
work. Our goal in this paper is to focus on how the
natural cellular delays constrain the architectures of reg-
ulatory circuits. We find that the design of circuits that
optimally transmit information between the input and a
delayed output corresponds to known circuit’s architec-
tures (push-pull networks) [26–28]. Moreover, we find
that this prediction is robust, because optimal architec-
tures do not change with the length of the imposed delay.

Our strategy is to address these issues within the sim-
plest possible model, composed of two binary compo-
nents, z and x, that switch randomly in continuous time
(see Fig. 1). This can model, e.g., the expression state of
two genes, or a gene and a protein, each of which can be
up- or down-regulated. The model sacrifices molecular
details of biochemical regulatory networks, which can be
very complex and whose features can have an effect on
their information processing functions. Yet, the simplic-
ity of our model makes our approach and the resulting
results as clear as possible.

The paper is organized as follows: we start by intro-

ducing the simplified two state model that allows us to
optimize information given a fixed delayed response. We
first consider the case in which the system is at steady
state and the signal up-regulates (or down-regulates) the
response with and without feedback. We then relax the
steady state assumption and jointly optimize the rates
of the model and the initial distribution over the states
of the system. We finish with a discussion of our results
and limitations of the approach.

time

+1

- 1

z

+1

- 1

x

um dm up dp

rp sp sm rm

FIG. 1: Time evolution of random variable z(t), which models
a biochemical input transitioning from/to a down-regulated
state (−1) to/from an up-regulated state (+1), with rates
{um, up}/{dm, dp}, respectively. Random variable x(t) mod-
els activation (+1) or deactivation(−1) of a biochemical out-
put: it is regulated by z, with which it aligns (‘activation’, or
up-regulation) with rates rm or rp or anti-aligns (‘repression’,
or down-regulation) with rates sm or sp. The subscripts m
and p in the rates account for the state of the other variable,
that is −1 and +1, respectively.

II. MODEL DESCRIPTION

We consider a system of two dynamical variables x, z
that describe two genes, or a gene and a protein, each
one of them switches between an activated +1 and in-
activated −1 state according to the rates defined in
Fig. 1. Specifically, x aligns or anti-aligns with z with
rates r or s, respectively. The subscripts m and p in
the rates indicate the state of the other variable (−1
or +1) at the moment of the flip of the first variable.
Our system at any time is fully described by a four-
state probability distribution p(y), where y=(x, z) ∈
{(−,−), (−,+), (+,−), (+,+)} is a joint variable for the
output and the input. The temporal evolution of the con-
ditional probability p(y′|y) to find the system in state y′
at time t given state y at t=0 is given by a continuous-
time master equation ∂tp= − Lp, where L is a 4 × 4
transition matrix set by the rates of switching between
the states (defined in Fig. 1 and constrained to be in
the range [0, 1]). In p(y′|y) and in the rest of the pa-
per, primed variables refer to the system state at time
t, and unprimed variables to the initial time 0. The so-
lution of the master equation can be formally written
as p=e−tL and is conveniently expressed in terms of its
expansion in left and right eigenvectors of L (see Ap-
pendix A). In particular, the (normalized) right eigen-
vector corresponding the null eigenvalue is the stationary
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state p∞(y′)= limt→∞ p(y′|y).
As explained in the Introduction, for the sake of re-

alism we want to take into account the intrinsic delays
with which biochemical regulatory networks respond to
signals. Therefore we compute the mutual information
between the input z at time 0 and the output x′ at a
time delay t, which is defined as

I[xt, z0] =
∑
x′,z

p(x′, z) log2

p(x′, z)
p(x′)p0(z)

. (1)

The joint probability distribution p(x′, z) can be readily
derived from the conditional distribution p(y′|y) and the
initial distribution p0(y) (See Appendix A).

Intuitively, a system that conveys most information be-
tween the input and output requires matching the prop-
erties of the network (in the case of our model defined by
the switching rates) with the properties of the input and
output distributions. The maximum information trans-
mitted by a system, termed the capacity of this system
[24, 25], is defined as the optimum of Eq. 1 with respect
to the input distribution. We discuss two cases: in the
first one the system, including the input to which it is
responding, is in steady state, e.g. the response to a mor-
phogen gradient such as FGF in development [29, 30]. In
the second case the initial state of the system is not the
steady state, which triggers its response, e.g. production
of an enzyme to metabolize a newly available sugar [19].
While in the former the initial state of the regulatory
network is determined by L (i.e. p0(y) = p∞(y)), in the
latter p0(y) may also be optimized. We consider both
optimization cases in the context of our model.

A trivial way to maximize information transmission is
for the input to change infinitely slowly relative to a fixed
delay time t (i.e. ul, dl → 0, with l = p,m following the
notation of Fig. 1), such that for any finite t, the output
yields a noiseless readout of the input, i.e. p(xt = z0) ≈
1. In short, nothing happens. Instead, we are interested
in regulatory responses to changes in the input.

To constrain our optimization such that information
is transduced on a timescale set by the system’s own
dynamics, we optimize the quantity

I(τ) = I[xt=τ/λ, z0], (2)

where the rate λ is given by the smallest non-zero eigen-
value of L and is the inverse of the system’s largest relax-
ation timescale. We remove arbitrariness in the choice of
time units by fixing the magnitude of the maximum rate
to be 1. I(τ) implicitly depends on the rates appearing
in L and, if it is not set by p0(y) = p∞(y), on the initial
distribution p0(y). We find network architectures that
maximize I in Eq. (2) for each rescaled delay τ = λt
over the rates [34].

