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In order to transmit biochemical signals, biological regulatory systems dissipate energy with con-
comitant entropy production. Additionally, signaling often takes place in challenging environmental
conditions. In a simple model regulatory circuit given by an input and a delayed output, we explore
the trade-offs between information transmission and the system’s energetic efficiency. We determine
the maximally informative network, given a fixed amount of entropy production and delayed re-
sponse, exploring both the case with and without feedback. We find that feedback allows the circuit
to overcome energy constraints and transmit close to the maximum available information even in
the dissipationless limit. Negative feedback loops, characteristic of shock responses, are optimal at
high dissipation. Close to equilibrium positive feedback loops, known for their stability, become
more informative. Asking how the signaling network should be constructed to best function in the
worst possible environment, rather than an optimally tuned one or in steady state, we discover that
at large dissipation the same universal motif is optimal in all of these conditions.

PACS numbers:

I. INTRODUCTION

Cells respond to the current state of their environ-
ment by processing external signals through molecular
networks and cascades. An external chemical stimulus
is measured by receptors, which activate a series of bio-
chemical reactions and lead the cell to produce an appro-
priate response. This response can be activating a gene
or pathway, producing proteins that process the signal
as in the case of sugar metabolism, result in motion such
as in the case of chemotaxis, or initiating a cellular re-
sponse such as apoptosis. As we learn more about the
structure of biochemical networks, we need to understand
the functional role of their elements and connections. Yet
regulation comes at a cost, which imposes constraints on
the form of these networks. Here we consider the limi-
tations coming from thermodynamic constraints, caused
by the cell’s energy consumption, on the architecture of
regulatory elements that best convey information about
input signals to their outputs. We compare these most
informative network structures to circuits that transmit
the largest amount of information in unfavorable envi-
ronmental conditions.

Despite the large complexity of biological regulatory
networks, not all possible molecular regulatory circuits
can be found in living organisms [1]. One can ask whether
the network architectures and parameter regimes are only
shaped by the evolutionary history of these organisms,
or whether there are also physical limits that constrain
them. In the last years, a number of groups have ex-
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plored different physical principles that could influence
the parameter regimes and modes of regulation in living
organisms (e.g. [2–21]). One approach has been to calcu-
late the limits that the intrinsic randomness in gene reg-
ulation imposes on information transmission between the
input signal and its output responses, in networks of vary-
ing complexity [11, 22–28]. These studies showed which
network architectures are optimal for information trans-
mission and found that distinguishing different output
states in general increases the transmitted information.
They also pointed to the important trade offs between
the information that the output has about the input and
molecular costs.

The validity of the assumption that biochemical regu-
latory networks are maximally transmitting information
between the concentrations of their input and output pro-
teins was tested by Tkacik et al. [29] in the case of the
Bicoid morphogen gradient. Bicoid proteins regulate the
expression of the hunchback gene in early fruit fly de-
velopment. Using detailed measurements of the concen-
tration and noise profiles of the Hunchback protein as a
function of Bicoid concentration [30, 31], the prediction
for the probability distribution of the output concentra-
tion obtained by maximizing the flow of information was
shown to match the experimental Hunchback distribu-
tion extremely well. In another combined experimen-
tal and theoretical study, Cheong et al. [32] measured
the amount of information transmitted to NF-kappa B
controlled genes in the case of TNF stimulation. They
showed how bottlenecks in this system reduce the amount
of transmitted information compared to regulation via
multiple independent pathways. They argued that nega-
tive feedback, or information sharing between cells, can
help transmit more information. The NF-kappa B and
ERK pathways were recently used to demonstrate that
dynamical measurements of the response can transmit
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more information than static or one time readouts [33].
Lastly, an information-theoretic approach was used in an
experimental and numerical study to show the interde-
pendence of stochastic processes controlling enzymatic
calcium signaling under different cellular conditions [34].

Many of the current approaches to information trans-
mission have looked at instantaneous information trans-
mission [11, 23, 24], or the rate of information trans-
mission [13, 14, 35, 36]. However, it has been argued
that information transmission may be enhanced by dy-
namic biochemical readouts at multiple time points [33]
or when the regulatory response is at a delay relative
to input signaling [37]. Additionally, many biochemical
networks function out of steady state, responding to in-
puts that are changing in time. Examples include the
chemotactic response of bacteria or amoebas to nutrients
or conversely to antibiotics.

Inspired by these observations, we previously studied
the optimal circuits for transmitting information between
an input and output read out with a fixed delay, in and
out of steady state [38]. Delayed readouts are natural to
most biochemical circuits, since sensing a signal requires
production of the response, which takes time. For exam-
ple, sensing an increased sugar concentration means the
cell has to produce the enzyme to degrade it. We asked
whether different readout delays correspond to different
optimal circuits. We found that topologies of maximally
informative networks correspond to commonly occurring
negative feedback circuits irrespective of the temporal
delay specified. Most interestingly, circuits functioning
out of steady state may exploit non-equilibrium absorb-
ing states to transmit information optimally and feed-
back can additionally increase information transmission.
We found that there are many degenerate topologies that
transmit similar information equally optimally - a degen-
eracy that will most likely be lifted by considering more
detailed molecular models.

The optimal solutions we found previously function
strongly out of equilibrium, so they must consume en-
ergy. Since it has been experimentally shown [39] that
sensory systems may have evolved to reduce their energy
expenditure, we were interested in seeing how energetic
constraints impact the form of the optimally informa-
tive solutions. This knowledge will prove useful when
constructing artificial biochemical circuits [40], or engi-
neering living organisms for energy production [41]. The
energy dissipated (or consumed) by a given network can
be estimated by looking at the thermodynamics of its
composite biochemical reactions. A completely reversible
reaction does not consume energy. The reaction is in per-
fect equilibrium and the total free energy of the system
is completely balanced. Irreversible reactions, such as
certain steps of biochemical cascades, come at a cost to
the cell, which has to prevent the back reaction from oc-
curring. This cost can be estimated considering the flux
balance of the network. The heat dissipated by the cir-
cuit is proportional to its rate of entropy production [42].
Tu et al. [43] looked at entropy production in biochemi-

cal regulatory networks and experimentally showed that
the flagellar motor switch of Escherichia coli operates
out of equilibrium, dissipating energy. A nonequlibrium
allosteric model consistent with experimental results was
proposed to explain how the switch operates with high
sensitivity at a small energetic cost.

Energetic cost has also been discussed in relation to
cellular precision and the predictive power of the cell.
The chemosensory system of E. coli has been shown to
dissipate energy in order to improve its adaptive speed
and accuracy [44]. Reliable readout of input concentra-
tions has also been bound by the entropy production rate
[45–49]. Others have reversed the perspective and shown
that the minimum energy required for a biological sensor
to detect a change in an environmental signal is propor-
tional to the amount of information processed during the
process [50]. In the case of the E. coli chemosensory
system, it was argued that 5% of the energy consumed
in sensing is determined by information-thermodynamic
bounds, and is thus unavoidable [50]. Becker et al. [51]
showed that short-term prediction in a sensory module is
possible in equilibrium, but only up to a finite time inter-
val. For longer times accurate prediction requires large
dissipation. Lastly, the inability of systems to use all
knowledge of past environmental fluctuations to predict
the future state has been directly linked to dissipation
[52].

We want to see how the structure of optimal net-
works for information transmission changes if we impose
a penalty on the entropy production of the system. In
order to investigate the non-equilibrium nature of bio-
chemical circuits that are optimal for delayed information
transmission, we choose to study a simple binary model
of a regulatory circuit that allows us to focus on the reg-
ulatory logic at small computational costs. Within this
model we consider two interacting elements of biochem-
ical regulatory networks (e.g. proteins and genes, ele-
ments of two component signaling systems, sugars and
enzymes) that take on binary states (on or off) and
evolve in continuous time. This simplification allows us
to develop an efficient formalism for calculating informa-
tion transmission at different readout delays and consider
the connection between dissipation and different readout
times. In the limit of infinite dissipation rates, we re-
cover the previously obtained results [38]. For finite, non
zero dissipation rates, back reactions decrease the infor-
mation transmission until it goes to zero for systems close
to equilibrium. However, when feedback is allowed, net-
works are able to transmit almost 1 bit of information at
no cost.

Optimizing biochemical networks for information
transmission assumes that the circuit and its environ-
ment have coevolved to best match their statistical prop-
erties. For many networks this is a valid assumption.
However, other networks function in a wide variety of
variable conditions. To study what kind of network is
best adapted to function in adverse environments we
combine a game-theoretic maximin approach with the
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framework of information theory. We ask what sys-
tem will maximally transmit information even when pre-
sented by the environment with the worst possible initial
state - the one that aims at minimizing information at
all time delays. Interestingly, we find that, even if the
amount of transmitted information is inevitably smaller,
the structure of the optimal circuits is the same as when
the environment has no detrimental effect and the system
is able to optimize its initial condition.

Game-theoretic approaches have been used to robustly
design biochemical networks and to devise biomimicking
algorithms. Given environmental disturbances and un-
certainty about the initial state, minimax strategies were
used to match therapeutic treatment to a prescribed im-
mune response [53], and to make a stochastic synthetic
gene network achieve a desired steady state [54]. The
adaptive response in bacterial chemotaxis has been in-
terpreted as a maximin strategy that ensures the highest
minimum chemoattractant uptake for any profile of con-
centration [20].

In the first section of this paper we discuss the effect
of energetic constraints on information transmission at
a time delay. We consider the case in which the system
is at steady state and the signal up-regulates (or down-
regulates) the response with and without feedback. In
the second section we investigate how the system coun-
teracts the worst possible initial condition presented by
the environment in order to transmit as much informa-
tion as possible. We finish with a discussion of our results
and their interpretation in terms of biochemical regula-
tory networks.

II. INFORMATION TRANSMISSION WITH
ENERGY DISSIPATION

To focus on the tradeoffs between the ability of the
network to transmit information and the energetic cost
of the biochemical reactions that make up this network,
we study the simplest model of regulation that allows
us to focus on the logic of the reactions. Our simplified
network (see Fig. 1) consists of two binary elements that
describe either a transcription factor protein regulating a
gene, or a signaling molecule activating/downregulating
an enzyme or receptor. The first element of the network
describes the input z and can be associated with the
state of a receptor, signaling molecule or transcription
factor that responds to the external conditions. For ex-
ample, it can describe the presence or absence of a sugar
source in metabolism or phosphorylation of the histidine
kinase in a two component signaling system. The output
x describes the final outcome of the network, such as the
gene that produces the response protein to the external
signal. In the examples given above, it corresponds to
the enzyme that digests the sugar or expression of the
target gene by the response regulator. Both of these ele-
ments can be found in the active (x, z = +1) or inactive
(x, z = −1) states. If the described element is a continu-
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FIG. 1: (a) Time evolution of the random variable zt, which
models a biochemical input transitioning from/to a down-
regulated state (−1) to/from an up-regulated state (+1), with
rates {um, up}/{dm, dp}, respectively. The random variable
xt models activation (+1) or deactivation(−1) of a biochem-
ical output: it is regulated by z, with which it aligns (‘acti-
vation’, or up-regulation) with rates rm or rp or anti-aligns
(‘repression’, or down-regulation) with rates sm or sp. The
subscripts m and p in the rates account for the state of the
other variable, that is −1 and +1, respectively. (b) The four
network states, with corresponding transition rates given in
(a).

ous variable (e.g. protein concentration), the binary ap-
proximation is equivalent to taking very steep regulatory
functions, such that the concentration is well described
by two states: below and above the threshold.

