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The correlated motion of large bird flocks is an instance of self-organization where global order
emerges from local interactions. Despite the analogy with ferromagnetic systems, a major difference
is that flocks are active – animals move relative to each other, thereby dynamically rearranging
their interaction network. Although the theoretical importance of this off-equilibrium ingredient
has long been appreciated, its relevance to actual biological flocks remains unexplored. Here we
introduce a novel dynamical inference technique based on the principle of maximum entropy, which
takes into account network reshuffling and overcomes the limitations of slow experimental sampling
rates. We apply this method to three-dimensional data of large natural flocks of starlings, inferring
independently the strength of the social alignment forces, the range of these forces, and the noise.
We show that the inferred timescale of bird alignment is much smaller than the timescale governing
the rearrangement of the interaction network. We verify that, following from this observation,
an equilibrium inference method assuming a fixed interaction network gives results that are fully
consistent with the dynamical inference. We conclude that the birds’ flight orientations are in a
state of local equilibrium.

Animal groups moving in concert such as mammal
herds, fish schools, insect swarms, and bird flocks pro-
vide striking biological examples of how local coordina-
tion can result in large-scale collective behavior [1–3].
Such examples differ radically from standard systems in
statistical physics in that their constituents are them-
selves active: they constantly move by self-propulsion,
pumping energy into the system and keeping it out of
equilibrium [4–7]. However the motion of particles is not
enough to make active matter genuinely active. Crystal
particles translated together along parallel trajectories
just describe a moving solid, and cannot be considered
active. What makes a system truly active is the rear-
rangement of the interaction network as individuals dif-
fuse within the group and change their neighbors. The
effect of these rearrangements is very significant: among
other things, theoretical studies predict that network mo-
tion in active systems enhances group-level alignment,
lowering from 3 to 2 the minimal integer dimension at
which an ordering transition occurs and changing the ex-
ponents governing the decay of long-range correlations
[4, 8]. In short, network rearrangements could drasti-
cally change the group dynamics and the nature of their
coherent motion. However, despite a deep theoretical un-
derstanding, their actual impact for biological groups has
remained largely unexplored. Here we propose a dynam-
ical inference method to investigate their role in natural
flocks of starlings.

The impact of activity in biological groups depends on
the interplay between two time scales: the first one is
the scale of local relaxation, τrelax, defined as the charac-
teristic time needed to relax locally the order parameter

if the interaction network remained fixed (in the case of
flocks the order parameter is the orientation, i.e. the di-
rection of motion); the second time scale is the network
reshuffling time, τnetwork, defined as the average time it
takes for an individual to renew its interacting neighbor-
hood. If τrelax ∼ τnetwork, the system is out of equilibrium
and the exotic physics of active matter applies. If, on the
other hand, τrelax � τnetwork, the dynamics are adiabatic,
closely following the equilibrium state of the network as
it slowly evolves. In this work we investigate what regime
applies to natural flocks of birds.

To address this issue we need to study the dynamical
rules of alignment in a time-resolved manner, as they are
carried out in the wild or in the laboratory. Recent work
has allowed for a detailed description of the local dy-
namical rules underlying collective behavior using time-
dependent data, in surf scoters [9], prawns [10] and fish
schools [11–15], typically restricted to small groups in
one or two dimensions. In these studies, the behavior
(acceleration or turning) of individuals was mapped as a
function of the parameters of their immediate environ-
ment, such as the distance or orientation of their neigh-
bors. While the local rules of interaction were learned
using small groups, they could often be used to predict
some large-scale properties of group behavior [13, 15].
In a separate approach based on static data, snapshots
of three-dimensional images of flocks of starlings in the
wild were analysed and mathematically mapped onto sta-
tistical mechanics models of ferromagnets [16], lending
insight into the ordering mechanism and the local topol-
ogy of the interaction network [17, 18]. All these studies
provide a quite detailed view of the rules underlying col-
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lective behavior, but do not address the question of net-
work activity. In fact, the impact of network reshuffling
on emergent behavior in animal groups has been given
surprisingly little attention, despite the importance con-
ferred to it by the theory of active matter.

Our approach is based on the direct inference of dy-
namical rules from data, using maximum entropy models
constrained to reproduce the dynamical correlation func-
tions of the data, thus taking into account the reshuffling
of the network [19]. A crucial and widespread problem
faced by any inference approach, ours included, is that in
all experiments motion is sampled at a finite rate. Most
inference methods are based on approximated schemes of
integration of continuous differential equations and they
therefore fail when the sampling rate is slow compared to
the relaxation time. The reason of this fact is somewhat
intuitive: if two subsequent snapshots are too far in time
from each other, any discrete inference method mistakes
dynamical correlation for static interaction, thus yield-
ing an inferred interaction range that is larger than the
actual one.

Here we develop a new inference procedure based on
the exact integration of the maximum-entropy dynamical
equations that overcomes the issue of finite experimen-
tal sampling rates. We test the method against simula-
tions for a wide range of sampling rates and apply it to
data of starling flocks of sizes ranging from 50 to 596,
obtained by three-dimensional reconstruction of stereo-
scopic images [20–22], where bird positions were tracked
over a few seconds [23] (see Materials and Methods and
Table S1 for a summary of the data). We infer the rele-
vant parameters of alignment—the strength, range, and
noise of the alignment forces between neighbors. We find
that the alignment relaxation time, τrelax, is an order
of magnitude smaller than the network rearrangement
time, τnetwork. Accordingly, we show that the parameters
learned from the dynamics agree remarkably well with
those obtained by an equilibrium-like inference assuming
a fixed network [17], indicating that network rearrange-
ment plays a minor role in the flock’s alignment. These
results demonstrate that natural flocks are in a state of
quasi-equilibrium, meaning that the relatively slow re-
arrangement of the interaction network does not affect
their ordering dynamics.

Results

Dynamical inference.

