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We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving
animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial
correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns
the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors
change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity
of the method on simulated data. The approach is applicable to other systems of active matter.
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I. INTRODUCTION

Flocking, the highly coordinated motion displayed by large
groups of birds, has attracted much attention over the last
20 years as a prototypical example of out-of-equilibrium
collective behavior. It has been suggested that flocking is
an emergent phenomenon resulting from the mutual align-
ment of velocities between neighboring birds, much like the
spontaneous symmetry breaking towards a magnetized state
exhibited by ferromagnetic spins at low temperatures. This
idea has been extensively studied from a theoretical view
point [1–14], and recent advances in the imaging of large
flocks of starlings, allowing for the three-dimensional (3D)
reconstruction of large groups [15–17], have given empirical
support to this picture. Interactions between individuals in the
flock were shown to be topological and local [18], leading
to the global ordering of flight orientations and scale-free
correlation functions [19]. The analogy with ferromagnetic
systems was made explicit by the quantitative inference of spin
models from empirical data using the principle of maximum
entropy [20,21]. These analyses have focused on the steady
state behavior of flocks, by examining the flock configurations
as drawn from a given statistical ensemble. This approach
allows for an effective equilibrium-like description, without
having to make detailed assumptions about the microscopic
rules governing flock behavior. Yet it is an incomplete picture
as it does not take into account the dynamical, out-of-
equilibrum nature of the process.

The major difference between flocks and equilibrium spin
systems is that birds are like active particles, constantly
moving within the flock along the direction given by their
“spin,” exchanging local interaction partners, thus extending
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their effective interaction range, and also breaking detailed
balance. This qualitative difference between equilibrium spins
and out-of-equilibrium active particles can dramatically affect
the thermodynamic properties of the system, including the
existence of an ordered phase in two dimensions, and the
value of the critical exponents [12,13]. One can thus interpret
the parameters of static descriptions of flocks as a renormalized
version of some underlying and unknown out-of-equilibrium
dynamical model. This calls for a new theoretical approach
to infer the correct dynamics of strongly out-of-equilibrium
systems.

In this paper we propose a general framework for learning
the features of the out-of-equilibrium dynamics of collective
motion directly from data, while making minimal assumptions
about the specific microscopic interaction rules. We choose
to focus on the example of orientational order in bird flocks
because of its central importance for collective animal behavior
and its simple symmetries.

We generalize the principle of maximum entropy to account
for correlations between birds at different times, in addition to
same-time correlation functions. One of our main theoretical
results is that maximizing the entropy under these constraints
leads to an explicit stochastic dynamical equation for the flock.
When bird orientations are strongly polarized, the procedure
is equivalent to inferring a dynamical model of social forces
with noise.

Explicit analytical expressions of the interaction parame-
ters, as well as the likelihood of the data under the model, are
derived as a function of global observables of the data. When
the interaction network changes adiabatically, and interactions
are symmetric, detailed balance is satisfied and our method
recovers the results of the static approach [20] as expected.
Even in this equilibrium case, the dynamical approach allows
us to separate the contributions of interaction strength and
noise to the alignment dynamics, while the static approach
cannot.

To illustrate the usefulness and performance of our method
on a well understood example, we apply our formulas to syn-
thetic data generated by a topological Vicsek model (VM). We
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show that its inferred interaction parameters are consistently
better than the ones obtained in a static equilibrium framework,
especially when the relative mobility between individuals is
high, as predicted by the theory.

II. DYNAMICAL MAXIMUM ENTROPY

A. General maximum entropy approach

Maximum entropy distributions are the least constrained
distributions that are consistent with certain selected key
observables of the data. They usually map onto equilibrium
statistical mechanics problems and do not involve any assump-
tions about the system under study, besides the choice of the
relevant observables, which should be selected according to
the fundamental symmetries of the underlying system. They
have been particularly successful in describing collective and
emergent phenomena in biological systems comprising many
correlated degrees of freedom [22–27].

The principle of maximum entropy consists of finding the
maximally disordered probability distribution consistent with
carefully chosen observables of the data. In practice, given
a stochastic variable s, and a set of observables {Oμ(s)},
with μ = 1, . . . ,K , one looks for the model distribution P

of maximum entropy

S[P ] = −
∑

s

P (s) ln P (s) (1)

that coincides with the data for the average values of each of
the observables

〈Oμ〉data = 〈Oμ〉P . (2)

Using the technique of Lagrange multipliers, one shows that
the distribution takes the exponential form

P (s) = 1

Z({λμ}) exp

⎛
⎝−

K∑
μ=1

λμOμ(s)

⎞
⎠ , (3)

where {λμ} are Lagrange multipliers that need to be set to
satisfy Eq. (2), andZ({λμ}) is a normalization factor enforcing∑

s P (s) = 1. By analogy with the Boltzman distribution
from equilibrium statistical mechanics, the sum inside the
exponential may be interpreted as an energy.

