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The diversity of T-cell receptors recognizing foreign pathogens is generated through a highly
stochastic recombination process, making the independent production of the same sequence rare.
Yet unrelated individuals do share receptors, which together constitute a “public” repertoire of
abundant clonotypes. The TCR repertoire is initially formed prenatally, when the enzyme inserting
random nucleotides is downregulated, producing a limited diversity subset. By statistically analyzing
deep sequencing T-cell repertoire data from twins, unrelated individuals of various ages, and cord
blood, we show that T-cell clones generated before birth persist and maintain high abundances in
adult organisms for decades, slowly decaying with age. Our results suggest that large, low-diversity
public clones are created during pregnancy, and survive over long periods, providing the basis of the
public repertoire.

The adaptive immune system relies on the diversity
of T-cell receptor (TCR) repertoires to protect us from
many possible pathogenic threats. This diversity is pro-
duced by a V(D)J recombination machinery that assem-
bles the repertoire de novo in each individual, adding a
large degree of randomness to combinations of genomic
templates. The diversity is encoded not only in the set
of specific receptors expressed in a given individual, but
also in their relative abundances (the size of T-cell clones
expressing each of them) which can differ by orders of
magnitude. These differences are partially attributed to
antigenic stimulation (infection, vaccination), implying
that clones increase their sizes in response to common or
recurring infections. Despite this great diversity, different
individuals—regardless of their degree of relatedness—do
express a subset of the exact same receptors, called the
public repertoire [1]. This overlap is often interpreted as
the convergence of individual repertoire evolutions in re-
sponse to common antigenic challenges [2]. Accordingly,
some public TCRs are known to respond for common
pathogens such as the cytomegalovirus or Epstein-Barr
virus [3]. However, this interpretation is challenged by
the observation that these two properties—large differ-
ences in clone sizes and public repertoires—are also ob-

served in naive repertoires, for which antigenic stimula-
tion is not expected to be important [4, 5].

An alternative explanation for public clones, which
does not invoke convergent repertoire evolution, is that
both abundant and public receptors are more likely to
be produced by rearrangement, and just occur by coin-
cidence [1, 6]. This idea is backed by some compelling
evidence. First, the extent of sharing of clonotypes be-
tween pairs of individuals can be accurately predicted in
both naive and memory pools from statistical models of
sequence generation [7]. Second, the likelihood that a
clonotype sequence is shared by individuals has been re-
ported to correlate with its abundance [6, 8]. However
the origin of this correlation remains elusive. In addition,
public clonotypes often have few or no randomly inserted
N nucleotides, which limits their diversity. Terminal de-
oxynucleotidyl transferase (TdT), the enzyme responsi-
ble for random nucleotide insertions, is not active in in-
variant T-cell subsets [9] and in some fetal T-cell clones,
and these subsets could contribute to the emergence of
the public repertoire. Another confounding factor is the
ageing of repertoires, and the concomitant loss of diver-
sity, which is expected to affect the structure of clonal
abundances as well as the repertoire’s sharing properties.
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How do all these effects shape the structure and diversity
of TCR repertoires, and control their functional capabil-
ities? Here we propose and test the hypothesis that a
sizeable fraction of public clonotypes are created before
birth. These clonotypes have low diversity because of
reduced TdT activity, making them more likely to be
shared among unrelated invididuals. Their large abun-
dances, due to reduced homeostatic pressures in the early
stages of repertoire development, allows them to survive
over long periods.

We first examined in detail the question of clonotype
sharing between individuals. To avoid confounding ef-
fects due to convergent selection, we first focused on out-
of-frame receptor sequences resulting from unsuccessful
recombination events, which give us direct insight into
the raw V(D)J recombination process [10, 11], free of
clonal selection effects. The number of shared clonotypes
between two clonesets is approximately proportional to
the product of the cloneset sizes [8, 11, 12]. We call the
ratio of the two the normalized sharing number. Under
the assumption that sharing occurs by pure chance, this
number can be predicted using data-driven generative
probabilistic models of V(D)J recombination accounting
for the frequencies of the assembled V, D, and J gene
segments and the probabilities of insertions and deletions
between them [7, 11, 13]. We can estimate sharing either
of the entire nucleotide chain (alpha or beta), or of a
restricted portion of it called the Complementarity De-
termining Region 3 (CDR3), which concentrates most
of the chain’s diversity and determines antigen speci-
ficity. Genetically identical individuals may be expected
to have more similar recombination statistics [8, 14, 15],
and therefore share more sequences. To assess these ge-
netic effects, we looked at the sharing of TCR alpha
and beta-chain receptor repertoires between three pairs
of monozygous twins. We synthesized cDNA libraries of
TCR alpha and beta chains from the donors’ peripheral
blood mononuclear cells and sequenced them on the Illu-
mina HiSeq platform (see Fig. S1 and SI Text). For each
pair of individuals, the normalized number of shared out-
of-frame alpha sequences was compared to the prediction
from the recombination model, as shown in Fig. 1 (see
also Figs. S2 for similar results on sharing of CDR3 se-
quences). Sharing in unrelated individuals (black circles)
was well predicted by the model (Pearson’s R = 0.976),
up to a constant multiplicative factor of 2.07, probably
due to differences in effective cloneset sizes. While twins
did share more sequences than unrelated individuals (red
circles), this excess could not be explained by their re-
combination process being more similar. The model pre-
diction was obtained by generating sequences from mod-
els inferred using each individual’s cloneset as input [13],
mirroring their specific recombination statistics (see SI
Materials and methods). The normalized sharing number
departed significantly from the model prediction only in
twins, calling for another explanation than coincidence in
that case. The same result was obtained for beta out-of-
frame CDR3 sequences (Fig. S3), although less markedly

because of a lower signal-to-noise ratio due to smaller
numbers of shared sequences. Most of beta out-of-frame
sequences shared among the highest-sharing twin pair as-
sociated with CD8 CD45RO+ (memory) phenotype in
both individuals. This observation is surprising, because
the non-functionality of these sequences excludes conver-
gent selection as an explanation for it (see SI for details).

