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Flocks of birds exhibit a remarkable degree of coordination and
collective response. It is not just that thousands of individuals fly,
on average, in the same direction and at the same speed, but that
even the fluctuations around the mean velocity are correlated over
long distances. Quantitative measurements on flocks of starlings,
in particular, show that these fluctuations are scale-free, with
effective correlation lengths proportional to the linear size of the
flock. Here we construct models for the joint distribution of velocities
in the flock that reproduce the observed local correlations between
individuals and their neighbors, as well as the variance of flight
speeds across individuals, but otherwise have as little structure as
possible. These minimally structured or maximum entropy models
provide quantitative, parameter-free predictions for the spread of
correlations throughout the flock, and these are in excellent agree-
ment with the data. These models are mathematically equivalent to
statistical physics models for ordering in magnets, and the correct
prediction of scale-free correlations arises because the parameters—
completely determined by the data—are in the critical regime. In
biological terms, criticality allows the flock to achieve maximal
correlation across long distances with limited speed fluctuations.

collective behavior | statistical mechanics

In a flock of birds, thousands of individuals will fly in the same
direction and at the same speed, for long periods of time. How-

ever, this average behavior is not enough for flocking to be ad-
vantageous. The entire flock must respond to dangers that may
be visible only to a small fraction of individuals, requiring in-
formation to propagate over long distances. Although it is dif-
ficult to measure this information flow directly (1), we know that
attacks by predators on a flock have very low success rates (2–4),
and that the evasion of predators by starling flocks is associated
with the triggering and propagation of waves through the flock (5).
Even in the absence of predators, we can see deviations of in-
dividual behavior from the average behavior of the flock, and cor-
relations in these fluctuations provide a signature of information
flow through the flock. Strikingly, observations on flocks of star-
lings show that these correlations extend over very long distances,
comparable to the size of the flock itself (6).
It is generally believed that the interactions among birds in a

flock are local—each bird aligns its flight direction and speed to
those of its near neighbors (7). If this is correct, then we have to
understand how local interactions can generate correlations over
much longer distances. In physics, we have two very different
mechanisms for local interactions to produce long–ranged cor-
relations. If the system spontaneously breaks a continuous sym-
metry, for example when all of the spins in a magnet select a
particular direction in space along which the macroscopic mag-
netization will point, then the fluctuations in the system are domi-
nated by Goldstone modes that do not decay on any fixed length
scale (8). If we can think of the alignment of flight directions in
a flock as being like the alignment of spins in a magnet (9–11), then
we can understand the emergence of scale-free correlations via

Goldstone’s theorem. We have shown that this is more than a
metaphor (12): the minimally structured model consistent with the
observed correlations among flight directions of neighboring birds is
equivalent to a model of spins in a magnet, and the resulting (pa-
rameter-free) prediction of long-ranged correlations among fluctu-
ations in flight direction agrees quantitatively with the data.
Not just the fluctuations in flight direction, but also the fluc-

tuations in flight speed are correlated over long distances (6).
Now there are no Goldstone modes, because choosing a speed
does not correspond to breaking any plausible symmetry of the
system. However, there is a second mechanism by which physical
systems generate scale-free correlations, and this is by tuning
parameters to a critical point (8, 13). As we explore the parameter
space of a system (e.g., changing temperature and pressure), we
encounter phase transitions, where small changes in parameters
produce qualitative changes in behavior of a macroscopic sample
(e.g., between liquid and gas). Along the lines in parameter space
where these phase transitions exist, there are special points, called
“critical points,” where the dependence on parameters becomes,
for very large systems, singular but not discontinuous. At these
points, fluctuations (e.g., in the density of the liquid) become
correlated on all length scales, from the molecular scale of the
interactions to the macroscopic scale of the sample as a whole.
Tuning to a critical point provides a potential explanation for

scale-free correlations in speed of flocking birds, but this is just
an analogy; the goal of this paper is to construct a quantitative
theory. Our strategy follows ref. 12: we construct the least
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structured models that are consistent with measured correlations
among neighboring birds, and then see if these models can cor-
rectly predict the persistence of correlations over much longer
distances, comparable to the size of the flock. We will see that this
works, and that the underlying mechanism really is the tuning
of the system to a critical point. From a biological point of view,
this means that individuals in a flock combine individual speed
control and social interactions with their neighbors to achieve a
maximal range of influence while keeping speed variability low.