To summarize our procedure, for a fixed intrinsic de-
layed response of the output measured in units of the
relaxation time of the system we look for the optimal
rates of the network defined in Fig. 1. We then scan
the delay time to see how the properties of the optimal
networks change.

III. RESULTS

A. Simple activation

To gain intuition, we start by considering the simplest
possible case (model A ) where z up-regulates x perfectly,
symmetrically, and without feedback. In this case, x is
slaved to z and switches only if x 6= z but, due to the
stochasticity of the model, it may not align immediately
with z (see Fig. 1 with sm=sp=0, um=up=dp=dm≡u
and rp=rm≡r). This leaves us with only two timescales,
related to u and r.

In the steady-state case (p0(y) = p∞(y)), the mutual
information can be computed explicitly and is related to
the entropy of an effective two-state spin variable:

I[xt, z0] =
1 + µ

2
log2(1 + µ) +

1− µ
2

log2(1− µ), (3)

where the “effective magnetization” µ≡2[p(x′=z, z) −
p(x′ 6=z, z)] is (e−2utr(r+2u)−e−rt4ur)/((r−2u)(r+2u))
(see Appendix D) [35]. For long times, we see that µ→0
and I[xt, z0]→0, as expected.

As previously shown for a different model [23], the mu-
tual information for a system initially in steady state has
a maximum for a non-zero delay t∗=log

(
2u+r

2r

)
/(2u− r),

which is determined by the interplay of the two timescales
introduced above. Here, we are not interested in find-
ing the timescales over which information transmission is
maximal, but rather the rates that maximize I(τ) at fixed
[36] τ = λt, where λ = min{2u, r} in model A (optimal
information curves are obtained as explained in Fig. 5).

The optimal information I∗(τ) and parameters
(u∗(τ), r∗(τ)) for the simplest model where z activates x
are plotted in Fig. 2 A . We see a clear crossover in terms
of the switching rate u∗ that regulates the state of the
input z (see dashed vertical line in Fig. 2 A ): it initially
increases in time and then plateaus at a value of u∗=0.5.
This crossover results from the fact that for r>2u the
relaxation time is dominated by the rate at which the in-
put changes (λ=2u), whereas for r≤2u the rate at which
the output changes fixes relaxation times (λ=r). Infor-
mation transmission is dominated, over short timescales,
by the faster rate r. Over long timescales, optimality is
achieved by matching the characteristic times of the two
processes, that are equal to the inverse of the two smallest
non-zero eigenvalues λ1=r and λ2=2u. The degeneracy
of the two smallest non-zero eigenvalues for large τ is a
non-trivial generic feature of optimal networks that we
also find in more complex models (see below). The dy-
namics of model A can be summarized by the network
topology shown in Fig. 3 A .

B. Activation/repression

We can generalize model A by allowing z to regulate
x asymmetrically – that is, rp 6= rm – and to down-
regulate it as well — that is, to allow sm, sp 6=0 (model
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B ). As in model A , we forbid feedback from x to z, hence
the transition rates for z do not depend on the state of
x (i.e. um=up≡u and dp=dm≡d). Optimization yields
only solutions coinciding with that of model A , or with
its symmetric counterpart (wherein z perfectly down-
regulates x instead of perfectly up-regulating: rp=rm=0
and sp=sm≡s). Results are shown in Fig.6 and 7 of
Appendix G. Intuitively, in order for information to be
transduced between x and z, they either align or anti-
align, resulting in the common simple activator or repres-
sor element [1]. Note that the same topological structure
is found at all timescales τ . This is to be contrasted with
previous studies [5, 11] which, taking into account the
molecular cost paid by producing higher copy number
(e.g., creating more proteins), have found small discrep-
ancies between the information transmitted in the two
cases of up-regulation and down-regulation. Since our
model does not explicitly account for protein copies, we
do not observe such a difference.
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FIG. 2: Optimal parameters and transmitted informa-
tion I∗(τ) for the activator and feedback models in steady
state(A and C ) and relaxing the steady state assumption

(Ã and C̃ ), as functions of the rescaled delay τ . In panels

C and C̃ , parameters in square brackets refer to alternative
optimal topologies (see right diagrams in Fig. 3 C and C̃ ).
Subscripts m, p are omitted when xm=xp (with x=u, d, r, s).
The results shown are valid for nonzero delays τ . Results for
models B and B̃ are shown in Appendix G.

C. Role of feedback

Recent studies [7, 17, 18] have pointed to the important
role of feedback in transmitting information, a form of

which we can consider using the full set of 8 rates in Fig. 1
(model C). Now the hierarchical relation between z and x
is broken: both can regulate each other’s expression, ei-
ther by down- or up-regulation. Examples of maximally
informative topologies for all possible rescaled delays τ
are illustrated in Fig. 3 C and reveal a “push-pull” net-
work - one gene (or protein) up-regulates the other, which
in turn down-regulates the first gene/protein. Such push-
pull circuits are very common in biology, from microbes
[26] to humans ([27] and references therein) as a source of
oscillations [31] and pulse responses [27] (see discussion
below). Again, due to the symmetry of the problem, we
can flip either x or z and we find 4 equally informative
solutions (two of which are shown in Fig. 3 C ), associ-
ated with different sets of the 8 rates being driven to zero
by the optimization procedure. We exploit the numeri-
cal observation that certain rates are zero to simplify the
matrix L and find an analytical expression for the infor-
mation and the optimal rates (see Appendix E). We find
that the optimal value of the input rates (um[up], dp[dm])
now plateau at a value of 3− 2