We then examined the sharing of in-frame CDR3 se-
quences. Most of in-frame sequences are functional, and
have passed thymic and peripheral selection. Since these
selection steps involve HLA types and are therefore ex-
pected to be similar in related individuals, we wondered
whether the functional repertoires of twins also displayed
excess sharing. Remarkably, we found some excess shar-
ing in the in-frame beta repertoire (Fig. S4), but none
in the in-frame alpha reperoire (Fig. S5). However, the
failure to observe excess sharing in this last case can be
explained by the much higher expected number of shared
sequences in the alpha in-frame repertoire (due to both
in-frame sequences being more numerous than out-of-
frame ones, and to the lower diversity of alpha chains
compared to beta chains) which could mask this excess
in twins (see SI Text).

To investigate the origin of excess sharing between
twins, we looked at the statistical properties of shared
alpha out-of-frame sequences from Fig. 1. Shared clono-
types between non-twins, which happen by coincidence,
should have a higher probability Pgen to have been pro-
duced by V(D)J rearrangement compared to non-shared
clonotypes. Indeed, the distribution of Pgen among
shared sequences can be calculated from the probabilistic
model of generation (Fig. 2, blue curve), and the predic-
tion agrees very well with the data between non-twins
(red curves). By contrast, shared sequences between
twins deviate from the prediction (green curve), espe-
cially in the tail of low-probability sequences, but are
consistent with a mixture of 18±3% of regular sequences
(black curve), and the rest of coincidentally shared se-
quences (blue curve). These numbers agree well with the
excess sharing in twins, which amounts to 17% ± 3% of
non-coincidentally shared sequences, as estimated from
Fig. 1. Sequences shared between twins also have higher
numbers of insertions and are therefore longer than those
shared between unrelated individuals or according to the
model (Fig. S6) – a trend that is even more pronounced
in memory cells (Fig. S7). Note these observations about
recombination probabilities and number of insertions are
related: sequences with many insertions each have a low
generation probability because of the multiplicity of in-
serted nucleotides.

Taken together, these observations support the exis-
tence of another source of shared sequences than coin-
cidence in twins. Since the sharing of cord blood be-
tween twins is the only natural instance when the im-
mune systems of two individuals share cells, we propose
that the increased sharing of private TCRs between iden-
tical twins dates back to the sharing of cord blood cells,
and that these shared clones persist into late age.

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/039297doi: bioRxiv preprint first posted online Feb. 9, 2016; 

http://dx.doi.org/10.1101/039297


3

0 4.0e−08 8.0e−08 1.2e−07

0
1
.0

e
−

0
7

2
.0

e
−

0
7

3
.0

e
−

0
7

Normalized sharing, model

N
o

rm
a

liz
e

d
 s

h
a

ri
n

g
, 

d
a
ta

R = 0.976

FIG. 1: TCR out-of-frame repertoire sharing in
monozygous twins is higher than in unrelated indi-
viduals, or than predicted by stochastic models of
recombination. The number of shared out-of-frame alpha
TCR clonotypes between all 15 pairs among 6 donors con-
sisting of 3 twin pairs (ordinate) is compared to the model
prediction (abscissa). To be able to compare pairs of datasets
of different sizes, the sharing number was normalized by the
product of the cloneset sizes. The three outstanding red cir-
cles represent the twin pairs, while the black circles refer to
pairs of unrelated individuals. The model prediction is based
on a generative stochastic model of VJ recombination [13],
inferred separately for each donor to account for differences
between individuals. It agrees well with the data from unre-
lated individuals up to a common multiplicative factor, but
systematically underestimates sharing in twins. Error bars
show one standard deviation.

To verify this hypothesis, we characterized the in-frame
beta-chain repertoire of human cord blood (see SI Ma-
terials and methods). One feature of the rearranged
chains is the number of insertions at the junctions be-
tween the gene segments (VD and DJ in the case of beta
chains). We ranked beta TCR clonotypes from human
cord blood data by decreasing abundances and plotted
the mean number of insertions (inferred iteratively and
averaged over groups of 3000 clonotypes, see SI Meth-
ods), as a function of this abundance rank (Fig. 3A). The
most abundant clones in cord blood had markedly smaller
numbers of insertions (black line). The naive repertoire
of a young adult (blue line) showed a much weaker de-
pendence on abundance than the cord blood repertoire,
but followed a similar trend. The dependence was even
further reduced in older adults (purple and green lines).
Interestingly, the number of insertions in the beta chains
of the adult memory repertoire (red, orange and maroon
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FIG. 2: TCR sequences shared between twins are sta-
tistically different from sequences shared between un-
related individuals. Distribution of log10 Pgen, with Pgen

the probability that a sequence is generated by the VJ recom-
bination process, for shared out-of-frame TCR alpha clono-
types between one individual and the other five. While the
distribution of shared sequences between unrelated individu-
als (red curves) is well explained by coincidental convergent
recombination as predicted by our stochastic model (blue),
sequences shared between two twins (green) have an excess of
low probability sequences. For comparison the distribution of
Pgen in regular (not necessarily shared) sequences is shown in
black.

lines) did not depend of the abundance of these cells.
This observation can be explained by the resetting of
the size of memory clones following an infection, erasing
features of the abundance distribution inherited from fe-
tal life. Looking more closely into the distribution of
the number of insertions (Fig. 3B) reveals that low mean
numbers of insertions are associated with an enrichment
in clonotypes with zero insertions. Accordingly, the frac-
tion of naive zero-insertion sequences generally decreased
with abundance rank (Fig. 3C), with again a stronger de-
pendency in cord blood and young adults. Fewer num-
bers of insertions in the cord blood are expected because
TdT, the enzyme responsible for random insertions, is
initially strongly downregulated in prenatal development
[16]. This enrichment in low-insertion sequences persists
and shows weak signatures in the adult naive repertoire,
suggesting long lifetimes of cord blood clonotypes (al-
though not necessarily of individual cells).