Conveniently, the Lagrange multipliers that match the mean
value of the observables are also those that maximize the
likelihood of the data given the exponential form (3). Given
M data points s1, . . . ,sM , the log-likelihood of the data reads

lnP({λμ}) ≡ ln
M∏

a=1

P (sa)

= −
M∑

a=1

K∑
μ=1

λμOμ(sa) − M lnZ({λμ}). (4)

Maximizing the log-likelihood with respect to the parameters
{λμ} implies

∂ lnP({λμ})
∂λμ

= M

[
−∂ lnZ

∂λμ

− 〈O(s)〉data

]
= 0,

(5)
M[〈O(s)〉P − 〈O(s)〉data] = 0.

By virtue of this equivalence, the correct maximum entropy
distribution can be obtained by maximizing the expression of
the log-likelihood with respect to the parameters.

Note that the variable s can be any stochastic variable. It
may be a configuration of the system, or a full time trace
of configurations, in which case the observables may span
different times.

B. Static maximum entropy

In the following we will focus on the particular example
of bird flocks, although many of our results on the dynamics
should hold for other choices of systems and observables. For
each particular situation, the choice of observables is dictated
by the symmetries of the problem, as well as the relevant order
parameters that one wishes to capture.

When polar order is present as in bird flocks, a natural
choice of observables to be constrained by the data are the
equal time pairwise correlation functions between the birds’
orientations: 〈sisj 〉, where si is a d-dimensional unit vector
denoting the flight direction of bird i, with i = 1, . . . ,N .
(Throughout the paper the inner products over the physical
space are implicit.) These correlations were found to exhibit
scale-free behavior in natural flocks [19] and characterize
the collective nature of flocking. The maximum entropy
distribution P (s) for the orientations can then be computed
by maximizing the entropy S[P ] = −∑

s P (s) ln P (s), while
constraining the equal-time correlations to their experimental
values. The result is the stationary probability distribution for
the equilibrium heterogeneous Heisenberg model [20]

P (s) = 1

Z
exp

⎛
⎝1

2

∑
i �=j

J stat
ij sisj

⎞
⎠ , (6)

where s is a shorthand for (s1,s2, . . . ,sN ) and Z a normaliza-
tion constant. The interaction parameters J stat

ij are Lagrange
multipliers that need to be tuned so that the probability
distribution (6) matches the empirical correlation functions
〈sisj 〉. Using three-dimensional, single-individual-resolution
data of large bird flocks, this class of models was shown
to recapitulate quantitatively the ordering properties of real
flocks [20].

C. Dynamical approach: Maximum entropy on trajectories

A limitation of the static approach is that infinitely many
dynamical models may give rise to the same steady-state
distribution, most of which break detailed balance. In fact,
the change of neighborhoods causes the interaction network to
vary in time, keeping the system constantly out of equilibrium.
Here we extend the maximum entropy framework to account
for the nonequilibrium nature of flocking, to what is often
called the principle of maximum caliber [28]. We consider the
set of entire trajectories (s1,s2, . . . ,sT ), where the superscript
index denotes time points separated by δt . We then look
for the distribution P (s1, . . . ,sT ) that maximizes the entropy
while reproducing some given experimental observables.
Since we want to capture the dynamics, in addition to equal-
time correlation functions, we also constrain the correlation
functions between two consecutive time points 〈st+1

i st
j 〉. Doing
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so yields the following form of the probability distribution over
trajectories:

P (s1, . . . ,sT ) = 1

Ẑ
exp(−A), (7)

where Ẑ is a normalization factor, and the “effective action”
(or minus log-likelihood) reads

A = −1

2

∑
t

∑
i �=j

(
J

(1)
ij ;t s

t
i s

t
j + J

(2)
ij ;t s

t+1
i st

j

)
. (8)

There now are two sets of time-dependent coupling parame-
ters, for synchronous and consecutive times.

III. EQUIVALENCE WITH MODELS OF SOCIAL FORCES

A. Flock dynamics as a Markov process

Because the action only involves cross-terms between
consecutive times, the likelihood of a flock trajectory be
written as a sum of terms corresponding to the transition
probabilities P (π ′|π ) betweenx successive time points

P (s1, . . . ,sT ) = P (s1)
T −1∏
t=1

P (st |st−1), (9)

which can be rewritten in terms of the action as

A + ln Ẑ = − ln P (s1) +
∑

t

Lt (st+1,st ), (10)

where

Lt (st+1,st ) ≡ − ln P (st+1|st ) (11)

may be interpreted as a Lagrangian density in the path integral
formalism.