√
2 for τ > τ∗ = 0.5 (see

dashed vertical line in Fig. 2 C ): this value is set by com-
petition with the r[s] rate, by matching the two smallest
non-zero eigenvalues in order to avoid oscillatory solu-
tions (for input rates > 3− 2

√
2, the eigenvalues become

imaginary describing oscillations; see Appendix E for a
more detailed derivation). Push-pull networks can oscil-
late [31] [37], thwarting optimal information transmission
by decorrelating the system, hence the oscillatory regime
is not the optimal solution.
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FIG. 3: Optimal topologies and dynamics for the activator
and feedback models in steady state (A and C ) and relaxing

the steady state assumption (Ã and C̃ ). In the two feedback

models (C and C̃ ) the optimal topology is a “push-pull”: one
gene (or protein) activates the other, which in turn represses
the first gene/protein (as we can see, the roles of z and x

are interchangeable). The dashed line in C̃ means that the
feedback exists only until the absorbing state is reached. The
topologies of these optimal networks were found by inspecting
the optimal rates manually. Results for models B and B̃ are
shown in Appendix G.

The optimal solution exploits feedback to transmit
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more information. For small delay times feedback does
not play a role and model A and C transmit the same
amount of information. For delay times at which the
input rates have reached their plateau value, the opti-
mal circuit of model C can transmit more information at
a fixed τ than the optimal circuit without feedback of
model A (Fig. 2). Intuitively, this happens because the
value of the switching rates of z at the plateau is smaller
in model C than in model A , thus z is less likely to switch
on/off. As a result of these slower switching rates, the
system in model A is more likely to cycle through the four
states and hence to obscure correlations with the initial
condition than in model C . Additionally, feedback leads
to a rotational directionality among the transitions that
is not observed in model A (cf. Fig. 3). As a result of this
rotational directionality the system never directly ‘flips
back’, enhancing the transduced information. In sum-
mary, feedback allows for a combination of slower flip-
ping rates and imposed order to the visited states that
enables to read out more information about the initial
state at later times.

D. Systems out of steady state

Having discussed optimal delayed information trans-
mission of repeated readouts in the stationary state, we
now consider regulatory networks that optimize a one
time response to an input (e.g. by producing an enzyme
to metabolize a nutrient that appeared in the environ-
ment). We assume that at time t0, the system is in an
initial state which is not its steady state. We ask what
is the optimal design of the circuit to produce a most in-
formative output to this initial state given a fixed delay.
Unlike in the previous case where the network was in
steady state (which determined the initial distribution)
and would respond repeatedly, we now also ask what is
the optimal initial distribution of the system. We allow
the initial and final distribution to be different. The opti-
mization over the input distribution describes the match-
ing of the properties of the regulatory network and the
initial non-stationary state corresponding to the e.g. ap-
pearance of a sugar source in the cell, DNA damage or
food shortages. Specifically, we consider the same three
models studied above (A , B , C ), but now optimize si-
multaneously not only on the rates but also on the initial
probability distribution p0(y) and refer to the associated
models as Ã , B̃ and C̃ , respectively.

To calculate the capacity of the system we optimize
over the initial distribution and the parameters of the
network. We could fix the initial probability distribution
and optimize only over the network parameters. How-
ever this would be an arbitrary choice of the initial dis-
tribution and we would not calculate the capacity of the
system. Instead we consider all possible input distribu-
tions and ask which one of them guarantees maximal
information transmission. Cells often pre-process exter-
nal signals, for example the lack of glucose is presented

in terms of high cAMP (or more specifically activated
crp) concentration to the lac operon, which gives the cell
a certain degree of control over the distribution of the
input to a network.

We start with model Ã , which enjoys an up-down
symmetry and suggests parameterizing the initial distri-
bution p0(y)=p0(x, z) via p0(+,+)=p0(−,−)=(1+µ0)/4
and p0(+,−)=p0(−,+)=(1−µ0)/4 [38]. The mutual in-
formation is still given by Eq. 3, with µ=µ0e

−rt +
r

r−2u (e−2ut − e−rt). First we consider the properties of
mutual information as a function of time, without fixing
the delayed readout. For t=0, the highest information
is attained for µ=µ0= ± 1, when z and x are perfectly
aligned/anti-aligned. Moreover, µ and I[xt, z0] decrease
exponentially with time t. Therefore, unlike in model A ,
the information transmission does not improve by mak-
ing a delayed readout. In other terms, the absence of a
maximum at t∗ > 0 in I[xt, z0] for optimal initial states
suggests that, at odds with the stationary case (model
A ), the mechanism for information transmission is only
governed by the loss of information about the initial state
as the system relaxes to stationarity.

After performing the optimization of I(τ), we find that
for each rescaled delay τ the optimal initial distribution
p0(y) concentrates on the states (+,+) and (−,−). We
can understand this result intuitively: the rate for switch-
ing out of these states, u, is small, so the system is more
likely to remain in these states than in the other two
states (see Fig. 2Ã and Fig. 3Ã ). Posing the system in
these long-lived states allows for more information trans-
mission about the initial condition at small readout de-
lays τ .

We now turn to maximizing information transmission
over the initial distribution p0(y) in the more general
models B̃ and C̃ . As above, symmetry provides a num-
ber of optimal networks related by permutations (see
Fig. 7B̃ and Fig. 8). The optimal rates are shown for the
case of z up-regulating [down-regulating] x in Fig. 6B̃ and
Fig. 2C̃ . We find a qualitative difference in design as
compared to the stationary case (modelsB and C ): while
the optimal topology remains the same, now either one of
the aligned or non-aligned states becomes absorbing, e.g.,
p∞(y′)=δy′,(+,+) or p∞(y′)=δy′,(−,+) in the examples in
Fig. 3C̃ [39].