The enrichment of zero-insertion sequences in large
clonotypes can be used to verify the hypothesis of long
lived fetal clonotypes originating from the cord blood.
Analysing TCR beta repertoire data from individuals of

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/039297doi: bioRxiv preprint first posted online Feb. 9, 2016; 

http://dx.doi.org/10.1101/039297


4

30
00

15
00

0

30
00

0

45
00

0

60
00

0

75
00

0

90
00

0

0
2

4
6

8

Abundance rank

m
e

a
n
 n

u
m

b
e

r 
o

f 
in

se
rt

io
n

s

Memory, age 57
Memory, age 51
Memory, age 19
Naive, age 57
Naive, age 51
Naive, age 19
Cord blood

I

II

A

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0 5 10 15 20

0
.0

0
0
.0

4
0
.0

8

I)

II)

B

P
ro

b
a

b
ili

ty

Cord blood

Naive, age 19

Number of insertions

6000 12000 18000 24000 30000 36000

0
.0

0
2

0
.0

0
5

0
.0

2
0
.0

5
0
.2

0
0
.5

0

Abundance rank

F
ra

c
ti
o

n
 o

f 
z
e

ro
-i

n
s
e

rt
io

n
 c

lo
n
o

ty
p

e
s

Cord blood
Naive, age 19
Naive, age 51
Naive, age 57
Memory, age 19
Memory, age 51
Memory, age 570

.1
0

0
.0

1

C

FIG. 3: The number of inserted nucleotides in in-frame TCR beta clonotypes depends on their abundance. A.
Mean numbers of insertions were obtained by analysing groups of 3000 sequences of decreasing abundance. Clonotypes from
the cord blood (black) show a strong dependence on abundance, with high-abundance clones having much fewer insertions
than low-abundance ones. Clonotypes in a young adult naive repertoire (blue) show a similar but less marked trend. Naive
clonotypes in older adults (violet and green) show an even weaker trend. Adult memory samples of all ages show no dependence
at all (red, yellow and maroon). Error bars show 2 standard errors. B. Probability distributions for number of insertions for
two rank classes for young naive and cord-blood samples (ranks 1-3000 on top, ranks 45000-48000 on bottom). For high-ranking
sequences, the probability of having zero insertions is high both for adult naive and cord blood samples. For middle-ranking
sequences, the probability of 0 insertions is much lower, and distributions are similar for adult naive and cord-blood samples.
C. Fraction of clonotypes with zero insertions for different abundance classes. Error bars show one standard deviation.

different ages [17], we observed a slow decay of abundant
zero-insertion clonotypes with age, with a characteristic
time of 37 years (Fig. 4). However, the excess of abun-
dant TdT- clonotypes of fetal origin only affects naive
cells (Figs. 3 and S10), whose relative fraction is also
known to decrease with time [17]. To assess the impor-
tance of this confounding effect, we fit an exponential
decay model for the percentage of naive cells and found
a characteristic decay time of 67 years. Therefore, the
attrition of the naive pool alone cannot explain the de-
crease of zero-insertion clonotypes, which we attribute
instead to the progressive extinction of clones of fetal
origin, consistently with our hypothesis.

Fetal clones are directly exchanged between twins
through cord blood and then persist with age, explaining
the enhanced sharing between them. At the same time,
TdT- zero-insertion clonotypes are also most likely to be
shared by chance than regular TdT+ sequences, because
of their fewer number of insertions and reduced diversity.
What are the implications of this observation for sharing
between non-twins? Since zero-insertion sequences are
overrepresented among abundant clonotypes (Fig. 3), we
predict that abundant out-of-frame clones are more likely
to be shared. To make our prediction quantitative, we
built a mixture model of the out-of-frame alpha reper-
toire (see SI Text for details). We assumed that clono-
types of a given abundance C are made up of a certain
fraction F (C) of TdT- zero-insertion clonotypes, and a
complementary fraction 1−F (C) of regular TdT+ clono-

types. Because TdT+ clonotypes may also have no inser-
tions, the fraction of the TdT+ and TdT- sets had to be
learned in a self-consistent manner. Sequences were gen-
erated by the model for each abundance class C, and their
sharing compared to the data. The model accurately
predicts the normalized sharing number of out-of-frame
alpha-chain CDR3s as a function of clonotype abundance
(Fig. 5), up to the common multiplicative factor of 1.7 by
which the non-mixture model generally underestimates
CDR3 sharing (see Fig. S2). Thus, the enhanced shar-
ing of high-abundance clonotypes is entirely attributable
to their higher propensity to have no insertions, making
them more likely to be shared by chance.

Our results on the biological contamination of T cells in
twins are robust to possible experimental artefacts. First,
our framework relies on the accurate counting of TCR
cDNA sequences using unique molecule identifiers[18].
To exclude the possibility of contamination during the
PCR and sequencing process, we double barcoded each
cDNA library. To further exclude the possibility of early
contamination of the blood samples, we performed repli-
cate experiments at different times using different library
preparation protocols. Comparison of repertoire over-
laps from such replicate experiments for the same set of
twins shows no difference and rules out experimental con-
tamination as a confounding effect (see SI). We also ob-
served the same effects in previously and independently
collected datasets [8], further excluding the possibility of
experimental artefacts (Fig. S8).
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FIG. 4: Lifetime of abundant in-frame TCR beta
clonotypes with zero insertions. The fraction of zero-
insertion clonotypes among the 2000 most abundant clono-
types as a function of age (circles) is well fitted by an expo-
nentially decaying function of time (black curve). This decay
is faster than would be predicted from the decay of the naive
compartment alone (red curve), indicating a slow decay of
zero-insertion clonotypes of fetal origin.

Cord blood sharing between twin embryos could have
important implications on twin immunity: they could
share and respond with private clonotypes, which would
otherwise not be likely to be produced independently.
This could possibly include sharing of malignant [19–21]
or autoimmune clones, leading to disease in both indi-
viduals. This mechanism of sequence sharing is very dif-
ferent from sharing by convergent recombination [6], be-
cause it also implies the sharing of the second TCR chain
and of the cell phenotype. Paired repertoires studies,
which combine alpha and beta chains together [22, 23],
could be used to track clones shared between twins more
precisely, and distinguish them from convergently recom-
bined ones.

We conclude that fetal clonotypes are long-lived based
on the analysis of over-abundant zero-insertion clono-
types. Invariant T-cells, MAIT (Mucosal-Associated In-
variant T-cells) and iNKT (Invariant Natural Killer T-
cells) are intrinsically insertion-less, have restricted VJ
usage for alpha chain, and are often abundant. These
cells are produced in adulthood and could in princi-
ple constitute a substantial fraction of our zero-insertion
dataset, confounding our analysis. Since our abundant
zero-insertion clonotypes have a very diverse usage of VJ
genes, we can exclude that the majority of them are from
invariant T-cells, although we did identify a small num-
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FIG. 5: Sharing of alpha out-of-frame TCR clonotypes
as a function of clonal abundance. The normalized num-
ber of shared out-of-frame alpha CDR3 sequences between
two individuals is showed as a function of clonotype abun-
dance (e.g. normalized sharing for 2000 most abundant clones
from both repertoires, 4000 most abundant, etc.), and com-
pared to the amount of sharing that would be expected by
chance (blue curve), taking into account the variable fraction
of zero-insertion clonotypes as a function of their abundance.
Data and predictions show excellent quantitative agreement
(inset), with one fitting parameter. Error bars show one stan-
dard deviation.

ber of such invariant TCR alpha chain clonotypes, see
SI.