Let us check that this Markovian decomposition is possible.
Identifying the two expressions ofA (8) and (10), we may write
Lt in the form

Lt (s′,s) = −1

2

∑
ij

(
J

(2)
ij ;t s

′
i sj + J

(1)
ij ;t sisj

) − Kt (s′) + Kt−1(s),

(12)

with the constraint that, for all s, the transition probability be
normalized

1 =
∑

s′
exp[−Lt (s′,s)], (13)

which entails

Kt−1(s) = ln
∑

s′
exp

[
1

2

∑
ij

(
J

(2)
ij ;t s

′
i sj + J

(1)
ij ;t sisj

) + Kt (s′)
]
.

(14)

Equation (14) defines a descending recursion, by which Kt is
calculated from the next time point.

Note that the process is Markovian because we chose to
constrain consecutive-time correlation functions. Non-Markov
forms would arise if we constrained more complex multitime
observables.

B. Spin-wave approximation

In general, the integral in Eq. (14) cannot be calculated
analytically, and Kt does not have a simple quadratic form as
a function of s.

However, when flight orientations are highly polarized (as
in the case of starling flocks [19]), one can use the spin-wave
(SW) approximation [29] to explicitly rewrite the action as a
sum of terms that are quadratic in the spin-wave variables.
Specifically, we denote si = πi + n

√
1 − (πi)2, where n is

an arbitrary unit vector close to the average flight direction
of the flock, and πi is the perpendicular component of the
orientation πin = 0. (When there is no ambiguity we drop the
time superscript.) When the flock is highly polarized, we have
π2

i �1, and we may expand at small πi .
Let us assume a quadratic form for Kt :

Kt (s) = 1

2

∑
ij

Kij ;t sisj + Ut . (15)

The integral in Eq. (14) can be expanded at small π :

Kt−1(π ) = 1

2

∑
ij

J
(1)
ij ;t

(
1 + πiπj − π2

i

)

+Ut + 1

2

∑
ij

(
J

(2)
ij ;t + Kij ;t

) − 1

4

∑
ij

J
(2)
ij ;tπ

2
j

+ ln
∫

dπ ′ exp

[
−1

2

∑
ij

Aij ;tπ
′
i π

′
j

+ 1

2

∑
ij

J
(2)
ij ;tπ

′
i πj

]
, (16)

with

Aij ;t = −Kij ;t + δij

∑
k

Kik;t + 1

2
δij

∑
k

J
(2)
ik;t . (17)

This Gaussian integral can be calculated exactly. Doing so,
and expanding the left-hand side of Eq. (14) at small π , yields
a simple matrix expression for the recursion (only valid for
nondiagonal terms)

Kt−1 = J(1)
t + 1

4 J(2)†
t A−1

t J(2)
t . (18)

We can now replace the expression of Kt in Eq. (12),
and thus rewrite the transition probability in terms of π in
a Gaussian form

Lt (π
′,π ) = −d − 1

2
ln

(
det At

(2π )N

)

+ 1

2
(π ′ − Mtπ)†At (π

′ − Mtπ ), (19)

with

Mt = 1
2 A−1

t J(2)
t . (20)

C. Equivalence with generalized Vicsek models

The Gaussian form of the transition probabilities Eq. (19),
corresponds to a spin-wave dynamics described by the follow-
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ing stochastic equation:

πt+1
i =

∑
j

Mij ;tπ
t
j + εt

i , (21)

with εt being a random, isotropic Gaussian noise perpendicular
to n, of zero mean and covariance

〈εt (εt ′ )†〉 = (d − 1)A−1
t δt,t ′ , (22)

where δt,t ′ is the Kronecker delta. [Note that the (d − 1)
factor, here and in previous equations, corresponds to the
dimensionality of the perpendicular component π .]

Equation (21) can be interpreted as follows. At each time,
individual i computes its new orientation from a weighted
average over the orientation of other individuals, including
itself, at the previous time point with weights encoded in the
matrix Mt . Mt defines a well-balanced weighted average, as it
satisfies ∑

j

Mij ;t = 1. (23)

[This identity can be checked by rewriting it in a matrix form:
1
2 A−1

t J(2)
t u = u where u is a vector of ones, ui = 1. Proving

Eq. (23) is therefore equivalent to showing J(2)
t u = 2Atu,

which follows from the definition of At in Eq. (17).]
Noise εt added to this average in Eq. (21) determines the

level of error in the alignment. Without it, all individuals
would be perfectly aligned. This model may be viewed as
the spin-wave expansion of a generalized Vicsek model [1]
with arbitrary weights and noise.

Equations (21) and (22), which we have just derived for
the perpendicular component π of the motion, hold almost the
same for the flight direction s itself. Starting from the update
equation

st+1
i = θ

[ ∑
j

Mij ;t s
t
j + ηt

i

]
, (24)

where θ (x) = x/‖x‖ is the normalization operator, and
expanding in the spin-wave approximation (πi � 1), one
recovers Eq. (21) with εt

i = ηt
i − (n · ηt

i )n the perpendicular
component of the vectorial noise η.