Inferring the dynamical rules of behavior usually relies
on the choice of a particular model of collective behav-
ior adapted to the context at hand. Unfortunately, there
are many candidates for such models. Instead of impos-
ing a form for the rules of alignment in natural flocks,
we follow Ref. [19] and apply the principle of maximum
entropy to the trajectories of all birds in the group. We
look for model distributions of the stochastic process that

are as random as possible, while agreeing with the data
on a key set of carefully chosen observables. In a flock of
size N , call ~si(t) the three-dimensional flight orientation
of bird i at time t. The maximum entropy distribution
over possible flock trajectories that is consistent with the
correlation functions 〈~si(t) ·~sj(t)〉, as well as their deriva-
tives 〈d~si(t)/dt · ~sj(t)〉, can be exactly mapped, in the
limit of strong polarization P ≡ (1/N)‖

∑
i ~si‖ ≈ 1, onto

the following stochastic differential equation (see SI and
Ref. [19]):

d~si
dt

=

∑
j

Jij~sj + ~ξi


⊥

, (1)

where ~ξi is a random white noise, and where the projec-
tion ~x⊥ ≡ (~si × ~x) × ~si = ~x − ~si(~x · ~si) onto the plane
perpendicular to ~si ensures that ~si remains of norm 1.

The model is easily interpretable, and can be viewed
as a generalization of the Vicsek model [24]. Each bird
modifies its flight direction according to a weighted aver-
age of the directions of its neighbors,

∑
j Jij~si, to which

some noise ~ξi is added. The interaction matrix Jij en-
codes how much bird i is influenced by (i.e. interacts
with) bird j. Given the experimentally measured corre-
lation functions, entropy maximization yields equations
that fix the values of the noise amplitude, and the inter-
action matrix Jij . This matrix has too many parameters
to be reliably determined from the data, but we can re-
duce its complexity by parametrizing it [17]. Our choice
of parametrization is guided by the results of Ref. [25],
where it was shown that the interaction decays exponen-
tially with the topological distance kij between birds,

Jij = J exp(−kij/nc) , (2)

where kij denotes the (time-dependent) rank of bird
j among the neighbors of bird i ranked by distance.
This interaction form has just two parameters: nc is
the topological interaction range, while J is the overall
strength of the interaction. Later we will see that our
results are robust to other choices of the parametriza-
tion. For simplicity, the noise is taken to be uncorre-
lated among birds and of uniform magnitude T (in units
of inverse time), by analogy with physical temperature:

〈~ξi(t) · ~ξj(t′)〉 = 2 d T δijδ(t − t′), where d is the space
dimension (d = 3 in the following).

The parameter J , which has units of inverse time,
quantifies the strength of the social force and sets the
timescale for the relaxation of the system. Since there
are approximately nc neighbors acting on each individ-
ual, the total alignment force is of order Jnc, and thus
the characteristic time scale of relaxation of the orienta-
tional degrees of freedom is τrelax ≡ (Jnc)

−1. This is not
entirely obvious, as the theory has a zero mode, imply-
ing long range correlations both in space and time; hence,
one would expect the relaxation time to be infinite. How-
ever, the fluctuations associated to the zero mode have
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FIG. 1: Performance of the inference methods on the predicted interaction range nc. A. Inferred versus real nc obtained by
applying our new inference method to simulated data generated with Eq. 1 at various interaction ranges. The method performs
well for different values of the sampling rate dt. B. Dependence of the inferred nc on the sampling time dt. On simulated
data with nc = 10 (dashed line), the inference method based on exact integration (red points) performs well regardless of the
sampling time dt. By contrast, the inference method based on Euler’s integration method (green points) overestimates the true
interaction range at large dt. C. A similar trend is observed when we apply the two inference procedures to real flocking data,
as illustrated here on one flocking event. Note that in this case the true value is not known.

very long wavelength, so that they change the direction
of a bird in unison with that of its local neighbors and
therefore they do not contribute to the competition be-
tween relaxation of the orientation and network reshuf-
fling. The modes that disorder the network on the scale of
the interaction have wavelengths much shorter than the
size of the system. For this reason one can show that the
relevant correlation function decays exponentially, with
a finite scale (Jnc)

−1 (see SI for a detailed discussion).

Coping with a finite sampling time.

In principle, to learn the parameters of Eq. 1 from
data requires to know the instantaneous derivative of
each bird’s flight orientation d~si/dt. However, in prac-
tice the configurations of the flock are sampled at some
finite experimental rate, and we must infer the model us-
ing consecutive configurations of the birds’ orientations
separated by the sampling time dt: ~si(t) and ~si(t+dt). If
dt is small enough (we shall see later what this means),
inference can be performed by integrating Eq. 1 using
Euler’s approximate rule:

~si(t+ dt) ≈ ~si(t) + dt

∑
j

Jij~sj


⊥

+
√

2Tdt ~ηi, (3)

where ~ηi is a normally distributed vector orthogonal to ~si
and of variance 1 in each direction. The conditional like-
lihood of the data given the model, P [{~si(t+dt)}|{~si(t)}],
can be written in Gaussian form after expanding Eq. (3)
in the spin-wave approximation of strong polarizations
(see Materials and Methods). Maximizing this likelihood
yields best-fit values for the alignment parameters nc, J
and T . The procedure is easy to implement, as J and T
have analytical expressions as a function of the observ-
ables (see Ref. [19] and SI).

Independently of the dynamical model actually used,
Euler’s rule is used by virtually all methods that try to
fit a dynamical equation to a discrete time series of bio-
logical data [11–13]. Identifying the discrete experimen-
tal dynamics with the discretization of the continuous
dynamical equations may seem a natural thing to do.
However, the sampling time dt is not a natural, intrinsic
time-scale of the biological system under investigation,
but instead only depends on our experimental technique.
Imagine that dt is much larger than the intrinsic relax-
ation time-scale, τrelax: in this case, between two sub-
sequent time frames information has spread far beyond
the directly interacting neighbours, so we expect Euler’s
rule to overestimate the range of the interaction. In prac-
tice, by using Euler’s rule we are coarse-graining the true
dynamics over time, and hence get renormalized parame-
ters that may differ considerably from the true ones. We
stress that this issue is common to any inference proce-
dure based on dynamical data sampled at relatively slow
rates.