Our current data clearly shows that clonotypes that
originated in the cord blood tend to be among the most
abundant in the naive repertoire, but we cannot unam-
biguously point to the source of this effect. One possi-
bility is convergent recombination [6]: high clonotypes
abundances could be due to the accumulation of mul-
tiple convergent recombination events made more likely
by the limited recombination diversity during fetal devel-
opment. An alternative explanation is that these clones
have had more time to expand than others. Fetal cells
come from different precursors, and mature in a different
environment (the fetal liver), than post-natal cells [24].
In vitro experiments have shown that fetal T-cells have a
different proliferation potential than post-fetal cells [25].
Additionally, a vacant ecological niche effect may play a
role. When these clones first appeared, the repertoire had
not reached its carrying capacity set by homeostatic reg-
ulation, leaving room for future expansion. These clones
may have initially filled the repertoire, later to be grad-
ually replaced by post-fetal clonotypes. Consequently,
fetal clones, including those whose TCR was recombined
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with no TdT, would be expected to have larger sizes.
Clones with non-zero numbers of insertions could also
originate in the cord blood as TdT is upregulated, how-
ever we have no way of distinguishing them from postna-
tal clones. Quantitative TCR repertoire profiling (prefer-
ably with the use of unique molecular identifiers for accu-
rate data normalization and error correction), performed
for species with no TdT activity in the embryo, such as
mice, as well as novel cell lineage tracking techniques [26]
could be used to investigate the detailed dynamics of fetal
clones. This large initial expansion of fetal clones could
protect them from later extinction. This would suggest
that the estimated 37-year lifetime of zero-insertion fetal
clonotypes could be longer than that of regular clones
produced after birth.

The proposed large initial expansion of fetal clones
could protect them from later extinction. This would
suggest that the estimated 37-year lifetime of zero-
insertion fetal clonotypes could be longer than that of
regular clones produced after birth. Sharing of beta
TCRs has previously been shown to decrease with age
[17]. Depletion of fetal clonotypes, which are more likely
to be shared, could contribute to this phenomenon. Our
results also predict that the excess sharing of clonotypes
between twins due to the biological contamination of fetal
cells should decrease with age. In general, the observed
abundance of large zero-insertion clonotypes and their

persistence through significant part of our life should
have important consequences for the adaptive immunity
regulation both in pre- and post-fetal period.

Lastly, our general framework for analyzing the overlap
between different repertoires has far-reaching practical
implications for the tracking of T-cell clonotypes in the
clinic. In particular, the analysis of overlap between pre-
and post-treatment repertoires using probabilistic char-
acteristics of clonotypes sharing could help determine the
host or donor origin of clonotypes after hematopoietic
stem cell transplantation (HSCT), and also increase reli-
ability of malignant clones identification in minimal resid-
ual disease follow-up.
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I. SUPPLEMENTARY MATERIALS AND
METHODS

A. Blood samples

Blood samples were collected from 3 pairs of monozy-
gotic twin female donors, 23 (donors S1 and S2), 23
(donors P1 and P2) and 25 (donors Q1 and Q2) years
old respectively. We also collected blood from two 19
and 57 year old male donors, along with a 51 year old fe-
male donor for memory and naive T-cells isolation, and
a cord blood sample from a female newborn. All donors
were healthy Caucasians, blood samples were collected
with informed consent, and local ethical committee ap-
proval. The genetic identity of the twins was checked
using polymorphic Alu insertion genotyping [27].

PBMCs were isolated from 12 ml of blood using Ficoll-
Paque (Paneco, Russia) density gradient centrifugation.

One third of the isolated PBMCs was used for total RNA
isolation with the Trizol reagent (Invitrogen, USA) ac-
cording to the manufacturer’s protocol. Other cells were
used for CD4, CD8 and CD45RO+ T-cells isolation.

B. CD4, CD8, 45RO+ T-cell isolation

CD4 and CD8 T-cells were isolated from PBMCs us-
ing the CD4+ and CD8+ positive selection kit (Invit-
rogen, USA) according to the manufacturer’s protocol.
CD8 T-cells were isolated from CD4 depleted samples to
maximize the cell yield. 45RO+ cells were extracted us-
ing human CD45RO microbeads (Myltenyi, USA). Naive
T-cells were isolated with the CD8+ T-cell naive isola-
tion kit (Myltenyi, USA) according to the manufacturer’s
protocol without the final CD8 enrichment step.

Total RNA was immediately extracted from the iso-
lated cells using the Trizol reagent (Invitrogen).

C. TCR α and TCR β cDNA library preparation

The library preparation protocol was adapted from [28]
with modifications. The cDNA first strand was pro-
duced from the total RNA using the SmartScribe kit
(Clontech, USA) and universal primers specific for the C-
segment (see Fig. S1 A). Custom cap-switching oligonu-
cleotides with unique molecular identifiers (UMI) and
sample barcodes were used to introduce the universal
primer binding site to the 3’ end of the cDNA molecules
(see Fig. S1 B). Each tube contained 500 ng of total RNA,
1x SmartScribe buffer, dNTP (1 mM each), 10pcmol of
BCuniR4vvshort and TRACR2 primers (see Table S1 for
sequences) and 1 µl of SmartScribe reverse transcriptase.
5mkg of the total RNA was used for the cDNA synthe-
sis for each sample (10 tubes per sample). The cDNA
synthesis product was treated (45 min, 37oC) with 1 µl
of 5u/µl UDG (NEB, USA) to digest the cap-switching
oligonucleotide and purified with the Quigen PCR purifi-
cation kit. After the cDNA synthesis two steps of PCR
amplification were used to amplify the cDNA and also
introduce Illumina TruSeq adapters as well as the sec-
ond sample barcode. After both steps the PCR product
was purified using the Quigen PCR purification kit ac-
cording to the manufacturer’s protocol. The first PCR
step (see Fig. S1 C) consists of 16 cycles of: 94 oC for
20 sec, 60oC for 15 sec, 72oC for 60 sec. Each tube con-
tained (total reaction volume 15 µl) 1x Q5 polymerase
buffer (NEB), 5 pmol of Sm1msq and RPbcj1, RPbcj2,
RPacj primers, dNTP(0.125 mM each) and 0.15 µl of Q5
polymerase. Then 1 µl of the purified PCR product was
used for the second amplification step (see Fig. S1 D)
consisting of 12 cycles of: 94oC 20 sec, 60oC 15 sec, 72oC
40 sec. Each tube contained (total reaction volume 25
µl): 1x Q5 polymerase buffer, 5 pmol of Smoutmsq and
Il-bcj-ind or Il-acj-ind primers (with sample specific in-
dices, for beta and alpha libraries respectively, one primer
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per sample), dNTP(0.125 mM each) and 0.25 µl of Q5
polymerase. Size selection for 500-800bp fragments of the
purified PCR product was performed using electrophore-
sis in 1% agarose gel.