IV. INFERENCE FROM DATA

A. Model parametrization

As we argued earlier, tuning the parameters to match
the correlation functions is equivalent to maximizing the
likelihood, Eq. (7), or equivalently maximizing the log-
likelihood −∑

t Lt , with which we will work from now on.
To maximize the likelihood with respect to the two equivalent
sets of parameters {J(1)

t ,J(2)
t } or {Mt ,At }, we would need to

observe a large number of random realizations of the same
flock dynamics. This is impossible in practice due to limited
data compared to the prohibitively large number of potential
configurations of the bird positions that one would need to
sample.

To overcome this problem, we need to introduce some
additional assumptions about the interaction network and the
form of the noise to simplify the parameter space and the

number of observables. These simpifications come naturally
in the Markovian description parametrized by Mt and At .
From a biological standpoint, it is reasonable to assume that
birds treat information from each interacting neighbor (the
precise definition of “neighborhood” being left unspecified
for the moment) equally, while keeping the memory of their
own direction. Mathematically this translates into

Mij = (1 − Jδtni)δij + Jδtnij , (25)

where nij = 1 if j is one of i’s neighbors, and 0 otherwise, and
ni = ∑

j nij is the global number of neighbors interacting with
bird i. (For ease of notation we omit the t index, even though
nij depends on t .) The scalar parameter J now measures the
alignment interaction strength. The errors made by different
birds when trying to align with their neighbors can be assumed
to be of the same amplitude and independent of each other, so
that noise is uncorrelated and A is proportional to the identity

Aij = [1/(2δtT )]δij . (26)

Here T is a squared noise amplitude (the out-of-equilibrium
equivalent of a temperature) that sets the level of disorder in
the system.

B. Continuous time limit and equivalence with static maximum
entropy at equilibrium

The scaling in δt ensures a well-defined continuous limit
when δt →0, described by a Langevin equation. When δt →
0, Eq. (21) becomes

dπ

dt
= −J�π + ξ (t), (27)

where 	ij = niδij − nij , and ξi(t) are independent and
identically distributed (i.i.d.) Gaussian white noises with
〈ξi(t)ξi(t ′)〉 = 2T (d − 1)δ(t − t ′), with δ(x) Dirac’s delta
function.

This dynamical description can be reconciled with the static
inference [20] in the special case of equilibrium dynamics,
which is realized when nij is symmetric and constant in time. In
this case, the spins can be described for δt → 0 by a stationary
distribution with the same form as in Eq. (6) and the steady-
state couplings take the simple equilibrium value [20]

J stat
ij = J

T
nij . (28)

We refer the reader to Appendix A for details of the derivation.
Even in this limit case where dynamical and static maxi-

mum entropy are consistent, the dynamical inference allows
us to separate the coupling strength J from the temperature T ,
which the static inference cannot.

C. Likelihood maximization

The Lagrangian (19) can be rewritten as an explicit function
of the relevant observables

Lt (π
t+1|π t ) = −d − 1

2
ln

(
det At

(2π )N

)
+ 1

2
Tr(Ct+1A†

t )

− 1

2
Tr

(
J(2)

t G†
t

) + 1

8
Tr

(
J(2)

t

†
A−1

t J(2)
t C†

t

)
,

(29)
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TABLE I. Empirical correlation functions used in the text.

C1
s (1/N )

∑
i(π

t+1
i )2 Cint (1/Nnc)

∑
ij nijπ

t
i π

t
j

Cs (1/N )
∑

i(π
t
i )2 C ′

int (1/Nn2
c)

∑
ijk nij nikπ

t
jπ

t
k

Gs (1/N )
∑

i π
t+1
i π t

i Gint (1/Nnc)
∑

ij nijπ
t+1
i π t

j

C̃s (1/Nnc)
∑

i ni(πt
i )2 Ĉs (1/Nn2

c)
∑

ij (niπ
t
i )2

G̃s (1/Nnc)
∑

i niπ
t+1
i π t

i C̃int (1/Nn2
c)

∑
ij ninijπ

t
i π

t
j

where Ct = π t (π t )† and Gt = π t+1(π t )†.
Taking the specific form of Eqs. (25) and (26) for Mt

and At we obtain a formula for Lt that only depends on
two parameters, the interaction strength J and the “effective
temperature” T

Lt = d − 1

2
ln(2T δt) − 2Jncδt[C̃s − Cint − G̃s + Gint]

+ (Jncδt)
2[Ĉs − 2C̃int + C ′

int] + C1
s + Cs − 2Gs,

(30)

with nc = (1/N )
∑

i ni . The number of independent observ-
ables appearing in Lt is also drastically reduced to a handful
of empirical integrated pair correlation functions defined
in Table I. These correlations can be evaluated over pairs
of consecutive configurations, or averaged over the entire
sequence if we work with time-independent parameters and
steady-state dynamics.