This two component system can be found in one of
four states: (x, z) ∈ {(−,−), (−,+), (+,−), (+,+)}, cor-
responding to both elements inactive, the input active —
output inactive and vice versa, and both elements active.
The input z up/down regulates x with rates rm(rp) and
sm(sp), defined in Fig. 1, that depend on the state of the
input (m = −, p = +). The state of the system is defined
by the conditional probability P (xt, zt, t|x0, z0, 0) to find
the system in state (xt, zt) at time t, conditional on the
state (x0, z0) at time t = 0. This conditional probability
distribution can be arranged in a 4 × 4 matrix, and its
evolution is described by the master equation

∂tP = −LP (1)

where the 4×4 transition matrix L is defined in terms of
the rates depicted in the diagram in Fig. 1 (see Appendix
A). The central quantity we shall be interested in is the
joint probability distribution of the state xt of the output
at time t and the state z0 of the input at time 0. We shall
use the shorthand

P (xt, z0) =
∑

zt,x0=±1
P (xt, zt, t|x0, z0, 0)P0(x0, z0) (2)

where P0(x0, z0) is the probability distribution of the sys-
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tem at the initial time.
We are interested in finding the network topologies

that are optimal for information transmission over a fixed
time scale τ . Specifically we want to maximize the mu-
tual information between an input signal at an initial
time z0, and the output of the network which is read out
at a later time, xt:

I(τ) = I[xt=τ/λ, z0] (3)

over the rates of the biochemical reactions L of the reg-
ulatory network, where:

I[xt, z0] =
∑
xt,z0

P (xt, z0) log
P (xt, z0)

P (xt)P0(z0)
, (4)

and P0(z0) =
∑
x0
P0(x0, z0), P (xt) =

∑
z0
P (xt, z0).

We will measure the time t = τ/λ between the signal
and the delayed read-out in units of the natural timescale
of the problem – the relaxation time λ−1, calculated as
the inverse of the minimal non-zero eigenvalue of L. Pre-
viously we found the networks that are best suited for
transmitting information at a delay and discovered that
they correspond to systems that function out of equilib-
rium.

For this reason we are interested in posing the same
question, but taking into account energy constraints. We
thus constrain the energy Q̇ dissipated per unit time into
an external medium at temperature T that is in contact
with our system. Q̇ is related to the thermodynamic en-
tropy production rate σ, Q̇ = kBTσ, where kB is the
Boltzmann constant [42, 55]. In steady state the ther-
modynamic entropy production rate takes the form

σ =
∑
i,j

P∞i wij log
wij
wji

, (5)

where, in terms of the shorthand i, j = (xt, zt) to denote
the states, wij is the transition rate from state i to j and
P∞i is the steady state probability distribution for state
i.

In order to intuitively understand the expression in
Eq. 5 we link it to the non equilibrium properties of the
system. In steady state the master equation satisfies

P∞i wij − P∞j wji = ±J (6)

with the + (−) sign that holds for all pairs of states where
i follows j in the clockwise direction in Fig. 1, and J is
the steady state current. The detailed balance condition

P∞i wij − P∞j wji = 0 ∀i, j, (7)

is a special case of Eq. 6 where J = 0. In terms of
the current defined in Eq. 6, the steady state entropy
production rate in Eq. 5 becomes

σ = J log
w12 w24 w43 w31

w21 w13 w34 w42
(8)

(see Appendix B for derivation). In order to maintain a
non-equilibrium steady state (J 6= 0) the system has to
dissipate energy at rate kBTσ.

We are interested in solving the problem of finding the
best network design that can perform a maximally infor-
mative delayed readout given a limited and fixed amount
of kBTσ units of energy per unit time. This question can
be addressed quantitatively by introducing a Lagrange
multiplier l that constrains the energy cost of the trans-
mitted information and maximizing the functional

I(τ)− l σ

λ log 2
= I(τ)− lσ̂ (9)

over the circuit’s reaction rates, L. We rescale the rate
of energy dissipation, σ, by the constant λ log 2 and call
it σ̂, in order to express both information and entropy
production in bits and to measure time in units of the
characteristic timescale 1/λ.

For l = 0 the constraint on the dissipated energy does
not enter the optimization and one recovers the results
found without imposing energetic constraints (σ̂ = σ =
∞) [38]. In this limit the system is driven out of equilib-
rium and at least one of the rates vanishes. At the other
extreme, when l =∞, any deviation from equilibrium is
severely punished and we expect to find the system in
equilibrium.

Some intuition about the optimal solutions can be
gained before embarking on detailed calculations. In
general we can write the probability distribution as
P (xt, z0) = (a + bxt + cz0 + µxtz0)/4. The symmetry
between the on and off states, P (+,+) = P (−,−) and
P (+,−) = P (−,+), implies b = c = 0 and normalization∑

i,j P (i, j) = 1 gives a = 1. Therefore P (xt, z0) has to
be of the form

P (xt, z0) =
1 + µxtz0

4
. (10)

Eq. 10 means P (xt) = P (z0) = 1/2, which independently
maximizes the entropy of the input, H[z0], and output
distribution, H[xt], where H[y] = −P (y) logP (y). With
this form for P (xt, z0) the mutual information in Eq. 4
becomes:

I =
1 + µ

2
log(1 + µ) +

1− µ
2

log(1− µ), (11)

where in general |µ| ≤ 1. The symmetry of the system
results in a degeneracy of solutions, which we break by
setting one of the input flipping rates to a fixed value
r = 1. With this choice, the allowed range of µ is [0, 1],
and information is a monotonically increasing function
of the “effective magnetization” µ and is maximized for
µ = 1 giving I = 1 bit. We compute µ explicitly for
specific models in the following sections.

A. Simplest model

First we consider the simplest case depicted in Fig. 2,
where we set all the rates for flipping of the input z to be
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equal up = um = dp = dm ≡ u, but allow the rates for
the output x to be different if the output is aligning with
the input rp = rm ≡ r or it is anti-aligning sp = sm ≡ s.
This models allows z to activate (or repress) x with rate
r(s), respectively, but does not allow for feedback since
the flipping rate of the input does not depend on the
state of the output. We diagonalize the rate matrix L
for this model analytically and find the eigenvalues to be
{0, 2u, 1 + s, 1 + s+ 2u} (see Appendix C 1 for details).

(x,z)

 u
 ss

(- , -)       (- ,+) 

(+, -)       (+,+) 

r r

1 2

43

  u
  u

 u

(output,input)

FIG. 2: The four network states, with corresponding transi-
tion rates, in the simplest case where input z can either up
or down-regulate the output x but there is no feedback. The
input z switches with the same rate regardless of the state of
the output x.

We can express the mutual information explicitly in
the form given by Eq.11, with

µ = (1− s) (1 + s+ 2u)e−
2u
λ τ − 4ue−

(1+s)
λ τ

(1 + s)2 − 4u2
, (12)

where time is rescaled by the smallest nonzero eigenvalue
λ, as specified in Eq. 3.

The rescaled entropy production rate (Eq. 5) becomes

σ̂ =
(1− s)u log 1

s

λ(1 + s+ 2u)
. (13)

Given that the smallest nonzero eigenvalue can be either
λ = 2u or λ = 1 + s, we can define the quantity γ =
(1 + s)/(2u) and distinguish two regimes: γ ≥ 1 in which
the output changes on faster timescales than the input
and γ ≤ 1, where the input changes more quickly than
the output. In general, for each set of rates, the two
eigenvalues must be compared and the value of λ (and
thus γ) determined.

1. Numerical results:

To get an idea about the behavior of the system we
will first solve the optimization problem numerically and
then interpret the results in terms of the limiting cases.
For each readout delay τ and entropy production rate σ̂,
we look for rates that maximize I(τ) (given by Eqs. 11
and 12) while constraining the rates at fixed σ̂ (given by
Eq. 13).

The maximal mutual information values (capacities)
of the optimal networks display an intuitive behavior as

functions of the dissipated energy and time delay of the
readout. The mutual information between the input and
output of the optimal network decreases with the time
delay of the input readout for all values of dissipation
(see Fig. 3 a), as the network decorrelates. Allowing the
system to dissipate more energy increases its capacity to
transmit information. Above a certain value of dissipated
energy the capacity plateaus and reaches the same value
we observed if we did not constrain dissipation [38]. The
value of the this plateau decreases with an increase of
the time delay τ of the readout (see section II A 5 for
a functional dependence). The transmitted information
decreases to zero linearly with dissipation for all readout

delays, I∗ ∼ c(τ)2σ̂
2log 2 , where c(τ) is a τ dependent constant

derived in section II A 4. Naturally, the capacities for
systems that can dissipate a lot of energy are much larger
than those with large energy constraints. However at
small time delays the rate of decay of the capacity with
time delay is larger for circuits that function far out of
equilibrium than those that are close to equilibrium (see
section II A 3).

In Figures 3 C and 3 D we plot the values of the rate
constants of the optimal networks that result in the ca-
pacities plotted in Fig. 3 a. We see that similarly to the
capacity values the optimal rates are continuous. To gain
a better idea about the network topologies that give op-
timal networks we have used the rates to broadly classify
the circuit topologies in the phase diagram in Fig. 3 b
with the topologies defined in Fig. 3 e. In the limit of
large dissipation we recover the results we obtained pre-
viously [38]: in the optimal circuit at large readout delays
the flipping of the output is governed by an irreversible
fast reaction with rate r fixed to 1 (the back reaction is
forbidden s∗ = 0). The output follows the state of the
input and the change in the input is described by a re-
versible slower reaction with rate u∗ < r∗ (network A in
Fig. 3 e). For shorter delays the flipping rate of the input
decreases, causing the capacity to increase. As τ → 0,
u → 0 and we obtain two separate subnetworks with a
fixed input in which the output changes quickly to follow
the input (model C in Fig. 3 e).

At large readout delays, the equilibrium solution at
σ̂ → 0 is very similar to the non-equilibrium one, but now
detailed balance must always be obeyed. The detailed
balanced condition imposes that the output change is
completely reversible and now s∗ 6= 0. At σ̂ = 0 the
forward and back reactions are completely balanced with
s∗ = r (network B in Fig. 3 e). Additionally, the input
changes on the same very fast timescale u∗ ≈ r = 1,
faster than for large σ̂. Not surprisingly this essentially
randomly flipping equilibrium circuit at large delays is
not able to reliably transmit information, and I ≈ 0.
For short time delays, similarly as in the large σ̂ limit,
u∗ → 0 and we obtain two subcircuits with the output
flipping back and forth at the same rate s∗ = r, at σ̂ = 0
(network D in Fig. 3 e). Allowing for small amounts of
dissipation breaks detailed balance and decreases the rate
of the output’s back reaction (s∗ < 1), so that the output
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FIG. 3: (a) Contour plot of optimal mutual information I∗ as function of the readout delay τ and entropy production rate σ̂.
(b) Phase diagram in the (σ̂, τ) plane of the optimal network topologies A, B, C, D (sketched in panel (e)). (c) Contour plot
of optimal rate u∗ as function of the readout delay τ and entropy production rate σ̂. (d) Contour plot of optimal parameter s∗

as function of the readout delay τ and entropy production rate σ̂. (e) Sketch of optimal network topologies A, B, C, D.

is more likely to be in the same state as the input.