The occurrence of an absorbing state, with a nearly-
equal optimal initial distribution p0(y) over the initial
and final states, limits the system’s dynamics and leads
to the optimal topology for a one time response. In the
absence of feedback (model B̃ , e.g. receptor activation
in a complex pathway), when the system, initially in the
inactive state (x, z) = (−,−) is presented with a signal
(x, z)→ (−,+), it switches on a response (x, z)→ (+,+)
(see Fig. 7B̃ ). However, in the presence of feedback
(model C̃ , e.g. a nutrient activating the production
of an enzyme for its uptake, amino acid biosynthesis)
the optimal dynamics includes “feedback inhibition”, in
which the output switches off the input (see Fig. 3C̃ )
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[19][40]. As in model C , feedback imposes an order to
the visited states, with a smaller rate for z transitions
than for x transitions: these two features allow again for
higher information transmission about the initial state
(see Fig. 2C̃ ).

Let us consider a specific biological example - lac-
tose metabolism - for the optimal network shown in
Fig. 3C̃ (left panel) and its corresponding optimal rates
and initial distribution presented in Fig. 2C̃ . The system
describes two elements: lactose (z) and the degrading en-
zyme beta-galactosidase in the lac operon, (x). Our op-
timal solution consists of the rates and topologies of the
network and the initial probability distribution of the
system. The optimal solution is based on the matching
between the statistics of the input and the output (lac-
tose and beta-galactosidase) and the properties of the
network, similarly to the approach taken in neuroscience
by Laughlin [32] and in studying time independent mod-
els of information transmission in molecular systems [5–
7, 11]. We find that the optimal initial distribution limits
the system to be with close to equal probability in either
the (x, z) = (−,+) or the (x, z) = (−,−) state, which
corresponds to states in which the enzyme is turned off
and the lactose is either there or not. In the example of
sugar metabolism, these initial states are implemented
using the lac repressor, that senses whether lactose is
present or not in the environment and represses the lac
operon when needed.

Our calculation does not fix the initial state of net-
work, but assigns initial probabilities to all states. This
network design is optimal given this nearly equal proba-
bility of the input sensing sugar in the environment (for
example, activated crp in response to glucose in the lac
operon). However, we did not constrain the initial dis-
tribution, but we asked for a best matching between the
properties of the circuit and any initial distribution. If
the probability distribution of the sugar in the environ-
ment were known and fixed, we would have to optimize
the network given this additional constraints. The cal-
culation presented in models A , B and C is a specific ex-
ample of when the input probability distribution is con-
strained to be the steady state distribution of the system
(and therefore uniquely set by the optimal rates).

According to our optimal solution, lactose can either be
present or not in the cell. In both cases the degradation
enzymes are switched off. If there is no lactose, the sys-
tem at t0 is in the final absorbing state (x, z) = (−,−).
If at t0 lactose (z) is sensed, the enzymes x that de-
grade sugar are switched off and the system is in the
(x, z) = (−,+) state. The appearance of lactose activates
the synthesis of enzymes ((−,+)→ (+,+)), which cause
the depletion of the sugar ((+,+) → (+,−)). Finally
the lack of lactose de-activates the enzymes and they
enzymes are degraded ((+,−) → (−,−)). This match-
ing between the initial probability distribution of seeing
sugar in the environment and the regulatory elements of
the network allows the system to transmit most informa-
tion about the original state of the input with a delay.

Given the fast initial rate for leaving the (x, z) = (−,+),
if the enzyme is present, then sugar was initially present.
If there is no enzyme, there was no sugar [41].

The signal can directly be the input, as in the lac-
tose metabolism example, or it can influence the input.
A biological example of the push-pull network shown in
Fig. 3C̃ (left panel) with the external signal that trig-
gers an input is the p53-MdM2 circuit that is involved in
DNA repair [27, 33]. The tumor suppressor protein p53
transcriptionally activates the MdM2 gene, the product
of which degrades p53. DNA damage leads to the an
increase in p53 levels ((x, z) = (−,+)), which in turn up-
regulates MdM2 ((−,+) → (+,+)) that degrades p53
((+,+) → (+,−)) and in turn down-regulates MdM2
((+,−) → (−,−)). In our optimal solution the initial
distribution of this network is tuned to a roughly equal
probability of there being DNA damage or not.
In both the lactose and DNA damage case the optimal
networks perform one readout, after which they need to
be reset externally: additional sugar needs to be taken up
from the environment or p53 levels need to be increased
by new DNA damage.
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FIG. 4: Summary of optimization results: for each of the
six models, the hull curve of the maximized information I(τ)
is plotted versus τ . When feedback is present (model C )
information is higher for τ & 0.4. When the system is initially

in an optimal state (model Ã , B̃ , C̃ ) the information is higher
for each τ and its time decay is qualitatively different.

IV. DISCUSSION

In Fig. 4 we plot a comparison of all the cases possi-
ble within the two-state model. As the model generality
increases (from A to C̃ ), so does the number of parame-
ters; accordingly, the information capacity of the system
also increases. As explained in Section III C, we see that
the introduction of feedback in model C does not play
a role in increasing information transmission for small
τ . However, the information gain coming from feedback
is substantial for long rescaled delays τ between the in-
put and output readout. Information transmission can
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be improved beyond that achieved in the steady state
(A , B and C ) if the system is pushed out of equilibrium
in specific ways (Ã , B̃ and C̃ ) to respond to one time
signals (for details see Section III D). This increase in in-
formation is achieved by simultaneously optimizing the
initial distribution of inputs and outputs in a way that
matches the properties of the regulatory circuit.