Maximizing the log-likelihood with respect to J and
T , ∂Lt /∂T = 0 and ∂Lt /∂J = 0, yields simple analytical
expressions for the parameters as a function of the empirical
correlation functions

J = 1

nc

� + (d − 1)T0

C ′
int + Ĉs − 2C̃int

, (31)

T = T0 + C1
s − Cs

2(d − 1)δt
− J ncδt

2(d − 1)

(
C̃s − G̃s

δt
+ �

)
,

(32)

where

T0 = Cs − Gs

δt(d − 1)
, � = Gint − Cint

δt
. (33)

Appendix B contains detailed formulas for calculating the
maximum likelihood after replacing Eqs. (31) and (32) in
Eq. (30).

The leading-order temperature T0 is the derivative of a
self-correlation function, and obeys the standard fluctuation-
dissipation relationship found in equilibrium dynamics. The
term � is related to the dynamics of the network. In particular,
at steady state dCint/dt = 0 implies � ∝ ∑

ij πiπjdnij /dt .
When the system is at steady state, the inference formulas

Eqs. (31) and (32) reduce to the static inference formula,
derived in a slightly different form in [20]

Jnc

T
≈ d − 1

Ĉs − C̃int
. (34)

A detailed derivation is given in Appendix C.
To apply Eqs. (31) and (32) to data, one still needs to specify

the neighboring matrix nij . In the absence of prior information,
one of the simplest possibilities is to assume that each bird

interacts with the first nc neighbors [20]. An alternative choice
would be to define neighbors according to a metric rule, each
bird interacting with neighbors within a given distance rc.
In both cases an extra parameter is introduced, either the
“topological” interaction range nc or the metric range rc,
that can also be inferred by likelihood maximization. Another
scheme is to define neighbors through a Voronoi tassellation
[30], as in the topological VM [14]. The likelihoods between
different neighborhood definitions may also be compared to
find the one closest to optimality.

V. TEST ON ARTIFICIAL DATA

We tested our dynamical inference method on synthetic
data generated from a slight generalization of the topological
VM on a two-dimensional torus of linear size L = 32 with
N = 1024 particles

θ t+δt
i = Arg

[
st
i + JV δt

∑
j

nij s
t
j

]
+

√
δt ξ t

i , (35)

rt+δt
i = rt

i + v0 δt st+δt
i , (36)

where si = (cos θi, sin θi), and Arg(s) is the angle of vector s.
The delta-correlated angular noise ξ t

i is uniformly distributed
in [−ηπ,+ηπ ], corresponding to an effective temperature
TV = (ηπ2)/6 for δt → 0. The Voronoi adjacency matrix
nij has a nonuniform degree ni , of mean nV = 6. A spin-
wave expansion of Eq. (35) leads to an expression of the
form of Eqs. (21) to (26), with J ≈ JV /(1 + JV nV δt) (see
Appendix D). The degree of neighbor mixing is characterized
by a single mixing parameter μ = 〈1/(Nnc)

∑
ij |dnij /dt |〉,

which quantifies how fast birds exchange neighbors. We
performed simulations with time step δt = 0.01 in three
regimes with slow, medium, and fast neighbor mixing (μ =
0.18,0.35,0.76; v0 = 0.5,1.0,2.0; JV = 1.0,1.0,0.1; and η =
0.3,0.2,0.12, respectively), all of which display the same level
of polarization N−1‖∑

i si‖ ≈ 0.97.
We then applied the inference procedure described in

Eqs. (31) and (32) to the synthetic dataset generated by the
simulations. In the inference we tried the choices for nij

discussed above: the nc nearest-neighbor (NN) topological
rule, the metric rule where nij = 1 within a metric range rc

(and 0 outside), and the Voronoi rule (actually used to generate
the data). The correlation functions were averaged over 103

different configurations in the stationary state, sampled from
a single run at 100 time unit intervals, ensuring independent
sampling.

The likelihood as a function of nc can be computed with the
NN rule using Eqs. (31), (32), and (30). The result is shown in
the inset of Fig. 1 for the high mixing regime. Its maximum n∗

c

corresponds to the most likely interaction range, from which
the optimal J ∗ and T ∗ are computed via Eqs. (31) and (32).
Figure 1 shows that the new dynamical procedure performs
systematically better than the static approach described in
[20] in predicting the mean interaction range nc. The error
made by the static inference is larger when neighbor mixing
is higher and the dynamics is strongly out of equilibrium.
That is because in the high-mixing case, the effective number
of interacting neighbors, as inferred by the static approach,
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FIG. 1. (Color online) Comparison between dynamical and static
inference. Data were generated using Voronoi neighborhood. The
inference was performed by using either a Voronoi rule or a
nearest-neighbor (NN) topological rule, parametrized by the number
nc of interacting neighbors. Main panel: The inferred number of
interacting neighbors n∗