To go beyond Euler’s approximation, we exploit the
fact that Eq. 1 is linear in the spin-wave approximation
and therefore exactly solvable for Jij constant in time.
To see how to solve it, it is convenient to rewrite Eq. 1
so that the alignment force consists of a sum with bal-
anced weights, by subtracting

∑
l Jil~si from it, with no

consequence because (~si)⊥ = 0. The equation now takes
the form:

d~s

dt
=
(
−JΛ~s + ~ξ

)
⊥
. (4)

Bold symbols denote vectors and matrices over bird in-
dices; the matrix Λij ≡ δij

∑
l nil − nij , where nij =

e−kij/nc is the (dimensionless) connectivity matrix ac-
cording to parametrization (2). Λ is analogous to a
Laplacian defined on a lattice, and has balanced weights:∑
j Λij = 0. In the spin-wave approximation, where

all orientations ~si point in almost the same direction,
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this balancing ensures that Λ~s has almost no contri-
bution along the common direction of flight, implying
(Λ~s)⊥ ≈ Λ~s (see Materials and Methods and SI). Equa-
tion 4 then becomes linear and can be integrated:

~s(t+dt) = e−JΛdt~s(t)+

∫ dt

0

du e−JΛ(dt−u)~ξ⊥(t+u) . (5)

This result assumes a constant Jij , which is a good ap-
proximation if its variations are slow compared to the
integration time, dt � τnetwork. Conveniently, this same
limit is required to be able to track individuals from
frame to frame and thus to collect dynamical data in
the first place (see discussion). From the exponentials in
this equation we explicitly see that the experimental sam-
pling time dt competes with a product of the interaction
strength and of the connectivity matrix, confirming that
the natural scale of relaxation is τrelax = (Jnc)

−1. As ex-
pected, expanding (5) for dt� τrelax, gives back Euler’s
approximation, Eq. (3). The integrated noise in the right-
hand side of (5) is Gaussian, of mean zero and covariance

4T
∫ dt

0
du e−JΛue−JΛ†u. Using this exact solution allows

us to write an explicit expression for the (still Gaussian)
conditional likelihood P [{~si(t + dt)}|{~si(t)}], which can
then be maximized over the parameters of the model, as
before (see Materials and Methods).

To test our new dynamical inference we simulated syn-
thetic flocking trajectories using the model of Eq. 1, for
various values of the interaction range nc, while keeping
Jnc = 1.5, hence τrelax ≈ 0.7; the temperature T was
chosen so as to have polarization Φ ≈ 0.99 similar to real
flocks (see Materials and Methods). We then infer the
parameters of the model using either Euler’s rule, or the
result of exact integration as explained above, for differ-
ent values of the sampling time ranging from dt = 0.2
to dt = 0.8. We find that the our new method based on
exact integration predicts the interaction range nc well,
regardless of dt (Fig. 1A and B). By contrast, the per-
formance of the inference method based on the approxi-
mated Euler’s formula depends strongly on dt (Fig. 1B).
Its prediction is good at small dt, but it largely overesti-
mates nc at large dt.

We also test the effect of changing the sampling time
dt on real data of natural flocks. The minimum sampling
time allowed by the experimental conditions is dt = 0.2 s
because below this time individual bird flapping domi-
nated the trajectories (see Materials and Methods). To
assess the effect of changing the sampling time we artifi-
cially varied dt from 0.2 to 0.8 s. Remarkably, although
we cannot compare the inferred value of nc to the truth
as in simulations, we observe a similar trend as a function
of dt (Fig. 1C). The inference based on exact integration
gives a consistent prediction for nc regardless of dt, while
that based on Euler’s approximation only agrees with it
for small dt. This suggests that the sampling time of
0.2 s is of the same order as the orientation relaxation
time τrelax, as we will confirm below. It also indicates
that the inference method based on exact integration is
extracting the parameters of alignment reliably.

time (s)
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−1

sampling time dt

FIG. 2: Comparison between the two relevant time scales
of active matter, as inferred in 14 natural flocks using our
inference method based on exact integration. Histograms of
the neighbor exchange time τnetwork versus the local alignment
time τrelax = 1/Jnc, show that the relaxation of orientations
is much faster than the turnover of neighbors. Note that the
experimental sampling time dt = 0.2 s (dashed line) is of the
same order as the alignment time, justifying the use of exact
integration.

Separation of time scales in natural flocks.

Confident with our dynamical inference method, we
now move on to the analysis of its predictions on data
of natural starling flocks. To assess the importance of
network activity for the alignment dynamics, we need to
compare the two time scales τnetwork and τrelax governing
the evolution of the network and the relaxation dynamics
of orientations.

We estimate, for each flocking event, the net-
work reshuffling time τnetwork as the character-
istic decay time of its autocorrelation function
Cnetwork(t) =

∑
ij nij(t0)nij(t0 + t), by fitting

Cnetwork(t) ≈ C0 exp(−t/τnetwork) (Fig. S2). We then
compare its value to the relaxation time of the orienta-
tional dynamics, τrelax = (Jnc)

−1 learned from the dy-
namical inference method. The results are summarized
in Fig. 2. The two time scales clearly separate, indicating
that network variations are slow compared to the other
time scales of the problem, in particular the relaxation
of orientations. In addition, the estimate of τrelax is rela-
tively close to the experimental sampling time dt = 0.2 s,
confirming in hindsight the need to use an exact integra-
tion method.

Local equilibrium in flocks.

The separation of time scales suggests that flocks are
in a state of local equilibrium. The network of interac-
tions does change over time, but it does so slowly enough
for the dynamics of flight orientations to catch up be-
fore neighbours reshuffle. In other words, the orientation
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dynamics tracks network changes adiabatically. It is im-
portant to stress that this statement is true in a local
sense, as it holds within the interacting neighborhood.
The network changes slowly over the interaction length-
scale compared to the relaxation of the orientations over
the same local scale.

This claim leads to a prediction: since flocks behave as
if they were in local equilibrium, an equilibrium inference
procedure, which takes as an input the local correlation
in space calculated over a snapshot of the birds’ flight
directions [17], should be consistent with the results of
dynamical inference. If, on the contrary, the system’s ac-
tivity strongly affected the alignment dynamics, or if our
approach failed to capture important aspects of the mat-
ter, one should find different results. Is this prediction
satisfied in natural flocks of birds?

To study this question, we first briefly recall the
equilibrium-like inference method used in [17], and its re-
lation to our dynamical framework. For symmetric Jij ,
Eq. 1 is the Langevin equation derived from the Hamilo-
nian of the Heisenberg model

H = −1

2

∑
i,j

Jij~si · ~sj . (6)

When Jij varies slowly in time, the fluctuations of ~si are
in quasi-equilibrium and distributed according to Boltz-
mann’s law:

P (~s1, . . . , ~sN ) ∼ exp (−H/T ) . (7)

We recognize the maximum entropy distribution consis-
tent with the local correlation index

∑
ij nij〈~si~sj〉 fitted

in Ref. [17]. In practice, the equilibrium inference con-
sists in maximizing the likelihood of Eq. 7 over its param-
eters nc and J/T (see Materials and Methods and SI). It
follows from the relation between the Lanvegin equation
and Boltzmann’s law that, if the variations of nij are slow
compared to the dynamics of ~si, τnetwork � τrelax, this
inference procedure should give an accurate estimate of
the alignment parameters.