Building a Model from Data
We consider flocks of European starlings, Sturnus vulgaris, in the
field. The work of refs. 14 and 15 provides a detailed description of
these flocks, resulting in the assignment of 3D positions and veloc-
ities, at each moment in time, to each individual bird in flocks with
up to several thousand members (for a summary, see SI Text, section
I). From these raw data, one can extract a variety of features that
serve to characterize the nature of the ordering in the flock (6, 16).
The positions and velocities of all of the birds in the flock are

stochastic—with elements of randomness, but correlated. In
making a model, we want to predict the probability distribution
out of which these random variables are drawn. One approach is
to consider a detailed model for the dynamics of the flock, typi-
cally with many parameters to describe the interactions that cause
the flock to cohere and align. However, the connection between
the model dynamics and the joint distribution of velocities in the
flock can be complicated, and fitting the parameters of the
interactions is difficult (17); there also is a problem of whether we
should take such models seriously as description of the “micro-
scopic” interactions among individuals, or whether they are to be
considered as effective interactions in the spirit of statistical
physics. As an alternative, we can take some set of observations on
the flock as given and try to construct models that reproduce these
observations exactly; among the (generally infinite) set of models
that can do this, we want to choose the one that has the least
structure. Minimizing structure means that the velocities we
choose out of the distribution are as random as they can be while
still matching the properties of the flock that we have chosen as
essential. As emphasized by Jaynes (18, 19), these minimally
structured distributions have maximum entropy, providing a con-
nection to the ideas of statistical physics (SI Text, section II).
A realistic model for a flock might or might not lead to a

maximum entropy distribution. Also, the maximum entropy
method is not in itself a model: to use the method we have to
choose some set of experimental observations as constraints,
and it is easy to imagine choosing the wrong ones. Thus, the
maximum entropy approach is a source of hypotheses, and these
must be tested. If the maximum entropy model consistent with
a limited set of experimental constraints is accurate, correctly
predicting experimental observations that were not part of its
formulation, then we can take the model seriously and ask what
it teaches us about the system.
The maximum entropy approach to model building is far from

new, but there has been a resurgence of interest in the use of
these ideas to describe biological systems (20–29). In ref. 12, we
took a first step toward a maximum entropy description of flocks,
building models for the distribution of flight directions that
match the average local correlation between the direction of a
bird and its nearest neighbors. Surprisingly, fixing this one number
leads to a model that, with no free parameters, provides an es-
sentially complete, quantitative description of the propagation of
directional order throughout the entire flock. Here we generalize
this approach to consider not just flight directions, but also speed.
As explained above, we expect that accounting for the properties
of speed ordering is a qualitatively different problem from the case
of directional ordering.
Given the positions of the birds in space, the state of the flock

is defined by the velocity ~vi of each bird. This 3D vector is

composed of the speed, vi ≡
��~vi��, and a unit vector,~si =~vi=vi, that

points in the direction of flight. Our intuition is that the most
important interactions are local, between a bird and its imme-
diate neighbors. If this is correct, then the essential features of
the system should be captured by measuring local correlations, as
in ref. 12.
We can quantify local correlations in the flock by asking how

similar, on average, the velocity of each bird is to its neighbors.
To do this, we define

Qint =
1

2v20N

XN
i=1

1
nc

X
j∈N i

��~vi −~vj��2: [1]

Here N i is the relevant neighborhood of bird i, which we take to
be its first nc nearest neighbors (12, 16). We compare a bird to
each of its neighbors, average over the neighborhood, and then
average over all N birds in the flock; we normalize the result by a
typical speed v0 so that we have a dimensionless measure of
correlation or similarity. If we take v0 to be the average speed of
birds in the flock, then typical values forQint are ∼ 10−2 (Table S1),
showing that birds indeed fly with velocities very similar to those of
their neighbors.
The definition of Qint quantifies the similarity of each bird’s

flight vector to that of its neighbors, but if we add a constant to
all of the velocities, so that the flock flies faster or slower, then
Qint is unchanged. We would like to fix the average speed of the
birds in the flock, V = ð1=NÞPN

i=1vi, to its observed value hV iexp.
In addition, we know that individual birds have speeds that vary
around the mean, so we would also like to match the variance of
speeds. This is equivalent to fixing the mean square speed,
V2 = ð1=NÞPN

i=1v
2
i . In what follows, we will refer also to the

fractional variance in speed,

σ2 =
1

NV 2

XN
i=1

ðvi −V Þ2: [2]