c is shown as a function of the mixing rate μ.
Circles: dynamical inference; triangles: static inference. The dashed
line marks the real average value nV = 6. Static inference badly
overestimates the number of interacting neighbors at large mixing,
while dynamical inference does a much better job. Inset: Dynamical
normalized log-likelihood −Lt /N as a function of nc for the NN
topological rule (circles). The maximum of this function gives the
NN value of n∗

c reported in the main panel. The Voronoi likelihood
(dashed line) is larger than the NN one, revealing that Voronoi was
the actual generating rule. Data are for high mixing.

includes neighbors visited in the recent past in addition to the
current ones, and thus is larger than the true nc. By contrast, our
new dynamical inference based on NN interactions overcomes
this issue and hence performs very well, considering that the
model used for the inference incorrectly assumes a constant nc.
Not surprisingly, the likelihood computed with the (correct)
Voronoi topology is larger than with the (incorrect) NN
one. The temperature T is well inferred in both cases (8%
error), while the alignment strength J is well recovered when
assuming Voronoi neighbors (3% error), and approximately
with an NN topology (20% error).

If we apply the dynamical inference assuming a metric rule,
but on the configurations generated by the Voronoi topological
rule, we obtain significantly lower likelihoods, and a wrong
n∗

c ∼ 3 (see Fig. 2). This indicates that a topological rule is
more consistent with the data than a metric one, as it should.

Hence the dynamical method not only gives us the correct
interaction parameters, but also distinguishes the rule used to
build the interaction network. The method achieves this by
exploiting the different ways in which spatial density fluc-
tuations translate into neighbors fluctuations. In the Voronoi
network (the generating one), the number of neighbors ni of
each point fluctuates weakly around its mean value of 6 and in
the NN topological case ni does not fluctuate at all. With the
metric rule, on the contrary, ni has very large fluctuations,
directly linked to the VM giant density fluctuations [14].
The large fluctuations of ni make the metric correlation
functions of Table I very different from their correct (Voronoi)
value.
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metric

n∗
c
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FIG. 2. (Color online) Upper panel: Comparison of the normal-
ized log-likelihood for the nearest-neighbor and metric rules, as a
function of nc. For the metric case, for increasing values of rc, the
empirical nc = (1/N )

∑
i ni is shown. The dashed line corresponds

to the log-likelihood calculated with the Voronoi rule. Lower panel:
Inferred interaction range n∗

c for the nearest-neighbor and metric
cases, as a function of the mixing parameter μ.

VI. CONCLUSION

In summary, we have derived a dynamical maximum
entropy method to infer the alignment dynamics of highly
ordered animal groups from just two consecutive snapshots,
using simple analytical formulas. Tests on synthetic data
confirm the validity of our method. Our approach is very
general and makes minimal, symmetry-based assumptions on
the structure of the dynamics under investigation. In existing
inference methods, proposed for schooling fish [31–33], the
rules of motion were learned from small groups of fish by
assuming specific forms for the turning forces caused by the
proximity of the tank wall [31,33] as well as by the orientation
[33] or position [31,32] of other fish. By contrast, in our
approach the dynamics is entirely derived from the choice
of observables that we choose to constrain. In addition, our
inference procedure is straightforward and does not require
complex multivariable optimization.

Our work emphasizes the need for a dynamical inference
approach to out-of-equilibrium active matter systems, espe-
cially when there is no a priori knowledge of the time scales
in the system, which is usually the case when dealing with
experimental data. The analytical formulas we derive require
the flock to be well polarized for the SW approximation to be
valid. Even when this is not the case, integral expressions for
the Markovian transition probabilities still exist [Eq. (14)], and

042707-6



DYNAMICAL MAXIMUM ENTROPY APPROACH TO FLOCKING PHYSICAL REVIEW E 89, 042707 (2014)

may be evaluated numerically, similarly to the case of Ising
spins or spiking neurons where related approaches have been
proposed [34–36]. Such a regime would be useful for studying
weakly polarized groups such as midges [37]. The method also
assumes homogeneous agents, a hypothesis that can be relaxed
by treating differently some classes of agents, like those on the
border as in [20]. It is also presented in the absence of external
perturbations, which could be incorporated by adding local or
global fields to the action, Eq. (8).

The effective alignment forces that we derive from the
maximum entropy principle are not built into the approach, but
rather follow from the local correlative structure of the data. In
cases where polar order does not stem from alignment forces,
the correlation functions between birds may not be the right
choice of observables, and the approach should be adapted
accordingly by adding other observables to be constrained.
Ultimately, when applying the method to real data, the choice
of observables should be validated by testing the predictions
of the model on observables that were not used to construct
it, such as higher-order correlation functions, as was done for
example in [20].