Specifically, both equilibrium and dynamical inference
methods give as an output the interaction range, nc,
whose value can therefore be directly compared in the
two cases. On the other hand, while the dynamic in-
ference provides the strength of the interaction, J , and
the strength of the noise, T , separately, the equilibrium
inference gives a single value for the ratio J/T , which
is therefore the quantity to compare. Note that because
the equilibrium inference only outputs this dimensionless
ratio, it does not give any indication of timescales, mak-
ing the validity of the equilibrium description impossible
to assess self-consistently without recurring to dynamical
information.

We proceed to the comparison between the two meth-
ods in natural flocks, by learning the model parameters
from data using both the dynamical inference method
and the equilibrium-like procedure we have just de-
scribed, for each of the 14 flocking events. The results,

plotted in Fig. 3, show that the dynamic inference gives
parameters that are consistent, within error bars, with
those of the equilibrium inference. This is true both for
the interaction range, nc, and for the coupling constant to
noise ratio, J/T . This result confirms that the alignment
dynamics of flocks are in an effective state of equilibrium.

It is important to stress that these two inference proce-
dures are based on completely different information: the
equilibrium inference uses the instantaneous statistics of
orientations, while the dynamical inference exploits the
difference between two snapshots to learn how they vary
in time. Thus, their agreement not only means that
neighborhood variations have little effect on the align-
ment properties of the flock, but it also makes a strong
case for the validity of our approach. Finally, we note
that using Euler’s rule instead of the exact integration in
the dynamical inference gives a significantly worse agree-
ment, even for dt = 0.2 s when considering all 14 flocks
(Fig. S1).

Up to now we have used an exponential form for the in-
teraction matrix, Jij = Je−kij/nc , where kij is the topo-
logical distance between i and j. To test the robustness
of our results against the choice of parametrization, we
repeated the analysis with a step function: Jij = J if
kij ≤ nc, and 0 otherwise. It was argued [25] that the in-
teraction range nstep

c parametrizing the step form should
be related to nexp

c of the exponential form through the re-
lation nstep

c ≈ 2nexp
c , in order to get the same mean rank

between interaction partners (see SI). Our results agree
very well with this prediction, both for the equilibrium
and dynamical inference procedures (Fig. S3). Thus, the
two parametrizations are interchangeable and give equiv-
alent results.

Discussion

We have presented a new dynamical method for in-
ferring the range and strength of alignment interaction
between birds in natural flocks. Applying it to trajec-
tories of starling flocks has allowed us to learn the mi-
croscopic dynamical rules leading to collective behavior
in the largest animal groups yet. Compared to previous
work on dynamical inference [19], the present method
can deal with any experimental sampling rate, even lower
than the relaxation rate of the orientations. Thanks to
this, the method can be applied to real data in which
the relation between these two time scales is not known
a priori. The new method only works as long as the
experimental sampling time is faster than network rear-
rangement, dt � τnetwork. This, however, is hardly a
constraint, as this same condition is necessary for the
very possibility to experimentally collect dynamical data
in the first place. Any tracking procedure needs to follow
each individual between consecutive time frames, which
is only possible if individuals do not significantly change
their neighborhood [23]. If the distance traveled by in-
dividuals in the centre of mass reference frame is of the
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FIG. 3: Inference on natural flocks. For each of the 14 flocking events, the parameters of the model were inferred using either
the dynamical inference method presented here, with dt = 0.2 s, or an equilibrium inference method as in [17]. A. Both methods
agree well on the predicted value of the alignment range nc. B. While the dynamical method infers the alignment strength
J and the noise amplitude T separately, the equilibrium method only infers their ratio J/T , the value of which is consistent
between the two methods.

same order (or larger) than the inter-particle distance,
dynamical tracking becomes impossible. We therefore
expect our method to work in the most diverse types of
biological data.

Theoretical studies of active matter suggest that out-
of-equilibrium effects induced by the rearrangement of
the interaction network should play a major role in the
alignment dynamics of flocks. In this light, any attempt
to understand the properties of active biological matter
based on an equilibrium approach seems questionable.
The success of such an approach in Refs. [17], [18] and
[25] is all the more surprising. Since these descriptions
postulate an effective equilibrium distribution of the con-
figurations of the flock, they are not informative of the
out-of-equilibrium effects caused by network activity, and
one could rightfully ask why they work and whether their
parameters should be trusted. Our work provides an an-
swer to this question by showing that flocks are in a state
of local equilibrium, due to the rapid relaxation of orien-
tations compared to the slow rearrangement of the net-
work. A consequence of this separation of timescales is
that the results of the full dynamical inference method
are, within error bars, the same as a purely equilibrium
method, which assumes that the interaction network is
fixed. Thus, the equilibrium inference seems to be jus-
tified in this system, not only as a formal mathematical
equivalence, but as tool to extract bona fide biological
traits, including its ability to predict pairwise as well
as higher-order correlations within the flock. Note that
while the equilibrium approach is mathematically simpler
and computationally less expansive than the dynamical
one, thus making it possible to obtain results even in large
groups that would be beyond the reach of a dynamical
analysis, a dynamical approach is always needed to infer
the timescale of the ordering mechanism as well as the
noise amplitude.

Do our results mean that flocks are just like ferromag-

nets and that the dynamics of the interaction network has
no role? The answer to this question is clearly no. What
we have shown here is that the directions of motion over
the local scale of interaction relax on a faster time scale
than the network. But the network does move, neigh-
bours are eventually reshuffled and this will have con-
sequences on collective motion. To fully appreciate this
point we must stress once again the difference between
local, short-wavelength modes, which rules interaction
and tune the balance between relaxation and reshuffling,
and long-wavelength modes, which rule the long time and
long distance correlations in the system. If we are in-
terested in such large-scale properties, a hydrodynamic
approach is always necessary [4] – even though orienta-
tions may relax fast, the long term motion of the active
fluid needs to be described by taking into account the dy-
namics of the density field. Another important point to
mention is that even when the network is rather stable
(as in flocks), individuals do not sit on a regular lat-
tice, so that heterogeneities in the network connectivity
may arise. Their dynamics, even though slow, may be
crucial to understanding long-term off-equilibrium prop-
erties. Also note that the slow rearrangement of the net-
work can be seen as a consequence of the high degree of
polarization in the studied flocks [26], and may be faster
in less ordered groups. In conclusion, our work suggests
to approach active systems without prior assumptions
about their exotic properties. Depending on what our
aim is in the study of collective motion, we should assess
carefully the relevant time scales and choose accordingly
the analytic tools that best suit our needs.
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Materials and methods

Flocking data.