In summary, network C that has a fixed input, which is
followed by the output on fast timescales, is the most in-
formative solution. The capacity of this system is reached
at finite values of σ̂, and does not increase further as
σ̂ →∞. This topology is optimal for a wide range of σ̂,
with the back reaction rate s continuously increasing as
the constraints on dissipation impose solutions closer to
equilibrium, until network D with the randomly flipping
outputs is reached. At small time delays the optimal so-
lution always keeps the input fixed and adjusts the state
of the output to the input (2u ≤ r). But for large τ
the input will change (2u ∼ r) and the amount of en-
ergy that can be dissipated controls whether the output
simply follows the input (network A in Fig. 3 e), or is
forced to switch independently (network B in Fig. 3 e).
Information can therefore be lost both in circuits where

the output does not have the energy to follow the input
(network D) and in circuits where the input decorrelates
with time (network A), or both of these scenarios apply
(network B).

Lastly, one can interpret the optimal circuits in terms
of the relaxation rate of the system (smallest nonzero
eigenvalue). The ratio of the two potentially smallest
eigenvalues γ is given by (1 + s)/(2u) – the ratio of the
output and the input switching rates. Fig. 4 shows the
optimal value of γ∗, as a function of the delay τ , in the
limit of small entropy production (σ̂ = 0.0007 bits) and of
large entropy production (σ̂ = 7 bits). As noted before,
for small time delays optimal circuits are those where
the input changes more slowly than the output (γ∗ > 1),
for all values of dissipation. However for large τ , we
define a certain value τc, at which the input and the
output timescales match in optimal circuits, with γ∗ = 1.
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The value of τc corresponds to the optimal rate of input
flipping u∗ reaching a constant value and depends on the
rate of dissipation. For σ̂ � 1, τc = (1 +

√
5)/4 and u∗ ∼

1 (see section C 3 for a derivation). For large dissipation

rates σ̂ � 1, this delay increases, τc = (1 +
√

3)/2, and
the rate of change of the input decreases to u∗ = 0.5 (see
section II A 5). At large delays τ , matching the input
and output switching rates allows the system to transmit
more information. This matching of timescales is possible
at τ > τc > 0 even if the system cannot dissipate energy
(small σ̂). Finally, the optimal solution always is in the
γ∗ ≥ 1 limit, where the input changes more slowly than
the output.

Having understood the general behavior of the capac-
ity of this model, we can exploit its simplicity to obtain
precise analytical scaling results in the limits of small and
large delays and dissipation.

2. Limit τ = 0

The simplest case is that of instantaneous readout, τ =
0, where the effective magnetization µ is

µ =

(
1− s
1 + s

)
γ

γ + 1
. (14)

We can formally rewrite Eq. 13 as:

s = exp [−2β(σ̂, γ)σ̂] , (15)

where β(σ̂, γ) is in general a nonlinear function σ̂ and γ.
This form agrees with the numerical results for s∗ that
shows a strong decay with σ̂ (Fig. 3).

As we know from our numerical exploration, in the
τ = 0 limit the capacity strongly depends on the value
of σ̂. First we can explore the limit of large dissipation,
where we know from our previous work (and from the
results presented in Fig. 3) that s∗ is small. In this limit
Eq. 15 simplifies (Eq. 13 is explicitly solved for s) and
β is a function of only u and λ, not of σ̂. To find γ∗

that maximizes µ, we exploit the parametrization of s in
Eq. 15 to write

µ = tanh (β(u, λ)σ̂)
γ

1 + γ
. (16)

At fixed but large σ̂ the largest value of µ is always
achieved for γ∗ =∞. This means the output changes on
faster timescales than the input and the smallest eigen-
value is λ = 2u. More precisely, as in the dissipation-less
case [38], the optimal rate is u∗ = 0 at τ = 0.

To find s∗, we substitute the parametrization in Eq. 15
for s into Eq. 13 with λ = 2u and obtain at fixed σ̂:

1 +
1

γ
= β tanh(βσ̂). (17)

Since γ∗ = ∞, β∗ must satisfy β∗ tanh(β∗σ̂) = 1. For
large dissipation rates, β∗ ∼ 1, s∗ ∼ e−2σ̂ is exponentially
small as we had assumed and µ∗ ∼ tanh(σ̂) ∼ 1. This
results in the optimal information I∗ ∼ 1 bit.

For small dissipation rates, the general expression in
Eq. 15 holds, where β is a nonlinear function of σ̂, β(σ̂).
Eqs. 16 and 17 and the arguments presented above still
hold, resulting in a maximum µ(τ = 0) when γ∗ =∞ and
u∗ = 0. For small dissipation rates and taking γ∗ = ∞,
Eq. 17 becomes β∗(σ̂) ∼ 1/

√
σ̂, and Eq. 16 results in the

effective magnetization µ ∼ β∗(σ̂)σ̂ ∼
√
σ̂. Finally, the

optimal mutual information goes to 0 linearly with the
rescaled dissipation I∗ ≈ (µ∗)2/2 ' σ̂/2 bits.

3. Limit τ � 1

The results from the τ = 0 limit serve as a basis for con-
sidering the scaling of the mutual information for small,
but finite τ � 1. Since γ∗ diverges at τ = 0, we as-
sume that for τ → 0 the smallest eigenvalue is still 2u
and γ∗ > 1. We will also use the generalized nonlinear
parametrization of s in Eq. 15 with β(σ̂), also in the small
dissipation regime, as we did for τ = 0.

In the small dissipation limit σ̂ � 1, Eq. 17 becomes:

β ∼ 1√
σ̂

√
γ + 1

γ
. (18)

Using Eq. 15 the effective magnetization at fixed σ̂ is a
function of only γ and σ̂

µ =
√
σ̂

√
γ + 1

γ

γ

γ2 − 1
[(γ + 1)e−τ − 2e−γτ ]. (19)

We maximize the effective magnetization with respect to
γ, dµ/dγ = 0, and assume the scaling γ∗ ' a0

τ + b0 +



8

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

σ̂ (bits)

I
∗
(b
it
s)

 

 

(a)

τ = 0.1
τ = 1

0  0.5 1  1.5 2  
0

0.2

0.4

0.6

0.8

1

τ

I
∗
(b
it
s)

 

 

(b)

σ̂ = 0.29
σ̂ = 7.21

FIG. 5: Comparison of the analytical (dashed lines) and numerical solutions (solid lines) for optimal mutual information I∗. In
panel (a) the behavior for small values of entropy production σ̂ is shown for τ = 0.1 and for τ = 1 as presented in section II A 4.
In panel (b) the dependence on τ is represented for σ̂ = 0.29 bits and σ̂ = 7.21 bits as presented in sections II A 4 and II A 5.

c0τ . Solving the resulting equations for the coefficients
in orders of τ (see Appendix C 2 for details), the optimal
effective magnetization is

µ∗ ∼
√
σ̂(1 +A0τ), (20)

where A0 = −0.24... is computed exactly in Ap-
pendix C 2.

In the large dissipation limit σ̂ � 1, Eq. 17 becomes

β ' γ + 1

γ
. (21)

Using Eq. 15, λ = 2u and the fact that in this limit s→ 0,
the effective magnetization in Eq. 12 is

µ =
γ

γ2 − 1
[(γ + 1)e−τ − 2e−γτ ]. (22)

Assuming γ∗ ' a∞
τ +b∞+c∞τ , the analogous calculation

to the small dissipation limit results in the maximized
effective magnetization

µ∗ ∼ 1 +A∞τ +B∞τ
2, (23)

where A∞ = −0.63... and B∞ = 0.23... are computed
exactly in Appendix C 2.

Summarizing, in the small dissipation limit we find
I∗ ≈ (µ∗)2/2 ∼ σ̂(1 + 2A0τ)/2 bits, a linear scaling of
the information both with dissipation and with readout
delay. In the large dissipation limit the information is in-
dependent of the dissipation and I∗ → 1 bit, as µ∗ tends
to one quadratically in the delay, as given by Eq. 23.
This scaling behavior is compared with numerical results
in Fig. 5.

4. Limit σ̂ � 1

The scaling at small dissipation with σ̂ for all τ is ob-
tained by noting from Eq. 13 that in this limit s → 1.

In the regime where λ = 2u, this behavior is clear. If
λ = 1 + s, small σ̂ could also be obtained setting u ' 0,
yet this would mean that 2u < 1 + s, and λ = 2u. So the
only consistent solution demands s→ 1.

We set s = 1 − ε and expand Eq. 12 to leading order
in ε

µ ' ε

2
γ

(1 + γ)e−τ − 2e−γτ

γ2 − 1
, (24)

and similarly Eq. 13

σ̂ ' ε2γ

4(1 + γ) log 2
. (25)

Eliminating ε from Equations 24 and 25 reads µ '
c(γ, τ)

√
σ̂ in the small dissipation regime. To derive the

proportionality coefficient c(γ, τ) we solve Eq. 25 for ε

ε ' 2

√
σ̂

1 + γ

γ
log 2, (26)

and use Eq. 24 to find

c(γ, τ) =

√
γ log 2

γ + 1

−2e−γτ + (1 + γ)e−τ

γ − 1
. (27)

For each value of τ the function c(γ, τ), has a single
maximum in γ∗, which is a decreasing function of τ and
satisfies the transcendental equation in Eq. C10. In the
γ → 1+ limit, the maximum of c(γ, τ) reaches γ∗ = 1 at

τc =
1 +
√

5

4
, (28)

(see Appendix C 3 for details of the derivation). For all
larger values of τ > τc, γ

∗ = 1 and

c(τ) = c(γ = 1, τ) =
e−τ (1 + 2τ)

√
log 2√

2
. (29)
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The optimal mutual information I∗ is linear in dissipa-
tion and exponentially decaying in τ

I∗ ' c(τ)2σ̂

2 log 2
. (30)

The comparison with the numerical result is shown in
Fig. 5.

5. Limit σ̂ � 1

In the large dissipation limit Eq. 13 is satisfied only
if s → 0 with u bounded by u ≤ 0.5, regardless of the
initial assumptions of about λ. The optimal solution is
thus in the γ > 1 regime and we can extend the observa-
tions from the small τ limit to postulate that the effective
magnetization is weakly dependent on the entropy pro-
duction

µ ' c+(γ, τ) =
γ

γ2 − 1
[−2e−γτ + (γ + 1)e−τ ]. (31)

The effective magnetization µ∗ ' c(τ) has a single max-
imum in γ for each τ that is a decreasing function of τ
and satisfies the equation

e(γ−1)τ =
2(1 + γ2 + γτ(γ2 − 1))

(1 + γ)2
. (32)

Similar considerations as in the small dissipation case
result in

τc =
1 +
√

3

2
(33)

above which the optimal γ∗ = 1. In this limit

c(τ) =
e−τ (1 + 2τ)

2
. (34)

Finally, the optimal mutual information approaches a
plateau for large σ̂ given by

I∗ '
{

1 + τ ã log2 (τ ã/e) , γ∗ � 1, τ � 1
c(τ)2

2 log 2 , γ∗ = 1, τ � 1
(35)

and is compared with the numerical result in Fig. 5 (ã =
0.31... defined in Appendix C 4).