Both in the steady state and the non-steady state feed-
back models we find the optimal network topology of a
push-pull circuit. Such circuits exists in many cells, rang-
ing from bacterial (heat-shock response [26]) to mam-
malian (I-κB-NFκB circuit [28] in animal stress response,
p53-Mdm2 network involved in DNA damage response
[27]), and often combine a slow (transcriptional regula-
tion) with a fast (protein-protein interaction) component,
similarly to the design of our optimal architectures. In
particular, the non-steady state optimal topologies fea-
ture absorbing states, which result in single pulse re-
sponses. These responses are common in the case of
stress signals and in some cases feature a “digital” be-
havior: the number of pulses, rather than the response
intensity, is proportional to the input strength [27].

We find that allowing for feedback (models C and C̃ )
results in optimal solutions that transmit more informa-
tion than models without feedback. This observation
is similar to those found for instantaneous information
transmission [6] and for the rate of information transmis-
sion [17]. Our optimal solutions consist of two elements:
the combination of slow and fast rates of reactions and
the imposed rotational order of the states. In the non-
equilibrium circuits where detailed balanced can be bro-
ken the order of visited states is further enforced by the
absorbing state which means each state can only be vis-
ited once. These two general design elements make the
readout of the input from the output more distinguish-
able, which in turn increases the amount of transmitted
information, similarly to what was previously noted for
more detailed molecular models and instantaneous infor-
mation transmission. As noted, many push-pull networks
that take part in stress response have the slow and fast
timescale that are encoded in a circuit that combines
protein-protein interactions (fast) with gene regulation
(slow timescales). Other molecular implementations of
these general principles may be possible, however this
simple model points to very general design elements.

By studying simple two-state models of biochemical
systems, we cannot interpret our optimal circuits in terms
of the specific molecular designs that could be used to
implement these networks. Specifically we do not account
for molecular noise that comes from discrete numbers of
proteins, mRNAs and genes in a regulatory circuit and
that has been shown to play an important role in choosing
certain regulatory elements over others [5, 11]. The role
of molecular noise and cost in the design of circuits that
transmit information at a delay needs to be examined
using more detailed models. The results presented here
can be used as a starting point.

In our calculation we do not explicitly model fluctu-

ations in the signal, such as was done in previous work
that considered information of an instantaneous response
[13] or looked at optimal delay times [23]. We just look
at the optimal network that would best respond with a
delay to a change in a signal. Due to this formulation
we do not study fluctuations in the signal and we can-
not address the question of whether the network is able
to distinguish random (“irrelevant”) fluctuations from a
real change in the signal - a question that is very impor-
tant in understanding the design of biological circuits.

This study gives a framework for studying information
transmission in biochemical regulatory systems subjected
to delays, also in non-stationary conditions. Such an ap-
proach can be extended to more realistic models that ex-
plicitly account for protein concentrations, where costs
of protein production and degradation can be studied in
detail.
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Appendix A: Calculating mutual information

In the main text we calculate the mutual information
between the input z at time 0 and the output x′ at a
time delay t using the temporal evolution of the joint
probability distribution p(x′, z) obtained from a master
equation. In this Appendix we give a detailed derivation
of the steps of this calculation.

We define the state y of the system as

y = (x, z) ∈ {(−,−), (−,+), (+,−), (+,+)}, (A1)

and the dynamics in terms of transition rate matrix

L =

 um + sm −dm −rm 0
−um dm + rp 0 −sp
−sm 0 up + rm −dp

0 −rp −up dp + sp

 . (A2)

The corresponding master equation is

dp

dt
= −Lp (A3)

for a vector p=p(y)=(p(−,−), p(−,+), p(+,−), p(+,+))
(we omit the implied dependence on time). Primed vari-
ables (e.g., y′) refer to the state of the system at time
t6=0; unprimed ones refer to the state at t=0.

The transition probability matrix p(y′|y) is a solution
of the master equation with initial condition

lim
t→0

p(y′|y) = δy′,y (A4)
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and it can be written as the (y′, y) element of the matrix
e−tL, i.e.

p(y′|y) =
[
e−tL

]
y′,y

=
4∑

α=1

e−λαtvα(y′)uα(y). (A5)

λα (with α = 1, . . . , 4) are the four (assumed to be dis-
tinct for this derivation) eigenvalues of L, and vα and uTα
are their corresponding orthonormal right and left eigen-
vectors, with components vα(y′) and uα(y):

Lvα = λαvα, (A6)
uTαL = uTαλα, (A7)
uTαvβ = δα,β . (A8)

In particular, if we choose a normalization such that
u1 = (1, 1, 1, 1), the eigenvector v1, corresponding to the
eigenvalue λ1 = 0, is the stationary state p∞(y). We are
computing the mutual information between z at time 0
and x′ at time t, which is a function of t and is given by

I[xt, z0] =
∑
x′,z

p(x′, z) log2

p(x′, z)
p(x′)p(z)

. (A9)

The joint probability p(x′, z) is calculated from p(y′|y) as

p(x′, z) =
∑
y,y′ p(x

′, z|y′, y)p(y′, y) using the definition of conditional probabilities

=
∑
y,y′ p(x

′|y′)p(z|y)p(y′, y) exploiting the conditional independence of x′, z

=
∑
y,y′ p(x

′|y′)p(z|y)p(y′|y)p0(y) using the definition of conditional probabilities. (A10)

Note that the elements of p(x′|y′) and p(z|y) are either
0 or 1 according to whether, for example, y is consistent
or inconsistent with z:

p(z = +|y = (+,+)) = 1
p(z = +|y = (+,−)) = 0 (A11)

...

et cetera. Finally, the marginal probabilities p(z) and
p(x′) are given by

p(z) ≡
∑
x′

p(x′, z), p(x′) ≡
∑
z

p(x′, z).