The three-dimensional trajectories of all birds were re-
constructed using imaging techniques. Stereoscopic ex-
periments on natural flocks of European starlings were
performed in the field in Rome using three high speed
machine vision cameras shooting at 170 fps . The stereo-
scopic video acquisitions were then processed using a
novel purpose-built three-dimensional tracking algorithm
based on a recursive global optimization method [23].
This algorithm is extremely powerful, allowing for the
reconstruction of full 3D trajectories of all individuals in
groups of several hundreds individuals. We collected 3D
data from 12 flocking events with sizes ranging from 50
to 600 individuals, and lasting from 2s to 6s (for details
on the experiments and the dataset see Table S1 and
[21, 27]).

To avoid interference from birds flapping,
which occurs at frequency ≈ 10 Hz, we sub-
sampled all the 3D sequences so that two snap-
shots are separated by dt′ = 0.1 s. The in-
stantaneous flight orientations were estimated by
~si(t) = [~ri(t+ dt′)− ~ri(t)]/‖ri(t+ dt′)− ~ri(t)‖. To avoid
overlap between two subsequent evaluations of ~si(t),
we used dt = 2dt′ = 0.2 s. The lower sampling rates
of Fig. 1C, were obtained by taking dt′ = 0.2, 0.3, and
0.4 s.

Simulated data.

Data were simulated in three dimensions with the con-
tinuous Vicsek model of Eq. 1 with the interaction matrix
of Eq. 2. The positions ~ri of individuals are updated ac-
cording to d~ri/dt = v0~si, with v0 = 1. The simulations
were set in a 8× 8× 8 box with periodic boundary con-
ditions, and N = 512 birds, so that density is exactly 1.
We set

√
2T = 0.15 to obtain a polarization P ≈ 0.99

similar to natural flocks. Eq. 1 was integrated using Eu-
ler’s method with a simulation step dtsim = 0.01 that is
much smaller than any other time scale in the system.
The interaction range nc varied from 7 to 25, and the
interaction strength was picked so that Jnc = 1.5. The
flocks were first brought to a steady state before taking
snapshots for analysis.

Spin-wave approximation.

The polarization P quantifies the level of order in the
system. When P ≈ 1, we can expand each ~si around
the common direction of flight ~n ≡ (1/NP )

∑
i ~si. This

expansion gives ~si = ~πi +
√

1− ~π2
i ~n ≈ ~πi + (1− ~π2

i /2)~n,

with ~n·~πi = 0. At leading order in ~πi � 1, Eq. 4 becomes

d~πi
dt

= −J
∑
j

Λij~πj + ~ξi⊥, (8)

with 〈~ξi⊥(t)~ξj⊥(t′)〉 = 4Tδijδ(t− t′). Similarly, the equi-
librium distribution (Eq. 7) can be expanded into

P (~π) =
1

Z
e−(J/T )

∑
ij Λij~πi·~πj . (9)

Since this distribution is Gaussian, Z can be calculated
analytically and reads: Z = (2πT/J)(N−1)

∏
λk>0 λ

−1
k ,

where λk are the eigenvalues of the matrix Λij .

Maximum likelihood Inference.

The equilibrium inference is performed by maximizing
the likelihood of the data given by Eq. 9 over the param-
eters nc and (J/T ) (see SI for detailed formulas).

The dynamical inference based on Euler’s rule is
implemented by maximizing the likelihood P ({~πi(t +
dt)}|{~πi(t)}) calculated from Euler’s formula (Eq. 3).
This likelihood reads

(4πTdt)
−N

e−
1

4Tdt

∑
i[~πi(t+dt)−~πi+Jdt

∑
j Λij~πj ]2 . (10)

The dynamical inference based on exact integration
uses Eq. 5, rewritten as ~π(t + dt) = e−JΛdt~π(t) + ~ε,
where ~ε is a zero-mean Gaussian vector of covariance
〈~ε~ε†〉 = 4T

∫ dt
0
du e−JΛue−JΛ†u = X−1. The conditional

likelihood P ({~πi(t+ dt)}|{~πi(t)}) now reads

det(X)

(2π)N
e−

1
2 [~π(t+dt)−e−JΛdt~π(t)]†X[~π(t+dt)−e−JΛdt~π(t)].

(11)
Depending on whether one uses Euler’s or exact integra-
tion rules, Eq. 10 or 11 is maximized over J , T and nc
(see SI for detailed formulas).

In all three inference procedures, the parameters are
learned for each time t. Then the median and the as-
sociated standard error are calculated for each flocking
event.
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Appendix A: Dynamical maximum entropy model

Call ~si(t) the d-dimensional flight orientation of bird
i as a function of time, of unit norm ‖~s‖ = 1. We look
for a probability disribution over whole flock trajectories,
(~s1(t), . . . , ~sN (t)), that has maximum entropy, but with
the constraints that the correlation functions:

〈~si(t) · ~sj(t)〉 (A1)

and 〈
d~si(t)

dt
· ~sj(t)

〉
(A2)

agree with the data. After time discretization, these
constraints are equivalent to imposing the values of
〈~si(t)·~sj(t)〉 and 〈~si(t+dt)·~sj(t)〉, with dt an infinitesimal
increment. Using the technique of Lagrange multipliers,
one can show that the distribution over trajectories then
takes the form [28, 29]:

P ({~si(t)}) =
1

Z
exp

∑
ij,t

J
(1)
ij;t~si(t) · ~sj(t)

+
∑
ij,t

J
(2)
ij;t~si(t+ dt) · ~sj(t)

∏
i,t

δ(‖~si(t)‖ − 1)

(A3)

where sums and products over t run over a discrete set of
times separated by dt, and where δ(·) denotes the Dirac-
delta function.