B. Feedback

We now ask how allowing for feedback between the
output and the input changes the energetic constraints
on the optimally informative solutions. In terms of our
model, this corresponds to saying that the input switch-
ing rates depend on the state of the output (up 6= um
and dp 6= dm), unlike in the simplest case of the model
discussed in section II A. In circuits with feedback and

without additional inputs the difference between the in-
put and output is no longer clear: z is an input for x and
vice versa.

We can exploit the symmetry between + and − states
to decrease the number of rates in the network and set the
rates of aligning (and antialigning) of the output to the
input to be equal, regardless of the state of the input.
Specifically, the rates defined in Fig. 1 simplify to the
ones shown in Fig. 6, e. g. rp = rm ≡ r = 1, sp =
sm ≡ s ≤ 1, dp = um ≡ α ≤ 1, dm = um ≡ y ≤ 1.
We know from our work in the infinite dissipation limit
[38], that the optimal solutions cycle irreversibly through
the four states. The symmetry between + and − states
corresponds to a degeneracy between cycling clockwise
and counterclockwise and by picking this parametrization
of the network we are restricting ourselves to clockwise
cycles without any loss of generality.

y

α(- , -)       (- ,+) 

(+, -)       (+,+) 
r r

1 2

43
α

y
s  s

(x,z)
(output,input)

FIG. 6: The four network states, with corresponding transi-
tion rates, in a model with feedback where the input z rates
depend on the state of the output variable x.

In terms of the rates defined in Fig. 6 the eigenvalues
of L (see Appendix D 1 for details) are {λi} = {0, A, (A−
ρ)/2, (A+ ρ)/2}, where

A = 1 + s+ y + α, (36)

ρ =
√

(1 + s+ y + α)2 − 8(sy + α). (37)

The smallest nonzero eigenvalue is always λ = (A− ρ)/2
and the steady-state probability distribution is given by
the normalized right eigenvector of the null eigenvalue

P∞ =
1

2A
{1 + y, s+ α, s+ α, 1 + y}. (38)

The entropy production after rescaling by the smallest
eigenvalue reads

σ̂ =
2(α− sy)

A(A− ρ)
log2

(
α

sy

)
, (39)

and the mutual information is expressed by Eq.11 in
terms of the effective magnetization

µ = exp

(
− A

2λ
τ

){
q cosh

( ρ
2λ
τ
)
−[

s2 − (1 + y)2 − 4α+ α2 + 2s(2y + α)
]

Aρ
sinh

( ρ
2λ
τ
)}

,

(40)
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with q = (1 + y − s− α)/A and time rescaled by the
smallest nonzero eigenvalue λ, as explained in Eq. 3 (see
Appendix D 2 for a detailed calculation of µ).

The nonlinearities of the problem prohibit finding an-
alytical solutions to this constrained optimization prob-
lem, but we explore some limiting case behavior before
we turn to the full numerical optimization of the problem.

1. Limit σ = 0

The completely equilibrium limit of σ̂ = 0 simplifies
the constraint on the rates in Eq. 39 to

α = sy, (41)

which simplifies the effective magnetization in Eq. 40 to

µ =
q

2ρ

(
e−τ (A+ ρ)− e−(A+ρ

A−ρ )τ (A− ρ)
)
. (42)

We can reparametrize the rates as

w =
4s

(1 + s)2
, v =

4y

(1 + y)2
, φ =

1 +
√

1− wv
1−
√

1− wv .
(43)

to rewrite

µ =

√
1− w

2
√

1− wv
(
e−τ − e−φτ

)
+

√
1− w

2

(
e−τ + e−φτ

)
.

(44)
At τ = 0, the effective magnetization is µ =

√
1− w =

1−s
1+s and is maximized for s∗ = 0 (which implies α∗ =

s∗y = 0). At τ > 0, the optimal effective magnetization
is also obtained at w∗ = 0 (or s∗ = 0 and α∗ = 0 and y
is not constrained) and µ∗ = e−τ . The optimal mutual
information I∗ is 1 bit for τ = 0 and decays in time as

I∗ =
1

2

(
log2(1− e−2τ ) + e−τ log2

1 + e−τ

1− e−τ
)

bits. (45)

This solution corresponds to a circuit where the two
“mixed” states (x, z) = {(+,−), (−,+)} are not accessi-
ble (p+,− = p−,+ = 0), while the two “aligned” states
(+,+) and (−,−) have probability 1/2 (see Eq. 38).

This optimal solution describes a completely unre-
sponsive network with no local fluxes. The values of
the nonzero rates y and r are irrelevant, since they ac-
count for switching from completely forbidden states.
The highest possible value of information transmission
is guaranteed, while remaining in an equilibrium config-
uration in which detailed balance is satisfied, but there
is no regulation. If the readout occurs at later times, the
transmitted information decays, however the nature of
the solution remains the same. In summary, the optimal
solution in equilibrium corresponds to a static “dead”
system, which is very informative since the two aligned
states are on average equally sampled, but not necessary
useful because the timescales for flipping between them
are infinite.

 E(- , -)  E(+,+)

 E(- ,+)  E(+, -)

α

sy

1 α

y
σ=0

α=sy

FIG. 7: An energetic representation of the suboptimal net-
work in perfect equilibrium for the model with feedback in
Fig. 6. Here we show the limiting case where entropy produc-
tion σ = 0 and transition rates are related by the condition
α = sy, which results in E(+,−) = E(−,+) > E(+,+) =
E(−,−).

The suboptimal solution at σ̂ = 0 differs from the op-
timal unresponsive network in that it has small back re-
action rates for the flipping of the output and input from
the antialigned to the aligned states, s = η and α = ηy
(with η � 1). Since these reactions have non-zero rates,
the “mixed” states have probability η/[(1 + y)(1 + η)]
and the system is able to cycle through the four states
and transmit almost 1 bit of information, without dissi-
pating energy.

We can interpret these suboptimal solutions in terms of
the energetic barriers in the system. We use the detailed-
balance condition in Eq. 7 and the Boltzmann relation,
Pi = exp (−Ei/kBT ), between the probability Pi and
the energy Ei of state i to express the rates in terms
of the energies of the states and obtain the condition
E(+,−) = E(−,+) > E(+,+) = E(−,−), depicted in
Fig. 7.

As long as the mixed states have a finite energy the
system is able to cycle indefinitely through all the states
at no cost. At s = 0 (which implies α = 0 from the equi-
librium condition) infinite energy barriers separate the
aligned states and lead to the unresponsive dead solution.
When s > 0, the input z controls output x, transmitting
information. This suboptimal costless yet informative so-
lution is possible only because of feedback. In the simpler
model of section II A, the only dissipationless solution is
when all rates are equal (α = y = s = r = 1 forcing I to
be zero).

2. Limit σ̂ � 1

Using the intuition from the σ ≡ 0 limit, for σ̂ nonzero
but very small we expand α around the dissipationless
solution, as α = sy(1− ε) with ε� 1.

For clarity, we consider the τ = 0 case where

µ =
1− s+ y − α
1 + s+ y + α

. (46)

The rescaled dissipation, Eq. 39, in terms of ε and the
parametrizations in Eq. 43, is

σ̂ ' wvε2

8(1−√wv) log 2
, (47)
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Keeping only the leading order term in ε, the ε > 0 solu-
tion of Eq. 47 is

ε = 2

√
2σ̂

1−
√

1− wv
wv

log 2. (48)

Expanding the effective magnetization in Eq. 46 to first
order in ε in terms of w and v we find

µ '
√

1− w +
√
σ̂ log 2

√
wv(1−

√
1− wv)

√
2(1 +

√
1− v)

. (49)

The effective magnetization µ at fixed σ̂ is optimized at
small but nonzero w = ε ≈ 0+ (which translates into
small but nonzero s = ε ≈ 0+) and v = 0 (which sets
y = 1). Since the effective magnetization is bounded by
1, the value of w cannot be equal to zero for σ̂ > 0.
These values set the first term in Eq. 49 to

√
1− w ≈ 1

and maximizes the coefficient of
√
σ̂, resulting in µ∗ ≈ 1

and consequently I∗ ≈ 1 bit.
Unlike in the model without feedback, it is possible

to achieve almost 1 bit of information even for arbitrar-
ily small entropy production. Since all rates are larger
than 0, the network features all the four states, although
the system spends most of its time in the aligned states
(+,+) and (−,−). The nature of this solution is quanti-
tatively different than the optimal unresponsive ”dead”
network at σ̂ = 0, showing that even a small amount
of dissipation makes the system responsive. The opti-
mal solution at σ̂ � 1 is also the suboptimal solution at
σ̂ = 0.

3. Limit σ̂ � 1

When entropy production is very large, we see from
Eq. 39 that σ̂ diverges with s∗ = y∗ = 0. We also
know from previous work [38] that mutual information
is maximized for all delays τ for these values. To find
α∗, we consider the effective magnetization µ in the limit
s = y = 0:

µ(α, τ) =
1

2(1 + α)ρ

(
e−τ

(1+α+ρ)2

1−α+ρ +e
−τ 1+α+ρ

1+α−ρ (1+α−ρ)2
−1+α+ρ

)
,

(50)

where ρ =
√

1 + α2 − 6α. Expanding µ to the first order
in τ

µτ�1(α, τ) ' 1− α
1 + α

+
(1 + α+ ρ) τ

2(1 + α)
. (51)

we find α∗ that maximizes the above expression

α∗(τ) =
(1− τ)τ

2− τ . (52)

α∗ is an increasing function of τ , until it reaches the value
α∗c = 3 − 2

√
2 when τc = 2 −

√
2. For such value of α∗c ,

ρ = 0 and the two smallest eigenvalues (A − ρ)/2 and

(A+ρ)/2 become degenerate. Values of α larger than α∗c
are not optimal, since then ρ would becomes complex and
oscillations would be detrimental for information trans-
mission [38].