Other forces than alignment forces may be at play in real
systems, such as cohesion forces in flocks, which tend to attract
birds towards the rest of the group. One could be worried
that they might interfere with the inference of the alignment
dynamics. However, in topological models moderate cohesion
forces mostly prevent the diffusive spreading of birds’ po-
sitions (otherwise observed in cohesionless models in open
space [14]) keeping the mixing rate μ finite, and do not have
much of an effect on the bulk dynamics. At first approximation
they can be neglected in the bulk and we expect our inference
method to be robust to their presence. In fact, it was shown
that the alignment parameters of a system simulated with
cohesion forces were correctly inferred by the static inference
procedure, even though the model explicitly ignored cohesion
[20].

Our approach is applicable to many systems where col-
lective motion is observed, including moving animal groups
[38], bacterial colonies [39,40], motility assays [41], collective
motion of epithelial cells [42], vibrated polar disks [43,44],
colloids [45], or nematic order [46]. The method should be
tailored to each case. For example, the symmetry between
the front and back can be broken by parametrizing the
interaction network to account for different behaviors with
respect to front and back neighbors as in [47]. In the case of
nematic order, local correlation functions should be replaced
by local nematic-order parameters. “Pursuit” behaviors such
as those observed in [31,32] could be captured by constraining
correlation functions between the orientation and relative
positions between individuals. As we have already stressed,
each system has its natural symmetries, and the choice of
relevant observables to be constrained should also reflect
prior biological or physical insight about the considered
system.

Throughout this work we have assumed that δt is equal to
(or smaller than) the real update time lag, namely the biological
time scale. This may not be true for some datasets, as the
sampling time of the experimental equipment is likely to be
larger than the neural update time actually used by animals.
This is certainly the case for the starling data of [20]. When

this happens, the experimental time series is a coarse-grained
version of the real dynamics, so that the present method would
probably provide a time-renormalized value of the interaction
parameters. It would therefore be important to generalize our
equations to deal with this issue. Other generalizations include
the extension to more than two consecutive times (with the
risk of accumulating tracking errors), which would allow
one to infer dynamics characterized by linear, not diffusive,
dispersion relations [48].
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APPENDIX A: CONTINUOUS-TIME, ADIABATIC LIMIT,
AND STATIC MAXIMUM ENTROPY

Here we show that, when the interaction network is
symmetric and evolves adiabatically, the continuous-time limit
of the dynamical maximum entropy stochastic process admits
a steady state that is given by the static maximum entropy
distribution.

We start from the Langevin equation (27)

dπ

dt
= −J�π + ξ (t), (A1)

where 	ij = niδij − nij , and ξi(t) are i.i.d. Gaussian white
noises with 〈ξi(t)ξi(t ′)〉 = 2T (d − 1)δ(t − t ′), where δ(x) is
Dirac’s delta function.

When � varies slowly with time, Eq. (A1) can be formally
integrated as follows:

π(t) =
∫ t

−∞
dt ′ e−J�(t−t ′)ξ (t ′). (A2)

If, in addition, � is symmetric, the system reaches some
equilibrium steady state. More precisely, the collective mode
that is parallel to u, which corresponds to the average direction
of the flock (1/N )

∑
i πi , and follows an unconstrained

random walk, as it corresponds to a the zero mode of �,
�u = 0. All the other modes that are orthogonal to u are
bounded by a restoring force. The steady-state distribution of
π is therefore Gaussian, with Cij = Cov(πi,πj ) satisfying

J�C = (d − 1)T

(
1 − uu†

N

)
, (A3)

where 1 is the identity matrix.
Remarkably, in the spin-wave approximation, this distribu-

tion is the same as the one obtained by the principle maximum
entropy constrained by the static correlation functions

P (s) = 1

Z
exp

(
1

2

∑
i �=j

J stat
ij sisj

)
, (A4)
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with

J stat
ij = J

T
nij . (A5)

One can check this by expanding Eq. (A4) at small π , after
setting n to be the average direction of the flock, so that

∑
πi =

0, and

P (π ) ∝ δ

( ∑
i

πi

)
exp

(
− J

2T

∑
ij

	ijπiπj

)
. (A6)

By virtue of Gaussian integration rules, this distribution has
the same covariance as Eq. (A3), and therefore is identical.