In [19], it was shown that, in the spin-wave approxima-
tion, the stochastic process described by this probability
distribution is equivalent to a random walk:

~si(t) =

∑
jMij;t~sj(t) + ~ηi(t)

‖
∑
jMij;t~sj(t) + ~ηi(t)‖

, (A4)
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with ηi(t) is a Gaussian variable of zero mean and covari-
ance 〈ηi(t) · ηj(t′)〉 = d(A−1

t )ijδt,t′ . The matrices Mij;t

and Aij;t can be expressed in terms of the matrices J
(1)
ij;t

and J
(2)
ij;t. In order to take the limit dt→ 0, the matrices

need reparametrizing as:

Mij;t = δij + dt Jij;t (A5)

(A−1
t )ij = dtXij;t. (A6)

Then the random walk reduces to the Langevin equation:

d~si
dt

= −~si ×

~si ×
∑

j

Jij(t)~sj + ~ξi

 (A7)

where Jij(t) denotes the influence of bird j on bird i’s

orientation, and ~ξ(t) is a Gaussian random d-dimensional

noise with 〈~ξi(t)~ξj(t′)〉 = dXij(t)δ(t − t′). To simplify,
we assume that Xij(t) = 2Tδij ; T quantifies the noise in
alignment, and can be mapped onto a temperature, as
we’ll see later. In the following, for ease of notation we
drop the dependency of Jij on t.

The triple cross-product is easier to understand if we
note that, for any vector ~a, this cross-product reduces to

− ~s× (~s× ~a) = ~a− (~s · ~a)~s ≡ ~a⊥, (A8)

which is just the projection of ~a onto the hyperplane or-
thogonal to ~s. Since ~si lives on the unit sphere, its vari-
ations must be perpendicular to itself. The triple cross-
product just implements this projection by subtracting
the parallel part. This projection ensures the conserva-
tion of the norm:

d‖~si‖2

dt
= 2~si ·

d~si
dt

= 0. (A9)

The norm of ~si stays constant and equal to one.
We rewrite Jij = Jnij , where J quantifies the aligning

strength, and nij how j is taken into account by i (nij
does not have to be an integer). J has the dimension
of an inverse time, nij is dimensionless. Since anything
inside the parentheses of Eq. A7 that is parallel to ~si is
discarded, we can rewrite it as:

d~si
dt

= J~si ×

~si ×
∑

j

Λij~sj

+ ~ξi⊥ (A10)

where we have denoted Λij =
∑
k nikδij−nij , and where

now 〈~ξi⊥(t)~ξj⊥(t′)〉 = 2(d − 1)Tδijδ(t − t′). The (d − 1)
factor replaces d because of the projection of the noise
term onto the hyperplane orthogonal to ~si. The diagonal
term in Λij was chosen so as to balance each row of the
matrix (

∑
j Λij = 0).

There is a link with the statistical description of flock
configurations inferred in [17]. If Λij is symmetric and

constant in time, the steady-state probability distribu-
tion of the set of (~s1, . . . , ~sN ) is given by the Boltzmann
distribution

P (~s1, . . . , ~sN ) ∝ exp

[
−H(s)

T

]
(A11)

with Hamiltonian:

H(s) = −J
2

∑
ij

nij~si~sj . (A12)

We can expand Eq. A10 within the spin-wave approx-
imation. In this limit, all vectors ~si almost point in a
common direction, denoted by ~n, so that we can write
~si = ~πi +

√
1− ~π2

i ~n ≈ ~πi + (1 − ~π2
i /2)~n, where ~πi is

the projection of ~si onto the hyperplane orthogonal to ~n:
~n · ~πi = 0. Expanding at first order yields:

d~πi
dt

= −J
∑
j

Λij~πj + ~ξi⊥. (A13)

In practice, this is the equation we will use for the infer-
ence.

Appendix B: Inference from data

1. Static inference

We start by recalling how to do the steady-state infer-
ence based on the steady-state distribution of Eqs. A11
and A12. We assume that the flock is very polarized, so
that the spin-wave approximation is valid. In this ap-
proximation, the steady-state distribution reads:

P (~π|~n) =
1

Z
exp

− J

2T

∑
ij

Λij~πi~πj

 δ

(∑
i

~πi

)
(B1)

where the common direction ~n is chosen so that
∑
i ~πi =

~0, and where for simplicity nij is assumed to be symmet-
ric. Integrating over ~π satisfying that condition gives the
normalization constant:

Z =

(
2πT

J

)(N−1)(d−1)/2 ∏
λk>0

λ
−(d−1)/2
k (B2)

where λk are the eigenvalues of the matrix Λij . Since∑
j Λij = 0 for all i, we know that one of these eigen-

values is 0. It is the one corresponding to variations
along the direction (1, . . . , 1). These variations are en-
tirely suppressed by the condition

∑
i ~πi = 0, and this

direction does not contribute to the Gaussian integral,
hence the condition λk > 0.

In summary, the minus-log-likelihood of the data reads:
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− lnP (~π|~n) =
J

2T
Tr(CΛ†)− (d− 1)(N − 1)

2
ln

(
J

T

1

2π

)
− d− 1

2

∑
λk>0

lnλk, (B3)

where C = ~π~π†.
We want to minimize this quantity according to the principle of maximum likelihood. Taking the derivative with

respect to J/T gives:

(J/T )∗ =
(d− 1)(N − 1)

Tr(CΛ†)
≈ d− 1

Cint
(B4)

with the definition Cint = (1/N)Tr(CΛ†).
Replacing into Eq. B3 gives:

− lnP (~π|~n, (J/T )∗) =
(d− 1)(N − 1)

2
[1 + lnCint + ln(2π/(d− 1))]− d− 1

2

∑
λk>0

lnλk. (B5)

Finally, this quantity must be minimized over the param-
eters defining Λij , or equivalently, ignoring the constants
and prefactors:

lnCint −
1

N − 1

∑
λk>0

lnλk. (B6)

2. Dynamical inference using Euler’s method

We now move to the dynamical inference from data
using Eq. A13. Let us start by assuming that we have
a series of data points separated by a small dt. We can

write Euler’s approximation to the stochastic differential
equation:

~πi(t+ dt) = ~πi(t)− Jdt
∑
j

Λij~πj + ~εi (B7)

where ~εi is Gaussian noise of variance 2(d− 1)Tdt.
Or, in matrix form:

~π(t+ dt) = ~π(t)− JdtΛ~π + ~ε. (B8)

Let us denote ~π′ = ~π(t+ dt). Then the probability of ~π′

given ~π is:

P (~π′|~π) = (4πTdt)
−N(d−1)/2

exp

[
− 1

4Tdt
(~π′ − ~π + JdtΛ~π)2

]
. (B9)

The associated minus-log-likelihood, L = − lnP (~π′|~π), is thus given by:

L = N
d− 1

2
ln(4πTdt) +

1

4Tdt
Tr
[
C′ + C− 2G + 2Jdt(G−C)Λ† + (Jdt)2ΛCΛ†

]
, (B10)

where C = ~π~π†, C′ = ~π′~π′† and G = ~π′~π†. Or, in short-hand:

L
N

=
d− 1

2
ln(4πTdt) +

1

4Tdt

[
C ′s + Cs − 2Gs + 2Jdt(Gint − Cint) + (Jdt)2Cint2

]
(B11)

≡ d− 1

2
ln(4πTdt) +

L̂
4Tdt

, (B12)

with C ′s = Tr(C′)/N , Cs = Tr(C)/N , Gs = Tr(G)/N ,
Gint = Tr(GΛ†)/N , Cint = Tr(CΛ†)/N , and Cint2 =
Tr(ΛGΛ†)/N

Following the principle of maximum likelihood, which

is equivalent to solving the inverse maximum entropy
model in the spin-wave approximation, we minimize this
quantity over the parameters J, T , and the parameters of
Λij . Let us start with the temperature T . ∂L/∂T = 0
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gives:

T ∗ =
L̂

2(d− 1)dt
. (B13)

We can now minimize L taken at that value of T = T ∗,

L(T ∗)

N
=
d− 1

2

[
1 + ln L̂+ ln(2π/(d− 1))

]
. (B14)

In other words, we want to minimize L̂ over the remain-
ing parameters J and nc. Writing the condition for J ,
∂L̂/∂J = 0 gives:

J∗ =
Cint −Gint

dtCint2
. (B15)

And replacing into L̂ gives:

L̂(J∗) = C ′s + Cs − 2Gs −
(Gint − Cint)

2

Cint2
. (B16)

The first three terms do not depend on the choice of Λ.
The last step is to maximize (Gint − Cint)

2/Cint2 over the
paramters defining Λij .

3. Dynamical inference using exact integration

In general nij and Λij may depend on time, because
they will evolve with the local neighbours of each birds.
But on short time scales such that neighbours do not
change significantly, we can view them as constant. If
on this time scale the main direction of the flock has not
changed much, we can consider Eq. A13 as valid with
constant Λij . This linear stochastic equation can actually
be solved analytically:

~π(t+ dt) = e−JΛdt~π(t) +

∫ dt

0

du e−JΛ(dt−u)~ξ⊥(t+ u).

(B17)
We define the integrated noise term as:

~ε =

∫ dt

0

du e−JΛ(dt−u)~ξ⊥(t+ u). (B18)

Since it is a sum of Gaussian variables, ~ε is also Gaussian,
of mean zero and covariance:

〈~ε~ε†〉 = 2(d− 1)T

∫ dt

0

du e−JΛue−JΛ†u (B19)

In the limit dt → 0, we recover Euler’s approximation,
Eq. B7.

With this new, exact integration formula, we can write
the minus-log-likelihood:

L = N
d− 1

2
ln(4πTdt)+

d− 1

2
ln det B+N

L̂
4Tdt

, (B20)

with:

L̂ =
1

N
Tr
[
C′A− 2Ge−JΛ†dtA + e−JΛdtCe−JΛ†dt

]
,

(B21)

A = B−1 and B =
1

dt

∫ dt

0

du e−JΛue−JΛ†u. (B22)

As before, we can solve for T easily:

T ∗ =
L̂

2(d− 1)dt
, (B23)

yielding:

L(T ∗)

N
=
d− 1

2

[
1 + ln L̂+

1

N
ln det B + ln(2π/(d− 1))

]
.

(B24)
Note that now A and therefore B depend on J as well as
Λij . The sum [ln L̂+ (1/N) ln det B] must be minimized
numerically with respect to both J and the parameters
defining Λ.

4. Two parametrizations for nij

We now need to specify the matrix Λij . Here we only
consider topological distance for the interaction matrix.
Let us denote kij the rank of j among the neighbors of
i, from the closest in distance to the farthest.

In the first parametrization, already used in previous
work, we say that a bird interacts with its nstep

c closest
neighbours. This corresponds to:

step: nij = Θ(nstep
c − kij), (B25)

where Θ(x) = 1 if x ≥ 0 and 0 otherwise. Numerically,
J∗ is calculated for each integer value of nstep

c using a
simple iterative 1D optimization algorithm.

In the second parametrization, we assume an exponen-
tially decaying interaction as a function of rank:

exp: nij = exp(−kij/nexp
c ). (B26)

Numerically, we implement a 1D iterative optimization
algorithm for nstep

c , where J∗(nexp
c ) is calculated for each

nstep
c as before, in a nested loop.
Can we compare the two parametrizations? In the

first case, the average rank of an interacting neighbour is
(nstep
c + 1)/2 ≈ nstep

c /2. In the second case, this average
rank is ≈ nexp

c . It makes sense to hypothesize this av-
erage rank should be invariant, regardless of the choice
of parametrization. Then, if we infer models with data
using the two parametrizations, we expect:

nexp
c ≈ nstep

c

2
. (B27)

The second important effective parameter is the total
interaction strength J

∑
j nij , equal to Jstepn

step
c is the
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first case, and to ≈ Jexpn
exp
c in the second one. Requiring

that these quantities are equal in the two parametriza-
tions yields:

Jexp ≈ 2Jstep. (B28)

Figure S3 shows that the effective nstep
c and nexp

c

learned from data follow these relations accurately.

Appendix C: Orientation relaxation time

In our work we compare the relaxation time of the
orientational degrees of freedom, τrelax, to the reshuffling
time of the network, τnetwork, finding the first one to be
much smaller than the second one. This may seem an
odd result, as in a fixed-lattice theory with spontaneously
broken continuous symmetry both the correlation length
and the relaxation time diverge with the system size L.
Hence, in what sense can τrelax be small?