4. Numerical results

To generalize the above results to all values of σ̂ and
τ we numerically optimize the information constraining
the rescaled dissipation. As in the circuits without feed-
back, the maximum information the circuit is able to
transmit decreases with the time delay of the readout for
all values of σ̂, as the system decorrelates with time (see
Fig. 8 a). At small but finite dissipation the decrease is
exponential in τ and at large readout delays the system
has similar characteristics as the circuit with no feed-
back: the optimal network consists of reversible flipping
of both the input and output with large rates (network
Bf in Fig. 9 b). These networks are not useful for trans-
mitting information, but given the constraints of large
time delay and close to equilibrium solution, better so-
lutions cannot be found. As described in section II B 1,
at σ̂ = 0 the optimal solution has the input and output
permanently fixed in the same state, providing perfect
readout but not functioning as a switch. This solution is
obtained with infinitely high energy barriers between the
two aligned states giving infinite switching rates between
these two minima. Decreasing these energy barriers at
small but finite dissipation (or for non-optimal solutions
at σ̂ = 0), results in a finite lifetime of the two aligned
states, effectively producing a stable switch with very
long lived states (network Df in Fig. 9). These optimal
networks at small but finite dissipation transmit close to
1 bit of information, also at small but finite time delays.
Feedback allows for a switching rate of the input that de-
pends on the output and optimal circuits have fast rates
for the output and input to align, and slow rates to anti-
align, resulting in larger probabilities that the system
is in the aligned states at the time of the readout and
measurement. At large dissipation and small readout de-
lays, we recover the same solution as in circuits without
feedback. The input z does not change and the output
quickly aligns with the output (network Cf in Fig. 9) .
As the readout time increases, the input state switches
and the system decorrelates causing the transmitted in-
formation to decrease. The large dissipation rate allows
the system to avoid the equilibrium solution of network
Bf in Fig. 9, but cycle through the states with an alter-
nating combination of fast (r that aligns the input and
output) and slow (α that anti-aligns them) rates (net-
work Ef in Fig. 9). As a result the circuit is more likely
to be found in the aligned states at all times, transmitting
more information. As discussed above and in our previ-
ous work [38], the optimal network topology for large
delays is a negative feedback loop, which is known to os-
cillate in certain parameter regimes [56]. Since oscillatory
solutions would decrease the information transmitted at
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FIG. 8: (a) Contour plot of optimal mutual information I∗ as function of the readout delay τ and entropy production rate σ̂,
in the presence of feedback. In contrast with the simpler model of Fig. 3, mutual information is now equal to ≈ 1 bit for any
value of σ̂ when τ � 1. (b-d) Contour plots of optimal rates s∗ (b), α∗ (c) and y∗ (d) as functions of the readout delay τ and
entropy production rate σ̂, in the presence of feedback.
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FIG. 9: (a) Phase diagram in the (σ̂, τ) plane of optimal rates s∗, α∗, y∗ and optimal network topologies Af, Bf, Cf, Df, Ef, in
the presence of feedback. The optimal network topologies are sketched in panel (b). The gray lines in network Df of panel (b)
denote the back reactions with small rates.

large delays, avoiding the oscillatory regime sets a limit
to the maximum value of α. As dissipation decreases
in the large τ limit, the rate of aligning z (α) decreases
(Fig. 8 c), without having a large effect on the trans-
mitted information (network Af in Fig. 9) b). Only at

σ̂ < 1 when the rates antialigning of the input and out-
put increase (Fig. 8 b and c), the transmitted information
decreases.

The gain in the transmitted information per dissipa-
tion rate goes to zero at large σ̂ values, when the full
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FIG. 10: Comparison of the mutual information for the optimal and suboptimal solutions. (a-c) Optimal mutual information
I∗ as a function of the entropy production rate σ̂ for different readout delays τ and (d-f) as function of the readout delay τ
for different values of the entropy production rate σ̂ (expressed in bits). Results from the simulation branch with y ≥ α and
with y ≤ α are shown as dotted red lines and solid cyan lines, respectively. Rates used to compute such mutual information
are shown in Fig. 14 and Fig. 15 of the section D. The solutions of the two branches y ≥ α and y ≤ α coincide at large σ̂ and
small τ and at small σ̂ and large τ . This happens because the back and forward input flipping rates are equal: in the first case
y∗ ≈ α∗ ≈ 0, while in the second case y∗ ≈ α∗ > 0 (see Fig. 9 a).

non-equilibrium solution is reached, as could be expected.
However also at small dissipation rates there is no in-
crease in the transmitted information as the system dissi-
pates more entropy. In this regime the switching rates for
the input z strongly favor the aligned states (y∗ > α∗),
making the transition to the anti-aligned states very un-
likely. The optimal motif is a positive feedback loop.
As σ̂ increases the energy barriers between the aligned
and anti-aligned states decrease, since y decreases, but
the qualitative nature of the solution does not change.
Only when the rate that favors cycling through the four
states α increases does the transmitted information go
up (and the nature of the network changes from Df to
Af in Fig. 9 b). In this region, for intermediate values of
τ , the gain in transmitted information per increase in σ̂
is the largest.

Lastly, we compare the information transmitted by the
optimal networks to that transmitted by suboptimal net-

works for characteristic values of τ and σ̂ (Fig. 10). We
define the suboptimal networks by dividing the optimiza-
tion procedure into two branches: in one branch we con-
strain y ≥ α, in the other branch y ≤ α. In this way we
explore two different topologies. In the first one the sys-
tem concentrates on the aligned states (+,+) and (−,−)
(like network Df in Fig. 9 b), while in the second one the
system cycles through the four states in the clockwise di-
rection (like network Ef in Fig. 9 b). From Fig. 10 we
learn that for σ̂ → ∞ the optimal topology is a clock-
wise cycle where the system is able to transmit 1 bit of
information [38]. However, when moving towards finite
values of σ̂, information transmission decreases, until a
point where the system is confronted with a choice: either
continue to cycle inefficiently with strong back reactions
and reduce I, or to concentrate the probability distri-
bution on the aligned states and reach a finite plateau
I = Iσ̂=0 (Fig. 10 b). In certain cases (large dissipation
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and small and intermediate delays - Fig. 10 a and c) the
two branches coincide and give the same network topolo-
gies with s∗ = 0 and small input flipping rates (y∗ ≈ α∗).

III. ROBUST OPTIMIZATION

In many situations a biochemical circuit needs to re-
liably respond in many possible external conditions. In
this case, optimization in the typical environment, as the
one discussed in earlier sections, is not the desired cri-
terium. Such a situation is better described by assuming
that the environment chooses the worst possible condi-
tions for the network to function. Formally this is cap-
tured by assuming that the system and the environment
play a zero-sum game, where the circuit is trying to max-
imize the mutual information between the input and the
output, while the environment is trying to minimize it.

A game theoretic formulation of the problem requires
one to define the strategy space, which in this case
amounts to deciding which variables are controlled by the
circuit and which by the environment control. Here we
assume that the system will adjust the transition rates,
whereas the environment controls the initial probability
distribution p(x0, z0) of the input z and output x.

In other words, we are interested in circuits that are
optimal for working in the worst possible environmental
conditions, which in game theoretic terms correspond to
maximin or “minorant” strategies [57]: the player has the
goal of maximizing a function, whereas the opponent has
the goal of minimizing it. This strategy is also related to
“robust control” [53, 54]. In our case the circuit behaves
so as to ensure that at least a certain number I of bits
are transmitted over a given time-scale.

We look for the networks that are best adapted to the
worst case scenario for the simplest circuit without feed-
back presented in section II A in the infinite dissipation
limit. We recall that in this case the input z flips between
the + and the − state with rate u, and the output re-
sponds to the input with rate r (see Fig.11). Since in the
infinite dissipation limit the most informative solutions
always forbid the anti aligning of the input and output
(s = 0), for simplicity we consider only circuits with this
constraint.

 u

(- , -)       (- ,+) 

(+, -)       (+,+) 
r r

1 2

43

  u
  u

 u

(x,z)
(output,input)

FIG. 11: The four network states, with corresponding transi-
tion rates, considered in the maximin optimization where the
input z can either up or down-regulate the output x. x aligns
with z with rate r.

We consider this problem on the timescales of the sys-

tem, which means that the system wants to maximize
the mutual information I(τ) between the input at time
0 and the output at a time τ = tλ, where λ = min(r, 2u)
is the minimal non-zero eigenvalue of the transition rate
matrix – the inverse of the system’s slowest timescale.
As in section II A, we set r = 1 to set the units of time.
The effective magnetization in Eq. 12 derived based on
the quantities in Appendix E with s set to zero is:

µ = µ0e
−τ/λ +

1

1− 2u

(
e−2uτ/λ − e−τ/λ

)
. (53)

where µ ≥ 0, and |µ0| ≤ 1 encodes the initial condition

P (x0, z0) =
1 + x0z0µ0

4
. (54)

Unlike in the cases when we optimized the transmitted in-
formation between the input and output for circuits that
are in steady state in sections II A and II B, in the setup
considered here the initial distribution does not need to
be in steady state. The space of solutions considered here
is the same as the one we considered previously [38], when
we optimized the information transmitted with a delay
in circuits that were out of steady state. There we simul-
taneously found the optimal initial distribution and the
parameters of the circuit. Here, we vary the same proper-
ties of the system (initial distribution and flipping rates),
but with a different underlying optimization criterium –
the environment minimizes the transmitted information
by setting the initial distribution and the circuit sets the
flipping rates.

Maximizing the information transmitted in the worst
case scenario in terms of this model takes the form:

• The environment E chooses µ0 so as to minimize
mutual information, given the rates of the circuit.
This corresponds to finding the value of µ0 which
makes µ as small as possible (since I is an increas-
ing function of µ in the allowed µ > 1 regime).

• Given µ0, the circuit S looks for the rate u that
maximizes I (i.e. µ).

The above zero-sum game between the system (circuit)
S and environment E is formalized in terms of their re-
spective cost functions FS and FE that satisfy

FS + FE = 0, (55)

where FS = −FE = |µ| = F(µ0, u; τ). The optimization
problem becomes

max
u

min
µ0

F(µ0, u; τ). (56)

The optimal µ∗0 chosen by the environment is a function
of u and τ , such that

min
µ0

F(µ0, u; τ) = F(µ∗0(τ, u), u; τ), (57)

and the circuit chooses u∗ = u∗(τ) that satisfies

max
u
F(µ∗0(τ, u), u; τ) = F(µ∗(τ, u∗), u∗, τ). (58)
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To make analytical progress we have to separately con-
sider the regimes of the two possible smallest eigenvalues
λ = min(1, 2u)

A. Case λ ≤ 1

In the regime where λ = 2u ≤ 1, the input switches
on slower timescales then the output and the effective
magnetization in Eq. 53 is

µ(µ0, u; τ) = µ0e
−τ/2u +

1

1− 2u

(
e−τ − e−τ/2u

)
. (59)

The best strategy for the environment E, would be to
choose µ∗0 such that µ = 0. However it is constrained to
fulfill −1 ≤ µ∗0 ≤ 1. Minimizing Eq. 59 with respect to u
subject to the constraint on µ0 results in:

µ∗0 =

{
− eτ(1−2u)/2u−1

1−2u , τ < τc(u),

−1, τ ≥ τc(u),
(60)

with

τc(u) =
4u

1− 2u
log(1− u). (61)

When τ < τc(u), the environment is able to set µ and
thus I to zero. However, when τ ≥ τc(u), the magneti-
zation is

µ(−1, u; τ) = −e−τ/2u +
1

1− 2u

(
e−τ − e−τ/2u

)
, (62)

where u is constrained to be in the interval
[0,min(1/2, uc(τ))] and uc(τ) is obtained by inverting
Eq. 61. Given these forms of µ∗0(u, τ) the circuit tries
to maximize the information by tuning u at each value
of τ . In the τ ≥ τc(u) regime the effective magnetization
is maximized by a u∗ that solves

∂µ(−1, u; τ)

∂u
|u∗ = 0. (63)

Generally Eq. 63 needs to be solved numerically, but in
the limit τ � 1 we find that when τ → 0, u∗ = τ

2(a∗+τ) →
0 sublinearly (see section E 2 for details of the derivation)

u∗ ' τ

2(− log τ + log(2(log τ)2)− 2 log(2(log τ)2)
log τ )

, τ � 1.