The maximum entropy distribution consistent with measured
values of Qint, V, and V2 has the form (SI Text, section III),

P
��
~vi
��

=
1
Z
exp 

"
−

J
4v20

XN
ij=1

nij
��~vi −~vj��2 + μ

v0

XN
i=1

vi −
g
2v20

XN
i=1

v2i

#
;

[3]

where Z is a constant that ensures the normalization of the
probability distribution, and we have inserted factors of v0 so
that other parameters are dimensionless. The matrix nij maps
the connections between birds: n̂ij = 1 if bird j is in the neighbor-
hood of bird i (j∈N i), and zero otherwise; we symmetrize to give
nij = ðn̂ij + n̂jiÞ=2. The parameters J, μ, and g must be adjusted so
that the average values of Qint, V, and V2 computed from the
probability distribution match those observed for the flock; as
explained in SI Text, section IV, these computations can be done
analytically. The only remaining parameter is the number of
relevant neighbors nc, which we fix by requiring that the proba-
bility of the observed velocities be as large as possible. We expect
that birds on the boundary of the flock will experience different
signals than those in the interior; rather than making an explicit
model, we fix the velocities of the boundary birds (12), so that
Eq. 3 provides a theory for the propagation of order through
the flock.
Fig. 1 shows one example of our solution to the inverse problem

of determining the parameters J, g, and nc. Importantly, the quan-
tities that we are trying to match are averages over all of the birds in
the flock, and so they are determined with small errors even from
a single snapshot of the velocities. The parameters in turn are
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determined very precisely, and are consistent for a single flock
across time and across multiple flocking events, as in ref. 12 and SI
Text, section V. In particular, values of nc are independent of the
size of the flock (Fig. S1) and of the distance between birds (Fig.
S2), supporting the idea that birds interact with a fixed number of
neighbors.

Some Intuition
Maximum entropy distributions are mathematically equivalent to
the Boltzmann distribution for systems in thermal equilibrium,
and we can use this identity to gain some intuition for the pre-
dictions of the model. We recall that a system described by the
Boltzmann distribution will occupy a state s with probability
Ps ∝ exp  ð−Es=kBTÞ, where Es is the energy of the state and kBT
is the typical thermal energy; for our purposes we can choose
units so that kBT = 1. Thus, Eq. 3 defines an energy function or
Hamiltonian on the space of the birds’ velocities, and this can be
written as

H��
~vi
��

=
J

4V 2

XN
ij=1

nij
��~vi −~vj��2 + g

2V 2

XN
i=1

ðvi −V Þ2; [4]

where we have eliminated the parameter μ in favor of the mean
speed V, which is now fixed to its experimental value hV iexp, and
we have set the arbitrary scale v0 =V .
The first term in this Hamiltonian describes the tendency of

the individual velocities to adjust both direction and modulus to
their neighbors, while the second term forces the speed to have,
on average, the value V. From this perspective, we can interpret J
as the stiffness of an effective “spring” that ties each bird’s velocity
to that of its neighbors, and g as the stiffness of a competing spring
that ties each speed to the desired mean. Larger J means a tighter
connection to the neighbors, and larger g means a tighter indi-
vidual control over speed.
There are interesting limiting cases that give us a sense for

what this model predicts. If the parameter g is very large, then
the speed of individual birds hardly fluctuates at all. In this limit,
we can rewrite the Hamiltonian as

H��
~vi
��

≈Hdir
��
~si
��

= −
J
2

XN
ij=1

nij~si ·~sj: [5]

This describes the tendency of individual birds to align with their
neighbors, and is exactly the model in ref. 12.
If there are nonzero but small fluctuations in speed, then we

can write vi =V ð1+ eiÞ, and expand in powers of e. The result (SI
Text, section IV) is that

H��
~vi
��

≈Hdir
��
~si
��

+HspðfeigÞ; [6]

where the speed Hamiltonian

HspðfeigÞ= 1
2

XN
i;j=1

�
gδij + JNij

�
eiej; [7]

Nij = − nij + δij
XN
k=1

nik: [8]