D. Next Generation Sequencing

cDNA libraries were sequenced on the Illumina HiSeq
platform (2x100nt). Custom sequencing primer se-
quences are listed in Table S1. The total numbers of
sequencing reads are shown in Table S2.

E. Raw data preprocessing

Raw sequencing data files were preprocessed with
MiGEC [29], sequencing reads were clustered by unique
molecular identifiers (UMI). UMIs with less than two
reads were discarded to reduce the number of erroneous
sequences. Then sequences were processed with MiXCR
[30] to determine the CDR3 position and nucleotide se-
quence. For the numbers of UMIs after filtering see Table
S2.

F. Learning recombination statistics

We built a generative model that describes the prob-
ability of generation of recombined sequences, following
the theoretical framework described in [11, 13]. The gen-
eration probability for each sequence is calculated as the
sum over all recombination scenarios r that can produce
that sequence, Pgen(sequence) =

∑
r Prearr(r). For TCR

alpha chains the model assumes the following factorized
form for a recombination scenario defined by the choice
of genes (V and J), P (V, J), deletions (delV and delJ),
P (delV |V ) and P (delJ |J) and insertions (ins), P (ins):

Pαrearr(r) = P (V, J)P (delV |V )P (delJ |J)P (ins). (1)

The parameters of the models, the different probabili-
ties in the factorized formula, were inferred by maximiz-
ing the likelihood of the observed out-of-frame sequences
given the model, using Expectation-Maximization [11].
For alpha chains, the model was reformulated as a Hid-
den Markov Model, and the parameters were learned ef-
ficiently using a Baum-Welch algorithm, as described in
[13].

For beta chains, the model describes probabilities for
V, D and J choices, with possible deletions and insertions
at each of the two junctions:

P βrearr(r) = P (V,D, J)P (delV |V )P (insV D) (2)

×P (delDl, delDr|D)P (insDJ)P (delJ |J)

The parameters for the beta chain model were in-
ferred directly using the Expectation-Maximization algo-
rithm, by enumerating all possible recombination scenar-
ios that can produce each sequence, using the procedure
described in [11].

This procedure allows us to learn the features of the re-
combination statistics with great accuracy, in particular
the distribution of number of insertions at the junctions,
even though the recombination events themselves can-
not be unambiguously be determined for each sequence
because of convergent recombination.

G. Distribution of insertions for each beta chains
abundance class

We applied the procedure described in the previous
section separately for each abundance class of the beta-
chain sequences. However, given the small size of the
datasets (2000 or 3000 sequences), we did not learn the
full model for each class. Instead, we used a previously
inferred universal beta-chain recombination model [11]
for the V,D,J gene usages and their deletion profiles, and
we learned the insertion distributions (P (insV D) and
P (insDJ)) for each class separately, while keeping the
other parameters constant. The distribution of insertions
thus inferred are used to plot the results of Figs. 3 and 4
of the main text.

H. Inference of selection factors

In-frame sequences statistically differ from out-of-
frame sequences (besides their frameshift), because in-
frame sequences are functional and have passed thymic
selection. For each sequence we defined a selection factor
Q as the ratio of the probability of observing the sequence
in the in-frame set, to the probability of recombining the
sequence according to out-of-frame statistics (as inferred
above). The overal selection factor Q is assumed to be
the product of several independent factors q acting on
the CDR3 length L and on the identity of amino acid ai
at each position i of the CDR3 [7]:

Q ∝ qL

L∏
i=1

qi;L(ai) (3)

The parameters were inferred by maximizing the likeli-
hood with gradient ascent, as described in [7].

I. Data analysis

Analysis of the shared clonotypes was performed using
the R statistical programming language [31] and the tcR
package [32].
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J. Out-of-frame sharing prediction

To predict sharing for each individual, we generated
sequences using our recombination model Pgen (alpha or
beta), with individually inferred model parameters. Nor-
malized sharing of the TCR sequences between two clone-
sets is defined as the number of the same unique TCR
nucleotide sequences observed in both of them, divided
by the product of the total numbers of unique TCR nu-
cleotide sequences in the two datasets.

We calculated sharing of either whole chains, or of their
CDR3, defined as the sub-sequence going from the con-
served cystein at the end of the V region, to the conserved
phenylalanine in the J region.

The alpha chain results for whole-chain sharing are
plotted in the main text in Fig. 1, and the data shows
good agreement with the model. The results for CDR3
sharing are shown in Fig. S2. The model systemati-
cally underestimates the normalized sharing by a com-
mon multiplicative factor of 1.7 for non-twins, with a
Pearson correlation coefficient of 0.8 between the data
and the model prediction. Absolute numbers of shared
CDR3 sequences for alpha chains varied from 400 to 1200.

For beta chain sequences, the prediction of out-of-
frame sharing is more difficult because of the low numbers
of out-of-frame sequences in the RNA data, which, com-
bined to a lower mean Pgen, results in a much lower num-
ber of shared out-of-frame sequences. We also identified
and removed from the dataset 26 out-of-frame sequences
shared between more than two individuals. These se-
quences are likely to arise due to reproducible aligner
errors or technology artifacts – some of them contained
intronic sequences, etc. Absolute numbers of shared beta
CDR3 sequences varied from 0 to 82. Nevertheless, the
number of shared beta out-of-frame CDR3 sequences for
twins exceeded the model prediction (see Fig. S3), con-
firming our hypothesis of biological contamination during
pregnancy.