(64)
The above solution u∗ of Eq. 63 is valid as long as the
smallest eigenvalue λ = 2u < 1. This choice of λ con-
strains u∗ < 1/2, which also constrains τ < τ∗. Setting

∂µ(−1, u; τ)

∂u
|u∗=1/2 = 0, (65)

we get the condition for τ∗ = τ(u∗ = 1/2)

1

2
τ∗(τ∗ − 4)e−τ

∗
= 0, (66)

which is fulfilled by τ∗ = 4.
In summary, the environment E chooses µ∗0 so as to

have µ(µ∗0, u; τ) = 0. However, this is possible only for
τ < τc(u). In this regime the transmitted information
is always zero and there is nothing the circuit can do
against the judicious choice of the environment. For
τ ≥ τc(u) the best thing the environment E can do is
to set µ∗0 = −1. In order to counteract the strategy of
the environment E, at each readout delay τ the circuit
S chooses u < uc(τ) (with uc(τ) obtained by inverting
Eq. 61), such that the environment E is forced into the
regime where the best it can do is µ∗0 = −1. In this
regime, the circuit S maximizes the function µ(−1, u; τ)
in u ∈ [0,min(1/2, uc(τ))] and finds u∗ = τ

2(a∗+τ) , where

a∗ is given by the solution of Eq. E7. The maximum value
of the flipping rate for the input u∗(τ) = 1/2 corresponds
to the readout delay τ∗ = 4 and marks the transition to
the regime with λ = r = 1. The effective magnetization
µ∗ at the transition is 3/e4 ≈ 0.05 and hence I∗ ≈ 0.002.

B. Case λ = 1

For τ > 4, the smallest eigenvalue is λ = r = 1, the
input switches on faster timescales than the output and
the effective magnetization in Eq. 53 is

µ = µ0e
−τ +

1

1− 2u

(
e−2uτ − e−τ

)
. (67)

The environment E chooses µ∗0 to simultaneously set µ =
0 and fulfill −1 ≤ µ∗0 ≤ 1, which gives

µ∗0 =

{
− 1−e−τ(2u−1)

2u−1 , τ < τc(u),

−1, τ ≥ τc(u),
(68)

with

τc(u) =
1

2u− 1
log

(
1

2(1− u)

)
. (69)

If the system S wants to be in the regime τ ≥ τc(u)
where µ∗0 = −1, then the circuit must choose a rate u∗ ∈
[1/2, uc(τ)], with uc(τ) obtained by inverting Eq. 69.
This choice results in the effective magnetization

µ(−1, u; τ) =
2(1− u)e−τ − e−2uτ

2u− 1
. (70)

For any τ > 4, the effective magnetization in Eq. 70 is
always maximum at the border u∗ = 1/2.

In summary, for τ > 4, the optimal response of the
circuit is to set u∗ = 1/2, forcing the environment into
the τ > τc regime where the transmitted information is
larger than zero.

C. Robust Optimization Solutions

In Fig. 12 we compare the capacities and optimal input
switching rates at fixed readout delay τ obtained for cir-
cuits optimized given fixed best (broken red line – results
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from model Ã in previous work [38]) and worst (solid blue
line – the maximin strategy discussed in this section) ini-
tial conditions to the results of simply optimizing infor-
mation given the system is in steady state in the infinite
dissipation regime presented in section II A (dotted black
line). In the first case the environment first fixes the ini-
tial probability distribution that is most limiting (blue
line) or most favorable (red line) for information trans-
mission and the circuit then finds the switching rates
that allow it to transmit the most information, possibly
neutralizing the harm of the environment. In the sec-
ond case, the initial probability distribution is fixed at
steady state and the circuit optimizes its switching rates
within this constraint. We find that τc in Eq. 61 is always
zero, such that the worst initial condition always corre-
sponds to µ0 = −1 for all τ and the initial probability
distribution is evenly divided between the mixed states
{(−,+), (+,−)}, such that p0(i) = 1/2. The best initial
condition has µ0 = +1 and the initial probability distri-
bution p0(i) = 1/2 for the aligned states {(+,+), (−,−)}.
In the latter case u∗ = 1/2 for all readout delays, and the
circuit functions in a regime where the input timescale
2u and the output timescale r = 1 always match. If the
initial distribution is the steady state, u∗ is equal to 0
at τ = 0 and increases with τ until reaching the plateau
u∗ = 1/2 for τ = (1 +

√
3)/2. If the environment sets

the initial distribution to be the worst possible for in-
formation transmission by the circuit, u∗ = 0 for τ = 0
and increases much more slowly in τ than in the steady
state circuit, finally converging to u∗ = 1/2 for τ = 4.
When the circuit controls the choice of the initial state, it
maximizes the probability of being in the aligned states,
so that output x matches input z and the timescales of
their switching are equal. However, when the environ-
ment chooses the worst initial state, forcing the initial
probability distribution to be in the mixed states, the
circuit requires the output x to react as fast as possible
to the input z (r � 2u) to align them. Despite these dif-
ferences, in all cases the optimal network takes the form
of a the same universal network (see Fig. 12 c).

The steady state I∗ lies in between the optimal infor-
mation in the maximin case (µ0 = −1), which we will call
I∗min, and the one where the prior is optimized (µ0 = +1),
which we will indicate as I∗max. At τ = 0, all three
networks transmit 1 bit of information. The maximal
normalized gain (I∗max−I∗min)/I∗max from optimizing the
initial condition compared to the worst possible initial
condition the environment can choose has a maximum
at the readout delay of τ ≈ 2.5 (see Fig. 13). At this
timescale the environment can be most detrimental for
information transmission.

IV. DISCUSSION

Most studies that optimize information transmission
in biochemical circuits consider ideal conditions and look
for the networks that are only limited by intrinsic physi-
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FIG. 12: Optimal mutual information I∗ (a) and optimal
input flipping rate u∗ (b) when the initial condition P0 corre-
sponds to the stationary state (dotted black line), is optimized
by the system (dashed red line) or is set by an antagonistic
environment in a maximin game (solid blue line). In panel (c)
the optimal topology is shown in the three cases: states in red
are the ones with initial probability P0 = 1/2. Each arrow’s
thickness is related to the magnitude of the corresponding
rate at a fixed delay τ = 1.
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FIG. 13: Normalized information transmission (I∗max −
I∗min)/I∗max as function of the readout delay τ∗. Optimal I∗max

corresponds to the case where the system optimizes the initial
condition P0, while I∗min corresponds to the MaxiMin solution,
where the environment chooses the worst possible P0.

cal constraints coming from noise in the system. However
often cells must respond to signals under natural external
constraints: the readout of the input occurs at a delay,
cell energetics are limited and the environment may be
unfavorable – it need not be tuned to the properties of
the network. Here we investigated how these difficulties
influence the form of optimal designs of biochemical cir-
cuits.

Most generally, the information transmitted by circuits
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decreases with the readout delay, as the system decorre-
lates with time. Feedback can decrease this decays, but
cannot overcome it completely. In the large dissipation
limit the optimal solution consist of using a combination
of fast rates for output switching and slow rates for input
switching to increase the probability of the system to be
in two states. Our choice of setting the input rate that
aligns the input and output states (r = 1) fixed these
two states to be the aligned states, but the natural sym-
metry of the system implies that a degenerate solution
that transmits the same amount of information exists for
the case when the input represses the output, favoring
the anti-aligned states. We explicitly discussed these so-
lution in the infinite dissipation regime in previous work
[38]. In the simplest circuit without feedback the only
way to achieve this separation into favorable and unfavor-
able states is by dissipating energy and forbidding back
reactions for output switching. Close to equilibrium, in
the absence of feedback, the circuit cannot constrain the
back reactions and as a result, the maximum mutual in-
formation goes linearly to zero with the entropy produc-
tion rate σ̂ for all values of the readout delay τ . From
the simplest circuit we see that the rate of input flip-
ping depends on the time delay – longer readouts require
slow flipping rates of the input to be informative, whereas
the ability to dissipate energy allows the circuit to irre-
versible cycle through the states by eliminating both the
input and output back reactions. The fully non equi-
librium solution is valid for a large range of dissipation
values. If long readouts or energy constraints forbid this
solution the circuit effectively becomes randomly stuck
in one of two states and not informative: the input is
fixed with an equal probability to be in one of the two
states, and the output attempts to align with the input.
In summary, the only way for a system without feedback
to transmit information is to dissipate energy.

Feedback significantly increases the range of dissipa-
tion values at which circuits can be informative. When
the output feedbacks onto the input, the circuit can
transmit ≈ 1 bit of information for any value of σ̂ even at
small delays. Far from equilibrium, the optimal solution
cycles through all the states, effectively increasing the
decorrelation time of the system. The optimal topology
is based on a negative feedback motif with a slow switch-
ing input and rapidly responding output. Such motifs
are very common in stress responses (DNA damage, heat
and osmotic shock and immune response) [58] and often
rely on a slow (gene regulation) and fast (protein-protein
interaction) step. In perfect equilibrium, the formally
optimal circuit is non responsive – there is no regulation
and the input and output are aligned at all times. How-
ever at small but finite entropy production rates (as well
as the suboptimal solution in perfect equilibrium) the op-
timal topologies are different from the large dissipation
case.

In the presence of feedback, the optimal circuit in the
small dissipation range is a positive feedback loop with
two stable states (+,+) and (−,−). Such circuits have

long been known to be a key mechanism for memory stor-
age [59]. This design of a stable switch is able to con-
vert a transient stimulus into a permanent biochemical
response. These circuits have been shown to be crucial
for the irreversibility of maturation of Xenopus oocytes
[60] and for long lasting synaptic plasticity [61]. It has
also been argued that positive feedback may have a role
in enhancing switch-like responses (e. g. in MAP kinase
cascades) and improving energetic efficiency by filtering
out noise [62]. This may explain why we find such opti-
mal topology in the small dissipation regime.

The above examples show that the optimal topology
at small dissipation rates is characteristic of stable long
term readouts, that commit the cell to one of two re-
sponses. The aligned (or anti-aligned in the other de-
generate topology) states are very stable and large ener-
getic barriers exist to exit these states, resulting in the
positive feedback motif being optimal. Conversely, the
optimal motif in the large dissipation limit is a negative
feedback loop, that is characteristic of shock response –
a transient response that is easily exited, but needs to
be implemented quickly. It is therefore a typical non–
equilibrium response, whereas the positive feedback loop
is characteristic of slow and stable equilibrium situations.

Intuitively, dissipating more energy allows for larger in-
formation transmission because it lowers the probability
of back reactions, which are detrimental when process-
ing a signal. Interestingly, in the presence of feedback
the system is able to build a particular topology which
is suboptimal in terms of information transmission but
which does not dissipate energy at all. The resulting
network is such that effectively the system can cycle ei-
ther in the clockwise or counterclockwise direction and
the probability distribution is mostly concentrated on the
aligned states (+,+) and (−,−). Such costless network
topologies could be of inspiration when designing syn-
thetic biochemical circuits aimed at energy production.