Thus, our full model breaks into two pieces, one describing
fluctuations in flight direction, and one describing fluctuations in
speed. However, the strength of the springs that tie the speed of
each bird to that of its neighbors is determined by the same
parameter J which enters the description of directional fluctua-
tions in Eq. 5. Thus, we have a unified model for how birds adjust
their vector velocities to those of their neighbors, rather than
separate models (with separate parameters) for the adjustment
of direction and speed.
To get a sense for the structure of Hsp, it is useful to imagine a

continuum limit in which the variations in speed from bird to
bird are so smooth that we can picture the speed fluctuations as a
continuous function of position in the flock, eð~xÞ. In this limit (SI
Text, section VI), we have

Hsp ≈
ρ

2

Z
d3x

h
Jncr2c ð∇eÞ2 + ge2

�
~x
�i
; [9]

where rc is the typical distance to a neighboring bird, and ρ is the
density of the flock. This model predicts that

�
e
�
~x
�
e
�
~x′
��

∝ exp 
�
−
��~x−~x′��	ξbulk�; [10]

where correlation length

ξbulk ∼ rc
ffiffiffiffiffiffiffiffiffiffiffi
Jnc=g

p
[11]

determines the distance over which the fluctuations in speed will
be correlated; the subscript reminds us that we are treating the
flock as a bulk material, with no boundaries. In this simple picture,
there is a critical point at g= 0 where the correlation length ξbulk
becomes infinite.
As we have written our model, we need to have g> 0. On the

other side of the critical point at g= 0, we need to constrain the
speed distribution more fully (that is, more than just fixing the mean
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Fig. 1. Inference of the three interaction parameters g, J, and nc . (A) For fixed values of J and nc , the value of the speed control parameter g is found by
equating the theoretical prediction for the variance of fractional speed fluctuations, σ2 (red line) from Eq. 2, to its experimental value (black horizontal line).
(B) Once the value of g is determined for all possible values of J and nc , the interaction strength J can be set by equating the theoretical prediction for Qint (red
line) to its experimental value (black horizontal line). (C) Once g and J are computed for given values of nc , the log-likelihood of the data, hln  Pðf~vigÞiexp
becomes a function of nc only, and the interaction range nc can be evaluated by maximizing this function. All panels refer to the same single snapshot of one
flock (frame 2 of 25-10 in Tables S1 and S2), and mathematical details can be found in SI Text, section IV.
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and the variance) to have a well-normalized distribution of ve-
locities. If we make these extensions, then g< 0 will describe
a flock in which there is a bimodal distribution of speeds, which
seems unnatural. Thus, in this case, the critical point likely is also
the boundary of the biologically relevant parameter space.
To summarize, J determines the propagation of directional

order through the flock, and to describe the speed fluctuations we
have only one extra parameter g. The value of g is set by matching
the observed variance in speed across the birds in the flock (Fig.
1A). However, J and g also compete to determine the distance
over which speed fluctuations will be correlated, Eq. 11. Impor-
tantly, we are not free to adjust this correlation length by fitting:
either the model gets it right, or it does not.

Scale-Free Correlations
Once the parameters J, g, and nc are determined (Fig. 1), Eq. 3
provides a model for the joint distribution of velocities for all of
the birds in the flock; everything that we compute from this dis-
tribution is a parameter-free prediction. We start by measuring the
similarity of the vector velocities among birds that are not just
nearest neighbors, but are separated by greater distances. By
analogy with Eq. 1, we can define

QðrÞ= 1
V 2

D��~vi −~vj��2E
rij=r

; [12]

where the average is over all pairs of birds separated by a distance
rij = r. The predicted QðrÞmatches the data very closely (Fig. 2A),
out to distances comparable to the size of the flock, more than 10
times farther than the nearest neighbors.
We next decompose the relationships among velocities into

contributions from direction and speed. If we average all of the
unit vectors~si we obtain the overall polarization of the flock,

~P=
1
N

XN
i=1

~si; [13]

and we can characterize the fluctuations around this overall
direction by a correlation function

CdirðrÞ=
��
~si −~P

�
·
�
~sj −~P

��
rij=r

: [14]

In Fig. 2B we compare the data with the predictions of the
model, and again find good agreement on all scales.
By analogy with Eq. 14, we can define correlations among the

fluctuations in speed,

CspðrÞ=
�ðvi −V Þ · �vj −V

��
rij= r: [15]