The numerical computation of the mutual information
can now be implemented and the optimal rates for sys-
tems of various complexity can be found numerically. In
the paragraphs below we present useful computational
details for implementing this calculation. We have im-
plemented the optimization procedure in MATLAB and
we made the source code available via the following pub-
lic access repository: http://infodyn.sourceforge.net.

For certain models we can also make analytical

progress by exploiting spectral representations of the
joint distribution, as shown in Appendices D, E and F.

Numerical computation of the joint distribu-
tion. For numerical computation in MATLAB, it is use-
ful to rewrite Eq. A10 in terms of matrix operations. To
that end, we define (note that X and Z are 0−1 matrices
– whose elements are 0 or 1, as per Eq. A11)

Xx′,y′ ≡ p(x′|y′) (A12)

Gy′,y0 ≡ p(y′|y0) =
[
e−tL

]
y′,y0

(A13)

Py0,y ≡ p0(y0)δy0,y (A14)
Zy,z ≡ p(z|y). (A15)

This allows us to write Eq. A10 compactly as

p(x′, z) =
∑
y′

Xx,y′

∑
y0

Gy′,y0
∑
y

Py0,yZy,z (A16)

= [XGPZ]x′,z (A17)

that is how the equation is implemented in MATLAB.
Analytical calculation of the joint distribution.

For analytic calculations, it is useful to expand p(y′|y) in
Eq. A10 in terms of its spectral representation (Eq. A5):
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p(x′, z) =
∑
α

∑
y′,y

p(x′|y′)p(z|y)e−λαtvα(y′)uα(y)p0(y)

=
∑
α

e−λαt

∑
y′

p(x′|y′)vα(y′)

(∑
y

p(z|y)uα(y)p0(y)

)

=

∑
y′

p(x′|y′)p∞(y′)

(∑
y

p(z|y)p0(y)

)
+
∑
α>1

e−λαt

∑
y′

p(x′|y′)vα(y′)

(∑
y

p(z|y)uα(y)p0(y)

)

≡ p∞(x′)p0(z) +
∑
α>0

e−λαtṽx
′

α ũ
z
α (A18)

where

p∞(x′) ≡
∑
y′

p(x′|y′)p∞(y′) (A19)

p0(z) ≡
∑
y

p(z|y)p0(y) (A20)

ṽx
′

α ≡
∑
y′

v(y′)αp(x′|y′) (A21)

ũzα ≡
∑
y

uα(y)p0(y)p(z|y). (A22)

Writing p(x′, z) in this form makes it clear that, if the
eigenvalues are distinct and thus p(y′|y) is diagonalizable,
then p(x′, z) factorizes as t→∞ and thus I[xt, z0]→ 0.
Also clear is that p(x′, z)− p∞(x′)p0(z) is expressible as
a sum of time-decaying exponentials. Since p(x′|y′) and
p(z|y) are 0 − 1 matrices, in many cases ṽα and ũα can
be calculated explicitly, as shown below.

Appendix B: Optimization procedure

We optimize over the parameters of each model in or-
der to maximize I(τ) = I[xt=τ/λ, z0], where τ is a di-
mensionless quantity that results from the rescaling pro-
cedure:

t→ t · λ ≡ τ,

where λ is the inverse of the system’s largest relaxation
rate (the smallest nonzero eigenvalue of the rate matrix
L). The steps of the “rescale and optimize” procedure
are:

while τmin < τ < τmax:

1. optimize I(τ ; θ) over parameters θ or parameters
θ and initial distribution p0(y)

2. save I∗, θ∗, p∗0
3. increment τ

end loop over τ

where

calculate I(τ ; θ):

1. calculate L(θ)

2. calculate λ(L)

3. calculate p(x, z)=X exp(−τL/λ)PZ, as in Eq. A17

4. calculate I[p(x, z)]

return I[p(x, z)] to optimization algorithm

The results are obtained as hull plots, as presented in
Fig. 5 for model A .
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FIG. 5: An explicit construction of the optimal information
curves presented in the main text , here shown for model A .
The maximum value I∗(τ) for each τ (red ∗) is obtained by
optimizing the rates u and r at each τ . The optimal rates can
be different for each τ . The blue continuous curves show the
whole range of I(τ): each of them intersects a (τI∗ , I∗(τ))
and is computed by using the corresponding optimal set of
rates.
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Appendix C: Derivation of mutual information for
2-bit, symmetric systems

In this Appendix we derive useful relations for the
mutual information in the case of 1-bit symmetric sys-
tems. Consider any arbitrary distribution p(a, b) where
{a, b} ∈ {−1,+1} and the distribution enjoys symmetry
under flipping −1 ↔ +1. In this case p(+,+)=p(−,−)
and p(+,−)=p(−,+). For any such distribution the mu-
tual information greatly simplifies, as exploited in the
analytic results associated with model A .

Let us define −1 < η < 1 such that

p(+,+) = p(−,−) = (1 + η)/4, (C1)
p(−,+) = p(+,−) = (1− η)/4. (C2)

From these, we see that

p(a) = p(b) = 1/2 (C3)

and

I[a, b] =
∑
a,b

p(a, b) log2 p(a, b)/(p(a)p(b))

=
∑
a,b

p(a, b) log2 4p(a, b)

= 2p(−,−) log2 4p(−,−) + 2p(−,+) log2 4p(−,+)

=
1
2

(1 + η) log2(1 + η) +
1
2

(1− η) log2(1− η)(C4)

as in the main text , where we replace η by the appropri-
ate expression for µ in each model.