Feedback is able to slow down the decrease of infor-
mation transmission with readout delay, but not change
the monotonic nature of this process caused by decorre-
lation of the states of the circuit. Yet feedback does alter
the dependence of the information decay with dissipation
compared to circuits without feedback. At large as well
as small dissipation rates the capacity plateaus, leaving
a small range of σ̂ values where the transmitted informa-
tion is sensitive to the precise magnitude of the energy
constraints. This relatively narrow regime is where the
optimal motif changes from a positive feedback loop to
a negative feedback loop. Effectively in this regime the
feedback is turned off (the back and forth input flipping
rates are similar) and the circuit resembles the simple
system discussed in section II A.

Our optimal network for information transmission with
large energy dissipation at relatively large readout delays
(circuit Ef in Fig. 8) has the same design as the two-
component signaling network in Escherichia coli used in
osmoregulation [63–66]. This network is composed of the
histidine kinase EnvZ and the response regulator OmpR
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and it is aimed at reacting to an osmotic shock by reg-
ulating the expression of two porin proteins OmpF and
OmpC. After phosphorylation by EnvZ, OmpR under-
goes a conformational change, dimerizes and binds to the
porin promoter region either of the ompF or ompC gene.
We can map the activation of our input z to the process
of phosphorylation and conformational change of OmpR
and the activation of our output x to the dimerization
and binding to DNA of OmpR. Conversely, the deacti-
vation of x corresponds to unbinding of OmpR from the
DNA, while the deactivation of z to the dephosphoryla-
tion of OmpR. Detailed experimental studies of the ener-
getics of this system show that phosphorylation-activated
dimerization drives an increase in DNA binding [66], sug-
gesting that the biochemical regulation is a clockwise cy-
cle such as presented in network Ef of Fig. 8.

In the large dissipation limit we compared three differ-
ent conditions in which a circuit optimizes the informa-
tion transmitted at a delay for a model without feedback:
a circuit that functions in steady state (section II A), one
that is able to optimize its input distribution (derived
previously [38]), and one that is forced to function with
the least informative initial distribution (maximin - sec-
tion III). Interestingly, all solutions share the same cir-
cuit topology and type of solution. The most informative
solution is to cycle irreversibly through the four states.
The difference between the three cases lies in the rate
of flipping the input signal at a given delay. The most
informative of the three strategies, where the circuit has
coevolved to match the environmental conditions, dis-
plays the largest flipping rate of the input (although still
small compared to the flipping rate of the output) that is
independent of the readout delay. The least informative
circuit, the one that functions in an adverse environment
has the slowest flipping rate of the input. Intuitively,
if the statistics of the environment and circuit match,
then as long as these initial states are long lived the abil-
ity of the system to transmit information is mainly en-
coded in these states. However, in an adverse environ-
ment, extremely small flipping rates of the input stabi-
lize the initial input states, allowing for a more informa-
tive readout. Since the same circuit, just with different
flipping rates of the input, works optimally in both fa-
vorable and antagonistic environmental conditions, one
could imagine that the rate of input switching could be
tuned depending on the environmental conditions. This
tuning could be achieved by fast degradation of a ”typi-
cal” sugar source (like glucose) but a slower degradation
that requires additional elements (such as production of
the enzyme beta-galactosidase) for degradation of a less
typical sugar source (like lactose).

The models of biochemical regulation we consider as-
sume the limit of very sharp response functions, that sim-
plify their description to two state systems. As was pre-
viously shown, on one hand smooth regulatory functions
can transmit more than 1 bit of information [67], and on
the other hand the molecular noise coming from discrete
particle numbers limits the capacity [11, 13, 14, 49, 68–

70]. The capacity and regulatory details of the optimal
systems can change if we consider more detailed molec-
ular models. However even these simple models show
general principles of how energy constraints and delayed
readout drive optimal topologies. It has previously been
argued using more detailed models that a truly bistable
system in equilibrium is not optimal for transmitting in-
formation, unless the system does not have time to equi-
librate and manages to retain memory of the initial con-
dition [70]. The solutions we observe in our optimal net-
works with feedback at small dissipation correspond to
circuits that manage to retain the memory of the initial
state.

All the models we considered, both in equilibrium and
out of equilibrium, corresponded to two component sys-
tems. These types of networks were previously studied as
circuits that can function out of equilibrium in contrast
with one component signaling systems that must obey
detailed balanced [49, 71]. When it comes to precision
of a continuous gradient readout, it was shown that fuel-
ing energy into the system makes it possible to overcome
the limitations posed by detailed balanced, by decoupling
the output and receptor molecules and providing a stable
readout of the input. In our discrete two component sys-
tem, this stable readout of the input state is possible even
at equilibrium with a circuit design that is able to stably
store the input state by exploiting timescale separation
and favoring the aligned states over the non-aligned ones.
However, such a stable solution is not very useful for re-
sponding to signals that change on fast timescales. In
that case, energy dissipation is indispensable for an in-
formative readout.
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Appendix A: General form of the rate matrix L

The transition rate matrix L of Equation 1 in the main
text is given in its general form by

L =

 um + sm −dm −rm 0
−um dm + rp 0 −sp
−sm 0 up + rm −dp

0 −rp −up dp + sp

 . (A1)

When L is analytically diagonalizable, its eigenvalues λα,
its right eigenvectors vα and its left eigenvectors uTα (with
α = 1, . . . , 4) satisfy

Lvα = λαvα (A2)

uTαL = uTαλα (A3)

uTαvβ = δαβ . (A4)

The steady-state probability vector P∞ is equal to the
right eigenvector v1, which corresponds to the null eigen-
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value λ1 and which is given by

v1 =
1∑4

i=1 v1(i)


dprmrp+dm(dprm+sp(rm+up))
rmrpum+(dmsm+rp(sm+um))up
dprmum+sp(rmum+(sm+um)up)
rmrpum+(dmsm+rp(sm+um))up
dmsm(dp+sp)+dprp(sm+um)

rmrpum+(dmsm+rp(sm+um))up

1

 .

(A5)

Appendix B: Computation of the entropy
production rate σ

Here we perform the calculation of the entropy pro-
duction rate σ, for the general dynamic system described
by the transition rate matrix L and pictured in Fig. 1.
We start from the definition of σ, introduced in Eq. 5 in
the main text:

σ =
∑
i,j

Piwij log
wij
wji

, (B1)

where Pi is the steady state probability distribution P∞
for state i. In our specific case, we explicitly have

σ = P1w12 log
w12

w21
+ P2w24 log

w24

w42
+ (B2)

+ P4w43 log
w43

w34
+ P3w31 log

w31

w13
+ (B3)

+ P2w21 log
w21

w12
+ P4w42 log

w42

w24
+ (B4)

+ P3w34 log
w34

w43
+ P1w13 log

w13

w31
. (B5)

After collecting similar terms we can write

σ = J12 log
w12

w21
+ J24 log

w24

w42
+ (B6)

+ J43 log
w43

w34
+ J31 log

w31

w13
, (B7)

where we have used the definition of probability current
Jij , introduced in Section II in the main text, and we
have considered the clockwise cycle in Fig. 1. All the
steady state currents are equal to each other:

J12 = J24 = J43 = J31 = J (B8)

and the entropy production rate σ is

σ = J log
w12 w24 w43 w31

w21 w13 w34 w42
. (B9)

We plug the rates of the transition matrix L (see Eq. A1)
and the stationary distribution P∞ (see Appendix A) into
Eq. B9. The current J is

J =
(umrmdprm)− (dmsmupsp)

Ja + Jb + Jc
, (B10)

with

Ja = dp(rm(rp + um) + rp(sm + um)),

Jb = dm(dp(rm + sm) + rmsp + smsp + smup + spup),

Jc = (rp + sp)(rmum + (sm + um)up),

and entropy production rate is

σ = J log
umrmdprm
dmsmupsp

. (B11)

Appendix C: Information transmission with energy
dissipation: the simplest model

1. Diagonalization of L

In the simplest model described in section II A, the
transition rate matrix L has the form

L =

 u+ s −u −1 0
−u u+ 1 0 −s
−s 0 u+ 1 −u
0 −1 −u u+ s

 . (C1)

Its eigenvalues λα are
λ1 = 0

λ2 = 2u

λ3 = 1 + s

λ4 = 2u+ 1 + s

, (C2)

its right eigenvectors vα are

P∞ = v1 =
1

2(1 + s+ 2u)

 u+ 1
u+ s
u+ s
u+ 1

 , (C3)

v2 =
1

2(1 + s− 2u)

 u− s
u− s
s− u
s− u

 ,

v3 =
1

2(1 + s− 2u)

 u− 1
s− u
s− u
1− u

 , (C4)

v4 =
u+ s

2(1 + s+ 2u)

 +1
−1
−1
+1

 . (C5)

and its left eigenvectors uTα are
uT1 = (1, 1, 1, 1),

uT2 = (−1, −u+1
+u−s ,

+u−1
+u−s , 1),

uT3 = (−1, 1,−1, 1),

uT4 = (1, −u−1+u+s ,
−u−1
+u+s , 1).

(C6)

The stationary state P∞ is equal to the first right eigen-
vector v1, related to the null eigenvalue λ1.
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2. Limit τ � 1

Here we detail the solutions of the equations presented
in the small τ limit of the simplest model in section II A.
In the small dissipation limit we assume

γ∗ ' a0
τ

+ b0 + c0τ (C7)

and find the coefficients of the expansion by solving
dµ
dγ |γ∗ = 0 (with µ given by Eq. 19) order by order in

τ . The coefficient a0 = 0.96... is given by the solution
of the transcendental equation ea0 = 4

3 (a0 + 1), while b0
and c0 are given respectively by

b0 = 1 +
−5− 2a0

6a20
= −0.25... and

c0 =
−75− 65a0 + 128a20 + 28a30

72a50
= 0.1...

Using the Eq. C7 for γ∗ gives

µ∗ '
√
σ̂(1 +A0τ +B0τ

2), (C8)

with

A0 =
−4e−a0 + 3

2a0
− 1 = −0.24... and

B0 = e−a0 −5−7a0+a
2
0+6a30

3a40
+

10+4a0−a20−12a30+4a40
8a40

= 0.01...

Similarly in the large dissipation limit we take γ∗ '
a∞
τ + b∞ + c∞τ and following the same procedure as

above with µ given by Eq. 22 we find a∞ = 1.68... as the
solution of the transcendental equation ea∞ = 2(a∞+1),
while b∞ and c∞ are given by

b∞ = 1 +
−2− a∞
a2∞

= −0.31... and

c∞ =
−12− 12a∞ + 7a2∞ + 3a3∞

2a5∞
= 0.07...

The effective magnetization is

µ∗ ' 1 +A∞τ +B∞τ
2, (C9)

with

A∞ =
−2e−a∞ + 1

a∞
− 1 = −0.63... and

B∞ = 1
2 +

(e−a∞ (−4−6a∞+2a2∞)+2+a∞−a3∞)
a4∞

= 0.23...