K. In-frame sharing prediction

To accurately predict the normalized sharing num-
ber for in-frame nucleotide clonotypes, we generated se-
quences from Pgen as we did for out-of-frame sequences,
but weighted them by their selection factor Q to account
for thymic selection. The predicted normalized sharing
number was then calculated as:

1

|S1| · |S2|
∑

s∈S1∩S2

Q(1)(s)Q(2)(s), (4)

where S1, and S2 are two synthetic sequence samples

drawn from two models P
(1)
gen,P

(2)
gen individually learned

from the out-of-frame sequences of two individuals, and
Q(1)(s), Q(2)(s) are selection factors learned individually
from these two individuals’ in-frame sequences. |S1| and
|S2| denote the size of the two samples. The sum runs
over sequences s found in both samples.

For both the beta and the alpha chains, the prediction
agrees very well with the data (Fig. S4 and Fig. S5). For
the beta chain, twins share more CDR3 sequences than
non-twin pairs, while no such effect was observed for the
alpha chain sequences. This fact could be explained by
the much higher number of clonotypes shared due to con-
vergent recombination in the alpha in-frame dataset than
in the beta in-frame and alpha and beta out-of-frame
datasets. Excess of shared CDR3 nucleotide sequences
due to biological contamination in twins is lower than the
amount of convergent recombination noise in the alpha
in-frame shared CDR3 nucleotide sequences. Absolute
numbers of shared in-frame CDR3 sequences for alpha
chains varied from 30000-50000 sequences depending of
the pair, and 5000-9000 for beta chains.

L. Mixed model inference

We hypothesized that the larger amount of zero inser-
tion clonotypes is responsible for the increase in shar-
ing between the most abundant clonotypes of the out-
of-frame repertoires of unrelated individuals. To test
this hypothesis, we constructed a mixture model for each
abundance class, each class containing 2000 clonotypes
ranked by decreasing abundance.

We assume that abundance class C contains a fraction
F (C) of clonotypes generated with zero insertions, and
1 − F (C) of regular clonotypes. Obtaining F (C) is not
straightforward because regular clonotypes can also zero
insertions. In addition, the number of insertions cannot
be determined with certainty – for example, a deletion
followed by an insertion matching the germline sequence
can be wrongly interpreted as a case of no insertions.

To circumvent this problem, we determine for each
abundance class a simpler quantity to estimate, namely
the fraction F0(C) of clonotypes that are consistent with
zero insertions, i.e. that can be entirely matched to the
germline genes. Because of the reasons outlined above,
F0(C) is not equal to F (C). However, F0(C) is a linear
function of F (C), F0(C) = A+BF (C). Therefore, if we
can generate synthetic sequences such that their F0(C)
agrees with data, then we are guaranteed that their F (C)
will coincide with the data as well, even if we do not know
the explicit mixing parameters F (C).

To obtain this mixture, we generated many sequences
from our recombination model Pgen. To determine which
generated sequences were consistent with zero insertions,
we aligned them to all possible V and J genomic tem-
plates. We then separated out the sequences consistent
with zero insertions from the others, and created, for each
abundance class C, and artificial dataset with a fraction
F0(C) of such sequences, and 1 − F0(C) of the other
sequences (not consistent with zero insertions), where
F0(C) is given by the data.

We then calculated normalized sharing in the synthetic
data by including an increasing number of abundance
classes, starting with the most abundant ones, and com-
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pared to data in Fig. 5.

M. Exponential decay regression

We fit an exponential decay curve to the fraction Z
of zero-insertion clonotypes in the 2000 most abundant
clones as a function of age T (Fig. 4):

Z ≈ c+ a exp(−bT ). (5)

We found c = 0.00363±0.00154, b = 0.0272±0.0091 yr−1,
and a = 0.016696± = 0.00188 using the nlm2 R package.

We fitted an analogous model for the attrition of the
naive T-cell pool, i.e. the fraction N of naive T-cells as
identified using flow cytometry (see [17] for details):

N ≈ a′ exp(−b′T ). (6)

We obtained a′ = 0.68 ± 0.054 and b′ = 0.01485 ±
0.0018 yr−1.

The data used in the two model fits are available in
Table S3.

II. SUPPLEMENTARY RESULTS

A. Distinctive properties of shared clonotypes
between twins

Shared clonotypes in unrelated individuals appear in
the process of convergent recombination. Sequences with
a higher Pgen are thus more likely to be shared, and we
can calculate accurately the distribution of Pgen among
shared sequences (see Fig. 2). We observe that sequences
shared between twins violate this prediction, consistent
with our hypothesis that some of these sequences are due
to biological contamination. To confirm this, we used a
sequence feature that is negatively correlated with Pgen

[11]: the number of insertions in the CDR3 region. The
number of insertions in CDR3 sequences shared between
unrelated individuals was indeed lower (Fig. S6) than
the mean number of insertions in non-shared sequences.
However, the mean number of insertions in sequences
shared between twins (black boxes) is higher than in un-
related individuals. The same and even stronger effect is
observed for memory (CD45RO+) cells (Fig. S7).

B. The phenotype of beta chain out-of-frame
shared clonotypes

Two individuals displayed the most prominent excess
of shared beta out-of-frame sequences. Since the model
prediction for the number of shared sequences is close to
zero we suppose that most of these shared sequences did
not arise due to convergent recombination. These out-
of-frame clones bear a second functional allele (otherwise
they would have been filtered by selection in a thymus),

and they also should have either the CD4 or the CD8 phe-
notype. To attribute these clonotypes a phenotype we
separately sequenced CD4, CD8 and CD45RO positive
subsets for the two donors and searched for the 84 out-
of-frame CDR3s shared between the unpartitioned out-
of-frame repertoires. 44 CDR3s were found in the CD8
subsets of both individuals, and only 5 sequences were
found in the CD4 subsets of both individuals. 25 out of
the 44 CD8 and 3 out of the 5 sequences were also found
in the 45RO+ compartment. Only 3 sequences were
mapped discordantly (e.g. CD4 in one twin and CD8
in the second twin), and 2 sequences were absent from
the CD4, CD8 and CD45RO compartments of both indi-
viduals. For the other 32 sequences the CD4/CD8 status
could be determined only for one individual (most prob-
ably due to the sequencing depth limitations). In case of
convergent recombination it is unlikely that shared non-
productive sequences would have the same phenotype in
different donors. The phenotypic study thus confirms the
biological contamination hypothesis.