Fig. 2C shows that the observed correlations are in agreement
with the predictions of the model, again over the full range of
distances. Thus, we have succeeded in constructing a model based
on local interactions that generates correlations over long distan-
ces, matching the data quantitatively.
The discussion above suggests that long-ranged correlations

are associated with the approach to a critical point at g= 0. To
see if this intuition is correct, we show in Fig. 3A what happens to
the predicted CspðrÞ as we change g. Large values of g correspond
to small variances in speed, and to correlation functions that
decay very rapidly with distance. As g becomes smaller, both the
speed variance and the correlation length increase, until, for
sufficiently small g, there really is no characteristic scale to the
decay of the correlations, and CspðrÞ is almost a straight line. This
is what we observe, and the success of the theory is that the value
of g that matches the observed speed variance is in this regime.
We can quantify the approach to criticality by the dimension-

less ratio g=ðJncÞ that enters Eq. 11. From Fig. 1, we see that
g=ðJncÞ∼ 10−3, and this is typical (Table S2). This suggests that
real flocks are very close to criticality, and that this is why we
observe scale-free speed correlations. Note that g cannot be exactly
zero, otherwise there is nothing to fix the mean speed of the flock
(Eq. 3), and hence the variance in speed relative to a fixed observer
(i.e., ground speed) would be infinite. In contrast, the model pre-
dicts that the variance of individuals relative to the flock remains
finite as g→ 0, and the actual value is quite small, σ2 ∼ 0:005 in Fig.
1. This measured value of σ2, together with Qint, fixes the ratio
g=ðJncÞ to be small enough to generate scale-free correlations.
To be more precise we need to take into account the finite size

of the flocks. Eqs. 10 and 11 hold only for an infinite system; for
a finite system, the range of the correlation is limited by the
system size. As g is lowered, the behavior of the correlations is
influenced more and more by these finite size effects: the ex-
ponential decay in Eq. 10 is modified, and the typical distance
over which correlations extend is no longer described by ξbulk. A
more faithful estimate of the correlation length ξ is given instead
by the zero of the correlation function (6), and the theoretical
prediction depends in a nontrivial way on g and the system size L.
For small enough values of g, however, the system is effectively
critical, and we should see ξ∝L. In Fig. 3A we show that de-
creasing g below the level required to match the speed variance
of the real flock has essentially no effect, and curves with smaller
values of g “pile up” as shown in yellow. Repeating the analysis
on flocks of different sizes (Fig. 3B), the correlation length does
scale with size, and this pattern is captured perfectly by our
maximum entropy models.
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Fig. 2. Correlation functions predicted by the maximum entropy model (red circles) vs. experiments (blue diamonds). (A) Similarity of velocities as a function
of distance, defined in Eq. 12. The dashed vertical line indicates the size of the neighborhood defined by nc birds, within which we match the average Q
exactly, by construction. (B) Correlations between fluctuations in flight direction as a function of distance, defined in Eq. 14. (C) Correlations between
fluctuations in speed as a function of distance, defined in Eq. 15. All panels refer to the same flock and snapshot as in Fig. 1; theoretical predictions are from
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We conclude that flocks exhibit critical behavior, being close
enough to the critical point to achieve maximum speed corre-
lation length while maintaining a well-defined cruising speed.
These conclusions also hold in more general maximum entropy
models where speed and flight directions are regulated by dif-
ferent interaction parameters (SI Text, section VII, and Fig. S3).

Dynamical Model
The fact that maximum entropy models are equivalent to the
Boltzmann distribution suggests a natural dynamical model, in
which the various degrees of freedom in the system execute
Brownian motion on the energy landscape:

γ
d~viðtÞ
dt

= −∇iH
��
~vj
��

+~ηiðtÞ; [16]

where ∇i indicates the derivatives with respect to the compo-
nents of the velocity~vi, γ is a constant to set the time scale of the
dynamics, and the Langevin force ~ηiðtÞ is a random, white noise
function of time. These dynamics are guaranteed, if the positions
of the birds are fixed, to generate velocities that are drawn from
the probability distribution in Eq. 3. However, to give a more
realistic model we should add to Eq. 16 forces that depend on
the positions of the birds (30–32), so as to fix the overall density of
the flock (SI Text, section VIII), and the velocities should drive the
birds’ positions,

d~xi
dt

=~vi: [17]