Note also that

p(a = b, b)− p(a 6= b, b) =
p(+,+)− p(−,+) =

1/4(1 + η − 1 + η) = η/2. (C5)

Appendix D: Explicit calculation for model A

Model A describes a system in which z up-regulates x
and x is slaved to z. In this case we can diagonalize L
analytically and calculate the mutual information. We
set

• um=up=dm=dp≡u,

• rm=rp≡r=1,

• sm=sp=0,

and the initial probability p0(y) is set equal to the steady
state p∞(y).

In this case the transition rate matrix L is given by

L =

 u −u −r 0
−u u+ r 0 0
0 0 u+ r −u
0 −r −u u


and its spectrum is

{λ1 = 0, λ2 = r, λ3 = 2u, λ4 = r + 2u}. (D1)

The largest relaxation rate of the system is given by the
inverse of the first non-zero eigenvalue, which switches
from λrelaxation=λ3 (2u∗) for small τ to λrelaxation=λ2=λ3

(2u∗=r∗) for large τ . This change in the rates that govern
the relaxation times marks the crossover shown in Fig. 2
in the main text .
The left eigenvectors are

uT1 = (1, 1, 1, 1),
uT2 = (−1, −u+r

u , +u−r
u , 1),

uT3 = (−1, 1,−1, 1),
uT4 = (1, −u−ru , −u−ru , 1).

(D2)

The right eigenvectors are

v1 = 1
2(r+2u)

 r + u
+u
+u
r + u

 , v2 = 1
2(r−2u)

 +u
+u
−u
−u

 , v3 = 1
2(r−2u)

 −r + u
−u
+u

+r − u

 , v4 = 1
2(r+2u)

 +u
−u
−u
+u

 . (D3)

Using the expressions introduced in Appendix C, we find that p(x′, z) is given by the following 2× 2 matrix:

p(x′, z) =

 (1+e−2tu)r2+2(−2e−rt+e−2ut)ru−4u2

4(r−2u)(r+2u)

(1−e−2ut)r2+2(+2e−rt−e−2ut)ru−4u2

4(r−2u)(r+2u)

(1−e−2ut)r2+2(+2e−rt−e−2ut)ru−4u2

4(r−2u)(r+2u)

(1+e−2ut)r2+2(−2e−rt+e−2ut)ru−4u2

4(r−2u)(r+2u)

 . (D4)

We can then compute I[xt, z0], which, after some algebraic manipulation, reads:

I[xt, z0] =
1
2

(
1 +
−4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)

)
log2

[
1 +
−4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)

]
+

+
1
2

(
1− −4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)

)
log2

[
1− −4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)

]
. (D5)
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If we introduce the quantity

µ =
−4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)
, (D6)

we recover Eq. 3 in the main text . We recall that for
large τ the optimal rates are r∗=2u∗: for this special
case the expressions above may be evaluated by Taylor
expanding about r=2u to find

µ = e−rt/2(1− 2rt). (D7)

We see that for t=0, I[xt, z0]=1 bit and, for long times,
µ→0 and I[xt, z0]→0.
Moreover, on all time-scales we find that in the stationary
state p(x′=z)/p(x′=− z)=(r/u+ 1) > 1.

From Eq. D5, taking δI
δt |t∗=0 and using the appropriate

expression for µ, we are able to find the optimal time lag
for model A as

t∗ = log
(

2u+ r

2r

)
/(2u− r) for r 6= 2u, (D8)

or t∗ =
1
2r

, for r = 2u, as presented in the main text .

Appendix E: Extension to model C

In model C we allow for all the eight rates to be nonzero
and different from each other. Due to the symmetries of
the system (e.g., relabeling the nodes and their rates),
there are many parameter settings which result in equal
mutual information. Qualitatively, these topologies may
all be described as either

1. z activates x, which in turn represses z, or

2. z represses x, which in turn activates z.

As an example, we consider a topology of the first type.
Numerical optimization allows us to observe that certain
rates are zero. We exploit this observation to perform
further analytical calculation. In the case of the topology
of the first type, the rates that incorporate the numerical
facts are the following:

• um = dp,

• up = dm = 0,

• rm = rp,

• sp = sm = 0.

Now the transition rate matrix L is given by

L =

 um 0 −rm 0
−um rm 0 0

0 0 rm −um
0 −rm 0 um


and its spectrum is

λ1 = 0,
λ2 = rm + um,

λ3 = 1
2

(
rm + um −

√
r2m − 6rmum + u2

m

)
,

λ4 = 1
2

(
rm + um +

√
r2m − 6rmum + u2

m

)
.

(E1)

For small τ , the largest relaxation time is given by 1/λ3. For large τ , u∗m = (3− 2
√

2)r∗m (where r∗m = 1), therefore
λ3 = λ4.

The left eigenvectors are


uT1 = (1, 1, 1, 1),
uT2 = (1,− rm

um
,− rm

um
, 1),

uT3 = (−1, +rm−um−
√
r2m−6rmum+u2

m

2rm
,
−rm+um+

√
r2m−6rmum+u2

m

2rm
, 1),

uT4 = (−1, +rm−um+
√
r2m−6rmum+u2

m

2rm
,
−rm+um−

√
r2m−6rmum+u2

m

2rm
, 1).