APPENDIX B: LIKELIHOOD MAXIMIZATION

In this Appendix we give detailed expressions for maximiz-
ing the likelihood. The likelihood reads:

L
N

= d − 1

2
ln 2T δt + L̂

4T δt
, (B1)

where

L̂ = C1
s + Cs − 2αC̃s + α2Ĉs + 2α(Cint − αC̃int)

+α2C ′
int − 2αGint − 2(Gs − αG̃s), (B2)

and α = Jncδt .
There are three parameters to optimize over: the interaction

strengh J , the interaction range nc, and the “temperature” T

which sets the strength of noise. This last one is simply given
by the condition ∂L/∂T = 0, which yields

T = L̂
2(d − 1)δt

. (B3)

At this optimum value of T , we have

L
N

= d − 1

2
{ln[L̂/(d − 1)] + 1}. (B4)

Minimizing L̂, ∂L̂/∂α, then yields the optimum value of α:

α = Cint − C̃s + G̃s − Gint

2C̃int − C ′
int − Ĉs

. (B5)

At this optimum, one has L̂ = C1
s + Cs − 2Gs + L̃, where

L̃ = (Cint − C̃s + G̃s − Gint)2

2C̃int − C ′
int − Ĉs

(B6)

is the only term that depends on the interaction matrix nij .
Therefore, to find the optimum interaction range nc in the case
of the nearest-neighbor model, one just needs to minimize
L̃(nc).

APPENDIX C: CONSISTENCY WITH THE
STATIC APPROACH

Here we show how the dynamical inference equations
derived above reduce to the static inference formulas of [20]
in the appropriate limits.

To recover the static inference equations, we start by
rewriting the dynamical inference equations, Eqs. (B3)

and (B5), explicitly

J = 1

nc

� + (d − 1)T0

C ′
int + Ĉs − 2C̃int

, (C1)

T = T0 + C1
s − Cs

2(d − 1)δt
− J ncδt

2(d − 1)

(
C̃s − G̃s

δt
+ �

)
,

(C2)

with nc = (1/N)
∑

i ni and

T0 = Cs − Gs

δt(d − 1)
, � = Gint − Cint

δt
. (C3)

When the system is at steady state, we have C1
s ≈ Cs and

� ≈ (2Nnc)−1 ∑
ij πiπj

dnij

dt
[directly from the definitions in

Table I of the main text and Eq. (C3)]; the second term in
Eq. (C2) cancels and T ≈ T0 for small δt . If we further assume
that data were actually generated by exactly the class of models
we are trying to infer (which may not be the case in general,
as we are looking at effective descriptions), we have exactly
T = T0. If, in addition, the neighbor changes are slow, then
� ≈ 0 and Eq. (A3) implies C̃int ≈ C ′

int. Equation (C1) thus
gives

Jnc

T
≈ d − 1

Ĉs − C̃int
, (C4)

which is the result of the static inference. Note, however, that
in addition to recovering the alignment strength, the dynamical
inference procedure allows us to separate the interaction
coupling J from the temperature T .

APPENDIX D: SPIN-WAVE EXPANSION OF THE
TOPOLOGICAL VICSEK MODEL

As described in the main text, to test our dynamical infer-
ence method we generated synthetic data with the topological
VM defined by

θ t+δt
i = Arg

[
st
i + JV δt

∑
j

nij s
t
j

]
+

√
δt ξ t

i , (D1)

rt+δt
i = rt

i + v0 δt st+δt
i . (D2)

In this section, we show that Eq. (D1) is in fact equivalent in
the spin-wave limit to an update equation of the same kind as
Eqs. (21), (25), and (26). To this aim, it is convenient to rewrite
Eq. (D1) in the following equivalent form:

st+δt
i = st

i + JV δt
∑

j nij s
t
j∥∥st

i + JV δt
∑

j nij s
t
j

∥∥ +
√

δt εt
i , (D3)

rt+δt
i = rt

i + v0 δt st+δt
i , (D4)

where εi is a delta-correlated noise perpendicular to si with
variance 2(d − 1)TV [i.e., whose effect is the same as the
angular noise appearing in Eq. (D1)].

In the large polarization regime we can perform a spin-
wave expansion si = πi + n

√
1 − π2

i , where n is a vector
representing the global direction of motion and πi is the
component of the direction si perpendicular to n. We can now
expand the normalization at the right-hand side in Eq. (D3)
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with respect to π2
i to get ∥∥∥∥∥∥st

i + JV δt
∑

j

nij s
t
j

∥∥∥∥∥∥ = 1 + δtJV ni + O(π2), (D5)

where ni = ∑
j nij . Equation (D3) then leads to the following update equation for the {πi}:

πt+δt
i = πt

i + δtJV

∑
j nijπ

t
j

1 + δtJV ni

+
√

δtεi =
(

1 − δt
JV

1 + δtJV ni

)
πt

i + δt
JV

1 + δtJV ni

∑
j

nijπ
t
j +

√
δtεi . (D6)

When δt is small, we can disregard the fluctuations in ni and Eq. (D6) is of the same form of Eq. (21) with the parametrization
defined in Eqs. (25) and (26) and

J = JV

1 + δtJV nV

. (D7)
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