C. Our results are reproducible using previously
published data

We tested the robustness of our results on previously
published twin data from [8]. We observed the same ex-
cess of low-probability shared sequences in twins com-
pared to unrelated individuals as in Fig. 2 (see Fig. S8).
These data also allowed us to control for possible exper-
imental contamination. One of the twin pairs that par-
ticipated in the present study was sequenced three years
ago, using a different technology described in [8], exclud-
ing the possibility of any contamination between the old
and new samples. Out of 84 beta out-of-frame clono-
types shared between two new twin samples, 59 were also
shared between the new sample of one twin, and the old
sample of the second twin. Therefore the out-of-frame
sequences shared between the twins are reproducible and
could not be result of experimental contamination with
PCR-products or RNA.

D. Invariant T-cell alpha clonotypes in the data

It was previously shown that mucosal-associated in-
variant T-cells (MAIT) and natural killer T-cells (NKT)
have an invariant alpha chain with very low diversity [33].
Specific V-J combinations are chosen (TRAV10/TRAJ18
for NKTs and TRAV1-2/TRAJ33 for MAIT) and no nu-
cleotides are inserted in the recombination process of
these clonotypes. To see whether these clonotypes could
potentially confound our analysis, we searched for pub-
lished NKT and MAIT sequences in our datasets. 25
out of the 27 known MAIT sequences were found in the
datasets at least once (21 out of them in the all six in-
dividuals), and 8 out of the 13 known NKT sequences
(2 of them in the all six individuals). MAIT and NKT
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sequences are present in our data, but only a few shared
sequences could be explained by them. The majority

of shared zero insertion sequences could thus not be at-
tributed to known MAIT or NKT subsets.
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FIG. S1: Library preparation protocol. A) cDNA first
strand synthesis for alpha and beta chains starts from spe-
cific primers in the C-segment conserved region. B) The tem-
plate switching effect was used to introduce a universal primer
binding site to the 3’cDNA end. The SMART-Mk sequence
contains a sample barcode (black ellipse) for contamination
control. C) and D) In two subsequent PCR steps we intro-
duce the TruSeq adapter sequences along with Illumina sam-
ple barcodes (black ellipse). E) The resulting cDNA molecule
is double barcoded, contains a Unique Molecular Identifier
(UMI) and is suitable for direct sequencing on the Illumina
HiSeq platform with the custom primers.
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FIG. S2: Number of shared out-of-frame alpha TCR CDR3
clonotypes reported between all 15 pairs of 6 donors consisting
of 3 twin pairs (ordinate) compared to the model prediction
(abscissa). To be able to compare datasets of different sizes,
the sharing number was normalized by the product of the two
cloneset sizes. The outlying three red circles represent the
twin pairs, while the black circles refer to pairs of unrelated
individuals. Error bars show one standard deviation. The
diagonal line is a linear fit for unrelated individuals, of slope
1.7.
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FIG. S3: Number of shared out-frame beta TCR CDR3 clono-
types reported between all 15 pairs of 6 donors consisting of 3
twin pairs (ordinate) compared to the model prediction (ab-
scissa). The three outlying red circles represent the twin pairs,
while the black circles refer to pairs of unrelated individuals.
Error bars show one standard deviation.
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FIG. S4: Number of shared in-frame beta TCR CDR3 clono-
types reported between all 15 pairs of 6 donors consisting of 3
twin pairs (ordinate) compared to the model prediction (ab-
scissa). To be able to compare datasets of different sizes, the
sharing number was normalized by the product of the two
cloneset sizes. The three outlying red circles represent the
twin pairs, while the black circles refer to pairs of unrelated
individuals. Diagonal is equality line. Error bars show one
standard deviation.
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FIG. S5: Number of shared in-frame alpha TCR CDR3 clono-
types reported between all 15 pairs of 6 donors consisting of 3
twin pairs (ordinate) compared to the model prediction (ab-
scissa). To be able to compare datasets of different sizes, the
sharing number was normalized by the product of the two
cloneset sizes. The three red circles represent the twin pairs,
while the black circles refer to pairs of unrelated individuals.
Diagonal is equality line.
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alpha out-of-frame repertoires.
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FIG. S7: Mean number of insertions in shared sequences in
alpha out-of-frame repertoires of CD45RO+ (memory) cells.
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FIG. S8: Reproducibility of our results using previ-
ously published data. Distribution of Pgen – the prob-
ability that a sequence is generated by the VJ recombina-
tion process – for shared out-of-frame TCR alpha clonotypes
between individual A1 from [8] and the other five individu-
als. While the distribution of shared sequences between un-
related individuals (red curves) is well explained by coinci-
dental convergent recombination as predicted by our stochas-
tic model (blue curve), sequences shared between two twins
(green curve) have an excess of low probability sequences. For
comparison the distribution of Pgen in regular (not necessarily
shared) sequences is shown in black.
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SMART-Mk cap-switching oligonucleotides

MK-108 CAGUGGUAUCAACGCAGAGUACNNNNNNUAATGCUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-248 CAGUGGUAUCAACGCAGAGUACNNNNUNNTGGCANNUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-253 CAGUGGUAUCAACGCAGAGUACNNNNUNNTTATGNNUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-103 CAGUGGUAUCAACGCAGAGUACNNNNNNUAACGGUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-257 CAGUGGUAUCAACGCAGAGUACNNNNUNNTTGCGNNUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-143 CAGUGGUAUCAACGCAGAGUACNNNNNNUCAGATUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-135 CAGUGGUAUCAACGCAGAGUACNNNNNNUATGCAUNNNNNNUCTT(rG)(rG)(rG)(rG)

MK-227 CAGUGGUAUCAACGCAGAGUACNNNNUNNTAACCNNUNNNNNNUCTT(rG)(rG)(rG)(rG)

cDNA synthesis primers

BC uni R4vvshort TGGAGTCATTGA

TRAC R2 ACACATCAGAATCCTTACTTTG

PCR I step primers

Sm1msq GAGATCTACACGAGTCAGCAGTGGTATCAACGCAG

RPbcj1 CGACTCAGATTGGTACACCTTGTTCAGGTCCTC

RPbcj2 CGACTCAGATTGGTACACGTTTTTCAGGTCCTC

RPacj CGACTCAAGTGTGTGGGTCAGGGTTCTGGATAT

PCR II step primers XXXXXX stands for the Truseq index

Sm-out-msq AATGATACGGCGACCACCGAGATCTACACGAGTCA

Il-bcj-indX CAAGCAGAAGACGGCATACGAGATXXXXXXCGACTCAGATTGGTAC

Il-acj-indX CAAGCAGAAGACGGCATACGAGATXXXXXXCGACTCAAGTGTGTGG

Custom sequencing primers

IL-AIRP ATATCCAGAACCCTGACCCACACACTTGAGTCG

IL-IRP-b1 GAGGACCTGAAAAACGTGTACCAATCTGAGTCG

IL-IRP-b2 GAGGACCTGAACAAGGTGTACCAATCTGAGTCG

IL-RP1-msq ACACGAGTCAGCAGTGGTATCAACGCAGAGTAC

IL-RP2-b1 CGACTCAGATTGGTACACGTTTTTCAGGTCCTC

IL-RP2-b2 CGACTCAGATTGGTACACCTTGTTCAGGTCCTC

IL-ARP2 CGACTCAAGTGTGTGGGTCAGGGTTCTGGATAT

TABLE S1: List of primers used
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Alpha chain