Eqs. 16 and 17 define a self-propelled particle model of interact-
ing birds, and is similar to the Vicsek model, so often used to
describe flocking particles (33, 34). In contrast to that model and
to most of flocking models in the literature, the speed of the
individual particles is not fixed, but regulated by the control
parameter g.
Simulations of the dynamical model defined by Eqs. 16 and 17

are shown in Fig. 4. As expected from the (static) maximum
entropy model, fluctuations in speed have a correlation length
that grows as g is reduced. If g is not too small, correlations decay

exponentially (Eq. 10), and the correlation length varies with
g=ðJncÞ as expected. When g is sufficiently small, the exponential
decay is modified by finite size corrections, and the correlation
length—now computed as the zero-crossing point of the correla-
tion function—keeps decreasing until a maximal, size-dependent
saturation value is reached. In this regime, the correlations extend
over a distance determined by the system size, and ξ grows linearly
with L, corresponding to scale-free behavior (Fig. 4B, Inset). This
scenario confirms that the mechanism identified in the previous
section produces scale-free correlations in the speed even when
the full dynamical behavior of the flock is taken into account.

Conclusions
The understanding of collective behavior in matter at thermal
equilibrium provides a touchstone for thinking about emergent
phenomena in biological systems. Flocking is an especially attrac-
tive example, in which the alignment of birds in a flock reminds us
of the alignment of spins in a magnet or molecules in a liquid
crystal. However, birds are vastly more complex than spins, and
this might be nothing more than a metaphor. The goal of this
paper and our previous work (12) has been to show that we can go
beyond metaphor, that there is a statistical mechanics description
of flocks which makes quantitative, parameter-free predictions
that are in detailed agreement with the data.
One dramatic collective phenomenon that can emerge in sta-

tistical mechanics is a critical point. At such points, distant ele-
ments of a system become correlated with one another, far beyond
the range of local interactions among the individual elements. At
generic parameter values, correlations are expected to decay on
some characteristic spatial scale ξ, so that a very large system is
composed of many nearly independent pieces of volume ξ3; often,
ξ is not much larger than the range of the interactions themselves.
However, at a critical point, the correlation length ξ becomes
(formally) infinitely large, and the scale over which correlations
extend becomes comparable to the linear size L of the entire
system; rather than having many independent pieces, the system
acts (almost) as one.
The idea that biological systems might be poised near a critical

point is not new (35), but has languished for lack of detailed
comparison with experiment. The emergence of more extensive
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data, as well as ideas about how to connect theory and experi-
ment, has led to a reexamination of criticality in a wide variety of
biological systems (36). In this context, the observation of long-
ranged or scale-free correlations in the velocities of starlings in
a flock (6) is very suggestive. Our results here show that these
correlations are not just analogous to the correlations at a critical
point: we have a very accurate description of the entire distri-
bution of speed and direction fluctuations in the flock, this de-
scription is mathematically equivalent to a statistical mechanics
model of a magnet, and the observed scale-free correlations are
predicted correctly because the parameters of this model are in
the critical regime.
Our approach is not a fit to the observed scale-free behavior

of the flock. Instead we take from the data a measurement of
local correlations, and the variance of individual birds’ speeds
relative to the average over the flock, and build the least struc-
tured model that is consistent with these two measurements. Thus,
rather than thinking of criticality as occurring in the neighborhood
of a special point in the space of model parameters, we can think
of it as a statement about the behavior of the flock itself. In
particular, as emphasized in Fig. 3, even a factor-of-2 change in
the variance of the speeds would predict correlations that decay
much more rapidly with distance, inconsistent with what we see in
real flocks.
Biologically, birds may vary their speeds either for individual

reasons (37), or to follow their neighbors. In this language, the
critical point is the place where social forces overwhelm individual

preferences. More broadly, the critical regime is one in which
individuals achieve maximal coherence with their neighbors while
still keeping some control over their speeds.
Why do flocks organize themselves to be critical? There has

been much more speculation about the advantages of criticality
for biological systems than there has been direct evidence, so we
do not want to add too much here. We note, however, that in the
statistical mechanics framework, long-ranged correlations at crit-
icality are mathematically equivalent to the statement that in-
formation can propagate over similarly long distances. Away from
criticality, a signal visible to one bird on the border of the flock can
influence just a handful of near neighbors; at criticality, the same
signal can spread to influence the behavior of the entire flock.
Such susceptibility seems advantageous, but it would be attractive
to have more direct measurements of the propagating signal (1).
The critical point is a place where many quantities are extremal; it
remains to be seen which of these is most meaningful to the birds.
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