(E2)

The right eigenvectors are

v1 = 1
2(rm+um)

 rm
um
um
rm

 , v2 = 1
2(rm+um)

 +um
−um
−um
+um

 , (E3)
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v3 =



−rm+um−
√
r2m−6rmum+u2

m

4
√
r2m−6rmum+u2

m
−um

2
√
r2m−6rmum+u2

m
+um

2
√
r2m−6rmum+u2

m

+rm−um+
√
r2m−6rmum+u2

m

4
√
r2m−6rmum+u2

m


, v4 =



+rm−um−
√
r2m−6rmum+u2

m

4
√
r2m−6rmum+u2

m
+um

2
√
r2m−6rmum+u2

m
−um

2
√
r2m−6rmum+u2

m

−rm+um+
√
r2m−6rmum+u2

m

4
√
r2m−6rmum+u2

m


. (E4)

The mutual information is given by Eq. 3 in the main text , with µ given by

µ = cosh(t
√
u2
m + r2m − 6rmum)

rm − um
rm + um

+ sinh(t
√
u2
m + r2m − 6rmum)

u2
m − r2m − 4rmum

(rm + um)
√
u2
m + r2m − 6rmum

. (E5)

For t=0, µ0=
rm − um
rm + um

and I[xt, z0]=1 bit, as can be

seen from Fig. 2 C in the main text . For large t we can
define

x = t
√
u2
m + r2m − 6rmum (E6)

and, noting that

lim
x∗→0

sinhx∗

x∗
= 1, (E7)

we obtain the optimal

µ∗ =
rm − um
rm + um

+
u2
m − r2m − 4rmum

rm + um
t. (E8)

Appendix F: Model Ã

Model Ã is the same as model A , except for the fact
that the initial probability p0(y) is not given by the
steady state but is optimized. In order to optimize
I[xt, z0], one demands that the entropy S[p(z)] is equal
to 1 [42]. This, together with the symmetry in −1↔ +1
for x and z, constrains the form of the initial distribution
to be parameterized as

p0(x, z) =
(

1 + µ0

4
,

1− µ0

4
,

1− µ0

4
,

1 + µ0

4

)
. (F1)

The probability p(x′, z) then reads

p(x′, z) =

(
r+e−2tur−2u+e−rt(−r+rµ0−2uµ0)

4(r−2u)
r−e−2tur−2u+e−rt(+r−rµ0+2uµ0)

4(r−2u)
r−e−2tur−2u+e−rt(+r−rµ0+2uµ0)

4(r−2u)
r+e−2tur−2u+e−rt(−r+rµ0−2uµ0)

4(r−2u)

)
, (F2)

and we can explicitly compute the mutual information:

I[xt, z0] =
1
2

(
1 + µ0e

−rt +
r

r − 2u
(e−2ut − e−rt)

)
log2

[
1 + µ0e

−rt +
r

r − 2u
(e−2ut − e−rt)

]
+

+
1
2

(
1− µ0e

−rt +
r

r − 2u
(e−2ut − e−rt)

)
log2

[
1− µ0e

−rt +
r

r − 2u
(e−2ut − e−rt)

]
. (F3)

The above equation can again be rewritten as in Eq. 3
if we introduce

µ = µ0e
−rt +

r

r − 2u
(e−2ut − e−rt). (F4)

For t=0, µ=µ0 and the information is maximized by
µ=µ0=± 1.

Appendix G: Models B and B̃

Models B and B̃ are extensions of model A and Ã , re-
spectively, where we allow z to also be a repressor of x
(sm 6= 0, sp 6= 0, and we no longer demand rp = rm).
As in models A and Ã , we do not allow feedback from
x to z, meaning that the transition rates for z do not
depend on the state of x (i.e. um=up≡u and dp=dm≡d).
The results for the optimal parameters and topologies of
these models are very similar to models A and Ã and are
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not shown in the main text . We plot the correspond-
ing results in Fig. 6. We note that in model B̃ we have
absorbing states, similar to those of model C̃ shown in
the main text . As in model C̃ , the symmetries of the
problem allow many equivalent (under permutation of
labels) parameter settings: we show all of them in Fig. 7.
However, unlike in model C̃ where all states are visited, in
each optimal setting of model B̃ one state (gray in Fig. 7)
is never visited.
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FIG. 6: Example of optimal parameters, along with trans-
mitted information I∗, for models B and B̃ . Parameters in
square brackets refer to alternative optimal topologies where
z down-regulates x instead of up-regulating it (see Fig. 7

B and B̃ ). Subscripts m, p are omitted when xm=xp (with

x=u, d, r, s). In model B̃ the optimal rates do not change with
τ and the optimal initial distribution is split slightly unevenly
between the beginning and end state.
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FIG. 7: Full set of optimal topologies and dynamics for mod-
els B and B̃ . The topologies of these optimal networks were
found by inspecting the optimal rates manually. In model
B̃ some states (shown in gray in the figure) are never visited.

Appendix H: Model C̃

Model C̃ is the same as model C , except for the fact
that the steady state assumption is now relaxed and the

system is optimized also over the initial distribution (as
in models Ã and B̃ ). The results are discussed in detail
in the main text ; here, we simply show in Fig. 8 the four
maximally informative topologies that have been found:
each of them can be labeled as a “push-pull” network
and features an absorbing state.
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FIG. 8: Optimal topologies and dynamics for model C̃ , where
the steady state assumption is relaxed and feedback is present.
The topologies of these optimal networks were found by in-
specting the optimal rates manually. The optimal initial dis-
tribution is split slightly unevenly between the beginning and
end state.
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