Sample id Number of reads Number of UMI

P1 CD4 6566952 430915

P1 CD8 4620425 378044

P1 unpart 9571058 574439

P1 45RO 4099026 431529

P2 CD4 4269624 941176

P2 CD8 4040615 561437

P2 unpart 8213565 873546

P2 45RO 4608991 653326

Q1 CD4 3894188 653649

Q1 CD8 3201067 589757

Q1 unpart 8360990 1091786

Q1 45RO 3587344 687916

Q2 CD4 3877893 828573

Q2 CD8 3880048 825539

Q2 unpart 9159719 1215155

Q2 45RO 3890664 834828

S1 CD4 4655514 734158

S1 CD8 1009038 219433

S1 unpart 3191701 621723

S1 45RO 4977466 495057

S2 CD4 11727155 761495

S2 CD8 12436797 468345

S2 unpart 11135704 610105

S2 45RO 9064981 633362

Beta chain

Sample id Number of reads Number of UMI

P1 CD4 3757755 759270

P1 CD8 3565384 517737

P1 unpart 7429601 955106

P1 45RO 4036708 695379

P2 CD4 3042278 449048

P2 CD8 3438238 477696

P2 unpart 8144134 817306

P2 45RO 4598733 578663

Q1 CD4 3694288 673037

Q1 CD8 4586088 758201

Q1 unpart 6511237 1060251

Q1 45RO 3171012 664732

Q2 CD4 3066472 605062

Q2 CD8 3389029 691438

Q2 unpart 7256515 1241753

Q2 45RO 3110044 667997

S1 CD4 3510759 722883

S1 CD8 3162597 489393

S1 unpart 7019324 1181194

S1 45RO 3363725 574876

S2 CD4 4034384 717023

S2 CD8 4267632 546529

S2 unpart 7093628 875357

S2 45RO 2848644 526765

Memory aged19 7486248 424156

Nave aged19 9166800 932396

Memory aged51 4376542 366646

Nave aged51 4115592 602950

Memory aged57 5743372 476395

Nave aged57 5227973 358245

Cord blood 8015355 1803557

TABLE S2: Number of reads and UMI in each sample.
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Sample id fraction of 0 ins in top 2000 Naive,% Age, years

A2-i132 0.015056135255 73.7 6

A2-i131 0.010037196444 43 9

A2-i136 0.027691639038 40 10

A2-i129 0.0108412940125 57 11

A2-i134 0.021007545075 68 16

A2-i133 0.0119257041822 60.9 16

A4-i194 0.013765206508 55 20

A4-i195 0.0119673129492 59 21

A4-i191 0.01637900271 45 22

A4-i192 0.012716977224 56 24

A4-i189 0.012839842368 44 25

A6-I201ob 0.0091925381272 NA 30

A3-i110 0.0078554903232 36.4 34

A3-i101 0.0107838068688 55 36

A4-i101 0.0090257537105 27 36

A4-i102 0.00628983345724 27.6 37

A3-i107 0.00851643362094 43 39

A4-i107 0.0064344051544 26 39

A3-i106 0.016159136094 39.4 43

A3-i102 0.0107591339774 27.3 43

A4-i110 0.018164859228 40 43

A4-i106 0.00642081990976 31 43

A5-S23 0.0046042762969 21.3 50

A5-S24 0.0061143105585 29.9 50

A6-I160 0.008621670788 38.9 51

A5-S21 0.0086245934928 51.3 51

A6-I215ob 0.00819076572358 NA 51

A5-S22 0.00695571384444 48.5 51

A6-I150 0.0061129801278 NA 51

A5-S20 0.00387005779589 25 51

A5-S19 0.0080402564192 41.2 55

A4-i185 0.0085319088075 29.6 61

A4-i186 0.00532914538306 14.6 61

A4-i184 0.00405847825812 21 61

A4-i188 0.00663226556694 18 61

A4-i128 0.0058717051432 23 62

A4-i125 0.00476704046791 4.5 64

A4-i124 0.00394006128853 16.3 66

A2-i141 0.0060990185169 30 71

A2-i140 0.0081195988401 47 73

A2-i138 0.00507840452028 6.7 74

A2-i139 0.008749966888 28.2 75

A4-i122 0.00606575047668 33 85

A3-i145 0.004749303571 37 86

A4-i132 0.0034771649962 14.5 87

A4-i183 0.00723588404502 24.6 87

A3-i150 0.0037069726895 13.3 87

A6-I214ob 0.0046188525124 21 88

A5-S10 0.007023235658 NA 89

A4-i118 0.00512286685575 54 89

A4-i127 0.005589445878 12.7 90

A5-S9 0.00642820638494 26.5 90

A6-I211ob 0.00432554146357 8.4 91

A5-S8 0.00421932231855 4.5 92

A5-S7 0.0078096377085 4.7 92

A6-I210ob 0.00368734455504 7.4 92

A6-I208ob 0.0045677109953 8.7 93

A5-S4 0.0046450251048 30.8 93

A6-I207ob 0.0044350512973 27.6 94

A6-I206ob 0.0061812657375 6.2 95

A6-I205ob 0.00481739413682 7.5 95

A5-S3 0.0040549739527 12.4 98

A6-I204ob 0.00431740407138 10.3 99

A5-S2 0.00486991171424 15.5 100

A5-S1 0.00541415235339 NA 103

TABLE S3: Ageing data used for Fig. 4 and exponential decay fits. Percentage of the naive T-cells defined using flow cytometry,
see [17] for details.
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