To fix ideas we work on a regular lattice in the contin-
uum limit; the following arguments, though, are valid in
general. We consider a fixed lattice, as we want to as-

sess the contribution to τrelax from the relaxation of the
orientations only. In this limit Eq. A13 now reads:

d~π

dt
= Jnca

2∆~π + ~ξ⊥. (C1)

where ∆ is the Laplacian operator and a the lattice spac-
ing. In Fourier space, this equation becomes:

iω~π(k, ω) = −Jnc(ka)2~π(k, ω) + ~ξ⊥(k, ω) (C2)

and its solution is:

~π(k, ω) = G(k, ω)~ξ⊥(k, ω), (C3)

were the dynamical propagator (or dynamic response) of
the Gaussian spin-wave theory in Fourier space is:

G(k, ω) =
1

iω + Ja2nck2
, (C4)

The local time correlation function Crelax(t) = 〈~π(t0) ·
~π(t0 + t)〉 is thus given by

Crelax(t) = 2(d− 1)T

∫ 1/a

1/L

ddk

∫
dω

e−iωt

(iω + Ja2nck2)(iω − Ja2nck2)
= 2(d− 1)T

∫ 1/a

1/L

ddk
e−Ja

2nck
2t

Ja2nck2
. (C5)

where L is the size of the system. The absence of a mass
term (zero mode) in a theory with spontaneously broken
continuous symmetry is due to Goldstone’s theorem and
it affects the integration for small k (long wavelengths).
In two dimensions the effect of the zero mode is so strong
that the integral in (C5) diverges in the L → ∞ limit,
meaning that there cannot be long range order in d = 2
(Mermin-Wagner theorem). In d = 3, on the other hand,
the integral is finite for any time t in the L → ∞ limit;
however, the resulting correlation function is a power law,
so that the relaxation time is infinite.

The largest contribution to the correlation in the in-
tegral (C5) comes from the small k modes, those near
the lower extreme of integration, 1/L: for large systems
the local spin relaxes very slowly because even for very
long times it is crossed by long wavelength fluctuations,
λ ∼ L. The crucial point is that these long wavelength
fluctuations do not contribute to the disordering of the
local interaction network: since the wavelength is much

larger than the interaction range, rc = an
1/d
c , all spins in

the local neighborhood fluctuate in sync, with no change
in the mutual positions. On the other hand, short wave-
length fluctuations, λ < rc, do contribute to the dis-
ordering of the local interaction network, so that their
relaxation time is the one that must be compared to the
network reshuffling time. Therefore, the relevant part of

the correlation receives contribution only by the modes
k > 1/rc; we therefore define the effective correlation
function,

C∗relax(t; rc) ≡ 2(d− 1)T

∫ 1/a

1/rc

ddk
e−Ja

2nck
2t

Ja2nck2
. (C6)

Due to the elimination of the k ∼ 1/L modes this corre-
lation function has now an exponential behavior for large
t, with finite relaxation time equal to (1/Jnc) · (rc/a)2.
The ratio between interaction range and lattice spacing,
(rc/a), is in general of order 1 for short range interaction
(as it is the case in flocks) and therefore the time scale
of relaxation of the orientational degrees of freedom is
τrelax = 1/Jnc, which is what we study in the main text.

The argument we just provided finds a strong consis-
tency check in the following fact: even the network corre-
lation function, Cnetwork(t), does depend on a local scale,
exactly as C∗relax depends on rc. When we ask what is the
degree of reshuffling of the interaction network within a
time t, we are effectively asking how much the network
changes over a spatial scale nc. We could, for example,
ask what is the time needed to disrupt the entire net-
work, i.e. the reshuffling over a scale N , and this would
give a much larger time, scaling with N (for a computa-
tion of this time and its connetcion to mutual diffusion
in space see [26]). In a similar way, when we integrate
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Event ID N T (s) P v0 (m/s) r0 (m)

20110208 ACQ3 179 5.5 0.984 8.7 0.85

20110211 ACQ1 595 4.5 0.971 8.5 0.95

20110217 ACQ2 407 2.1 0.986 11.0 0.70

20111124 ACQ1 125 1.8 0.993 11.1 0.66

20111125 ACQ1 50 5.6 0.987 12.4 1.21

20111125 ACQ2 530 4.4 0.957 9.2 0.85

20111201 ACQ3 1 137 2.9 0.987 10.1 0.74

20111201 ACQ3 4 489 2.3 0.9763 10.5 0.74

20111214 ACQ4 1 157 2.9 0.993 11.4 0.74

20111214 ACQ4 2 162 4.1 0.973 11.6 1.08

20111215 ACQ1 401 5.7 0.987 11.0 0.82

20111220 ACQ2 200 1.7 0.984 16.2 0.62

20111222 ACQ1 59 3.5 0.984 11.7 1.24

20120209 ACQ1 412 3.5 0.997 29.2 0.80

TABLE S1: Summary of the data used in the analysis. N
is the number of birds, T the duration of the film, P =
(1/N)‖

∑
i ~si‖ the polarization of the flock, v0 the average

bird velocity, and r0 the average interbird distance. The event
ID contains its date and its acquisition index.

in (C5) down to 1/L we get a time scale which scales
with L. Hence, when comparing orientation relaxation
and network reshuffling we need to fix a scale for both
phenomena. Since we are interested here in inferring the
interaction rules, the right scale is the scale of interac-
tion, namely rc or nc. On the other hand, as we discuss
in the conclusions of the main text, were we interested
in studying (or predicting) the large size behaviour in
the long time limit, we should assess the divergence of
both time scales with the size, which is the realm of the
hydrodynamic theory.
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FIG. S1: Comparison between the equilibrium inference method (abcissa) and the dynamical inference method using Euler’s
rule (ordinate), for (A) the interaction range nc and (B) the interaction parameter J/T . The agreement is relatively poor,
especially for the prediction of J/T .
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FIG. S2: Normalized autocorrelation function of the network
for all 14 flocking events. The decay is approximately expo-
nential, allowing for the definition of a characteristic decay
time τrelax for each event.
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FIG. S3: Comparison of the interaction range nc inferred assuming a step-function interaction function (nstep
c , abscissa) or an

exponentially decaying interaction function (nexp
c , ordinate), using (A) the equilibrium inference method and (B) the dynamical

inference method. We expect a correspondance between nstep
c and nexp

c : nexp
c = nstep

c /2. Here this correspondance is verified
for both inference methods.
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