3. Limit σ̂ � 1

In the limit of σ̂ � 1 we assume that µ ' c(γ, τ)
√
σ̂

and s = 1 − ε, generalizing the σ̂ = 0 behavior. Solving
Eq. 25 for ε we obtain the form of c(γ, τ) in Eq. 27. For
each value of τ the function c(γ, τ), has a single maximum

in γ∗, which is a decreasing function of τ and satisfies the
transcendental equation

e(γ
∗−1)τ = 2

1 + γ∗ + 2γ∗2 + 2γ∗τ(γ∗2 − 1)

(1 + γ∗)(1 + 3γ∗)
. (C10)

The maximum of c(γ, τ) is found from dc/dγ ∼
F (γ, τ)/(γ − 1)2 = 0, where F (γ, τ) = 0 is solved by
Eq. C10, for γ > 1. In the limit γ → 1+, the maximum
is found as the solution of e−τ

(
1 + 2τ − 4τ2

)
/(4
√

2) = 0,
and at

τc =
1 +
√

5

4
, (C11)

the maximum of c(γ, τ) reaches γ∗ = 1.

4. Limit σ̂ � 1

In the limit of large dissipation σ̂ and delay τ � 1 it
is possible to write the optimal mutual information as

I∗ ' 1 + τ ã log2 (τ ã/e) (C12)

where ã = 0.31... is defined as

ã =
a∞

2(a∞ + 1)
, (C13)

with a∞ = 1.68... introduced in Appendix C 2.

Appendix D: Information transmission with energy
dissipation: feedback

1. Diagonalization of L

In the model where feedback is present (see section
II B), the transition rate matrix L has the form

L =

 s+ α −y −1 0
−α 1 + y 0 −s
−s 0 1 + y −α
0 −1 −y s+ α

 . (D1)

It is useful to introduce the quantities A and ρ, defined
in the main text as

A = 1 + s+ y + α (D2)

ρ =
√

(1 + s+ y + α)2 − 8(sy + α). (D3)

Then the eigenvalues λα can be written as
λ1 = 0

λ2 = A

λ3 = 1
2 (A− ρ)

λ4 = 1
2 (A+ ρ)

. (D4)
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The right eigenvectors vα are given by

P∞ = v1 =
1

2A

 1 + y
s+ α
s+ α
1 + y

 , (D5)

v2 =
s+ α

2A

 +1
−1
−1
+1

 , (D6)

v3 =
1

4ρ

 +(−1 + s− y + a− ρ)
+2(s− α)
−2(s− α)

−(−1 + s− y + a− ρ)

 , (D7)

v4 =
1

4ρ

 +(1− s+ y − α− ρ)
+2(−s+ α)
−2(−s+ α)

−(1− s+ y − α− ρ)

 , (D8)

and the left eigenvectors uα are
uT1 = (1, 1, 1, 1)

uT2 = (1,− 1+y
s+α ,−

1+y
s+α , 1)

uT3 =
(
−1, 2(1−y)

1−s+y−α+ρ ,−
2(1−y)

1−s+y−α+ρ , 1
)

uT4 =
(
−1, 2(1−y)

1−s+y−α−ρ ,−
2(1−y)

1−s+y−α−ρ , 1
) . (D9)

The stationary state P∞ is equal to the first right eigen-
vector v1, related to the null eigenvalue λ1.

2. Computing µ

In order to compute the effective magnetization µ in
the presence of feedback, we recall Eq. 10, which is valid
in general and which relates the joint probability distri-
bution P (xt, z0) with µ. We then express P (xt, z0) as in
Eq.2 in the main text:

P (xt, z0) =
∑

zt,x0=±1
P (xt, zt, t|x0, z0, 0)P0(x0, z0),

(D10)
where P0(x0, z0) is the initial distribution of the system,
corresponding to the stationary state P∞ ≡ v1(x0, z0),
while the conditional probability P (xt, zt, t|x0, z0, 0) can
be written as

P (xt, zt, t|x0, z0, 0) =

4∑
i=1

e−λituTi (x0, z0)vi(xt, zt).

(D11)
vi denotes the i-th right eigenvector and uTi – the i-th
left eigenvector and we make the dependence on x and
z explicit as we are going to exploit it in the subsequent
algebraic manipulations.
We recall the definitions of A and ρ (Equations D2 and

D3) and introduce the additional quantities

q =
1 + y − s− α

A
, (D12)

m =
s+ α

2A
. (D13)

We rewrite the right eigenvectors of Appendix D 1 as

v1(x, z) =
1 + qxz

4
(D14)

v2(x, z) = mxz (D15)

v3(x, z) = − 1+y−3k+α+ρ
8ρ x− 1+y+s−3α+ρ

8ρ z (D16)

v4(x, z) = 1+y−3k+α−ρ
8ρ x+ 1+y+s−3α−ρ

8ρ z (D17)

and define

h =
1 + y

s+ α
, (D18)

a =
1

2
(1 + s− 3y + α− ρ), (D19)

b =
1

2
(−3 + s+ y + α− ρ), (D20)

c = 1− s+ y − α+ ρ, (D21)

e =
1

2
(1 + s− 3y + α+ ρ), (D22)

f =
1

2
(−3 + s+ y + α+ ρ), (D23)

g = 1− s+ y − α− ρ. (D24)

Having done that, the left eigenvectors of Appendix D 1
now read

uT1 (x, z) = 1, (D25)

uT2 (x, z) =
1− h

2
+

1 + h

2
xz, (D26)

uT3 (x, z) =
ax+ bz

c
(D27)

uT4 (x, z) =
ex+ fz

g
. (D28)

Now, by plugging Eq. D11 into Eq. D10, we are able to
write P (xt, z0) as

P (xt, z0) =

4∑
i=1

e−λitAi(z0)Bi(xt), (D29)

where

Ai(z0) =
∑
x0±1

uTi (x0, z0)v1(x0, z0), (D30)

Bi(xt) =
∑
zt±1

vi(xt, zt). (D31)
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Computing the terms Ai and Bi (with i = 1, . . . , 4) we
obtain:

A1(z0) = 1/2, (D32)

A2(z0) =
1

4

(
1− h+ (1 + h)qz20

)
, (D33)

A3(z0) =
(b+ aq)z0

2c
, (D34)

A4(z0) =
(f + eq)z0

2g
, (D35)

and

B1(xt) = 1/2, (D36)

B2(xt) = 0, (D37)

B3(xt) = −xt(1− 3s+ y + α+ ρ)

4ρ
, (D38)

B4(xt) =
xt(1− 3s+ y + α− ρ)

4ρ
. (D39)

Plugging in all the above expressions into Eq. D29 we
compute the effective magnetization µ, which is

µ = exp

(
− A

2λ
τ

){
q cosh

( ρ
2λ
τ
)
−[

s2 − (1 + y)2 − 4α+ α2 + 2s(2y + α)
]

Aρ
sinh

( ρ
2λ
τ
)}

.

(D40)

3. Numerical results: optimal rates

In this section we show the optimal rates {s∗, y∗, α∗}
resulting from numerical optimization. As discussed in
the main text, optimization is performed as two separates
branches: one where we fix y ≥ α, and the other where
we set y ≤ α. Results from both branches are shown in
Figs. 14 and 15.
In the Fig. 14, we show the optimal rates as functions
of rescaled dissipation σ̂, for different values of delay τ .
Such rates are used to calculate the optimal mutual in-
formation shown in Fig. 10a-c in the main text.
In Fig. 15 we show the dependency of the optimal rates τ ,
for different values of σ̂. These corresponds to I∗ shown
in Fig. 10d-f in the main text.

Appendix E: Robust optimization

1. Diagonalization of L

In the maximin model described in section III, the
transition rate matrix L has the form

L =

 u −u −1 0
−u 1 + u 0 0
0 0 1 + u −u
0 −1 −u u

 . (E1)
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FIG. 14: Optimal rates {s∗, y∗, α∗} as functions of rescaled
dissipation σ̂ for different readout delays τ . Results from the
simulation branch with y ≥ α and with y ≤ α are shown in
panels (a-c) and (d-f), respectively. These rates are used to
compute the optimal mutual information I∗ of Fig. 10a-c in
the main text.

Its eigenvalues λα are
λ1 = 0

λ2 = 1

λ3 = 2u

λ4 = 1 + 2u

. (E2)

Its right eigenvectors vα are

P∞ = v1 =
1

2(1 + 2u)

 u+ 1
u
u

u+ 1

 , (E3)

v2 =
u

2(1− 2u)

 +1
+1
−1
−1

 ,

v3 =
1

2(1− 2u)

 u− 1
−u
−u

1− u

 , (E4)

v4 =
u

2(1 + 2u)

 +1
−1
−1
+1

 , (E5)
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FIG. 15: Optimal rates {s∗, y∗, α∗} as functions of the read-
out delay τ for different values of the entropy production rate
σ̂ (measured in bits). Results from the simulation branch with
y ≥ α and with y ≤ α are shown in panels (a-c) and (d-f),
respectively. These rates are used to compute the optimal
mutual information I∗ of Fig. 10d-f in the main text.

and its left eigenvectors uTα are
uT1 = (1, 1, 1, 1),

uT2 = (−1, −u+1
+u , +u−1+u , 1),

uT3 = (−1, 1,−1, 1),

uT4 = (1, −u−1+u , −u−1+u , 1).

(E6)

The stationary state P∞ is equal to the first right eigen-
vector v1, related to the null eigenvalue λ1.

2. Solution for τ � 1

In this section we derive the asymptotic behavior of
u∗ as τ → 0 given in Eq. 64. In the limit where τ �
1, Eq. 63 results in a transcendental equation for the
auxiliary variable a = τ 1−2u∗

2u∗ :

ea = 1 + a+
2a2

τ
, (E7)

which needs to be solved numerically. However, in the
limit τ � 1 we can analytically solve Eq. E7.

When τ → 0, in order for the left hand side (l.h.s.) of
Eq. E7 to match the leading order term 1/τ of the right
hand side (r.h.s.) of Eq. E7 , a must be of the form

a = − log τ + b. (E8)

Hence Eq. E7 becomes

eb

τ
= 1 + b− log τ +

1

τ
2(b− log τ)2.

Multiplying both sides by τ gives

eb = (1 + b− log τ)τ + 2b2 − 4b log τ + 2(log τ)2.

The leading order term of the r.h.s. for τ → 0 is 2(log τ)2,
thus the above equation becomes

eb ' 2(log τ)2, τ → 0,

which implies that b has the form

b = log(2(log τ)2) + c. (E9)

Plugging b into Equation E9 we obtain

(2(log τ)2)ec ' 2(log τ)2 − 4(log(2(log τ)2) + c) log τ +

+ 2(log(2(log τ)2) + c)2 + . . . . (E10)

and by 2(log τ)2, we have

ec = 1− 2
log(2(log τ)2) + c

log τ
+ · · · ' e−2

log(2(log τ)2)
log τ ,

which finally implies that

c = −2
log(2(log τ)2)

log τ
. (E11)

To sum up, when τ � 1 one can write a as

a ' − log τ + log(2(log τ)2)− 2 log(2(log τ)2)
log τ

= log
(

2(log τ)2

τ

)
− 2 log(2(log τ)2)

log τ (E12)

When τ → 0, a diverges as

a ' log

(
2(log τ)2

τ

)
− 2

log(2(log τ)2)

log τ
, τ � 1 (E13)

and u∗ goes to zero with τ in a strongly sublinear way:

u∗ ' τ

2(− log τ + log(2(log τ)2)− 2 log(2(log τ)2)
log τ )

, τ � 1.

(E14)
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[68] G. Tkačik, A. Walczak, and W. Bialek, Physical Review
E 80, 031920 (2009), ISSN 1539-3755.
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